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ABSTRACT

In the dynamic model of infectious diseases, tleafgraditional methods to estimate the numbeinofdence,
there is often a theoretical analysis of high commjly, immediacy and poor. The nonlinear dynamidehof the
observer in the incidence of infectious diseasémation method can better solve the problem. Phjser presents
a nonlinear observer on the incidence of infectidisease dynamics model estimation method. Systaamics
model for infectious diseases have incubation pktioe structure of the corresponding nonlineateys observer,
the observer for nonlinear systems to predict thmiper of cases. The present invention is not amiple, can be
estimated coefficient estimates and infectiousadiséncidence rate, but also on other parametech @as illness
mortality and recovery rates can also be estimated the adaptability and accuracy have certain adage of the
prevention and control of infectious diseases dbiusve some reference value.
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INTRODUCTION

Infectious diseases by pathogenic microorganisnmaig@s, rickettsia, bacteria, spirochetes, etcd parasites
(protozoa or worms) produced by the body afterdtiém infectious diseases. In recent years, withabvent of

AIDS, SARS and influenza HINI and spread of neweatious diseases, pose a serious threat to hurf@an i

Therefore, the infectious disease prevention, rimeat, control and study its propagation mechansimdreasingly
important. Currently, the study of infectious dises, there are four methods: descriptive studyly@éee studies,
experimental studies and theoretical researchdritteoretical study, based on disease occurrdeeelopment and
environmental changes, etc., to reflect its dynamegtablish a mathematical model to predict thdeapic patterns
and trends of the disease, the cause of the emidamd key factor analysis, to find its Optimal g¢ohtand
prevention strategies. Therefore, the use of madtieal models for qualitative research on infecialiseases has
been widespread attention [1-2]. Using kinetic niead infectious diseases, the number of new cakagectious
diseases prediction that the incidence of thisadisecontribute to the development trend of inferstidiseases to
predict, and thus the prevention and control oéétibus diseases has important guiding significahrcenfectious
disease dynamics, the solution to this problemnipahrough traditional methods of solving diffetiah equations
analysis to achieve. However, due to the complezgityl the actual reality of the immediacy of fostitay models
have caused the traditional methods have signffigaitations in the application. Based on thertit®ire [3], based
on the consideration of the SEIR epidemic modehwitubation period, using a nonlinear observeraggh to the
incidence of infectious diseases SEIR model andnfextion rate coefficient is estimated. The resshow that
compared with traditional methods, this methoddiapdive in terms of practicality and have a greathrantage, the
actual work on the prevention and control of infeas diseases have a certain reference value.

MATHEMATICAL MODELSOF GENETICALGORITHMS
In infectious disease dynamics, the mathematicalahis mainly used for a long time the so-calledhpartment

model, its basic idea is Kermark and Mckendrickstfiproposed in 1927, and established the famous SIR
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compartment model [4]. SIR model first crowd diuddi@to three categories, namely, with S(t), I(tjt)Rlenote the
number of susceptible class time t, and out of géhioéected by class category. Let the time t ofumber of
infectious diseases can be transmitted by the nurobesusceptible susceptible environment within theal
proportional scale factdgp (called the infection rate coefficient), so in thmeit time t is the time for all patients
infected (the number of new cases) W&, also known as the disease incidence; numbenfetted persons
removed from the time t and the number of infegitetsons is directly proportional to the ratio cméint 5, called
the recovery rate coefficient; another assumptsoremoved class R lifelong immunity will not beenfed persons
become infected again. In all the above conditiansiodel diagram SIR infectious diseases:

—— BOS! ol
S » 1 ~ R

Fig. 1: SIR epidemic model diagram
Infectious disease dynamics model diagram abovwesponds to:

S(t)=-4SlI
I(t)=4SI-0dl (1)
R(t)=41

In the model (1), in order to predict the numbeneW-onset cases of infectious diseases, needinae¢spSI value.
In reality, especially in the first few emergindantious diseases onset infection rate coeffigieist not known, so
for infectious disease dynamics model to estimagearicidence of disease problems, the traditiorethod is to use
a method for solving differential equations and meatatical analysis first obtain the valuefpfind then determine

the valuepSI of [1]. This method need to obtain the theordtenlution expression models:-1,=-(S-§ )+% lné

Whent - «, we hava(t) - 0,S(t)- S, , Solutions have:/3=5(IS:§’|7__m§)-

The literature [5] based on actual data, usingrtethod of bubonic plague in 1666 England villageEgam
Sheffield area were analyzed, the conclusion tiairifection rate coefficient (1 / month). On thisis, the number
of incidence is obtainefiSI.

The above estimation of disease incidence andtinfecates is inadequate in actual use. First egiom methods in
the literature [5] given disease eventually neecknow when the end of the number of susceptiblat the
estimatedp is at the end of epidemics, rather than in thersmwf disease transmission, so that the method in
real-time there is a great shortage of. Meanwiieractice, the infection rafg depends not only on the type of
disease, but also on the individual circumstanoestiich people and infected human social envirortpreo3 has
great complexity. In the dynamic model of infecBodisease research, according to the actual factioes
establishment of the number of incidence in manym& for example: bilinear incidendgSl, standardized
incidence rati3SI/N, et al proposed by the J.A.P. Heesterbeelshagating contact rate The number of incidence,
as well as recently proposed new raid +f(1))S and other forms [2]. Thus, the incidence loége diseases
nonlinear, the corresponding differential model kimg theoretical solutions and qualitative analyssmore
complex, so the use of the literature [5] estimatizethods has great difficulty.

Nonlinear control theory controller design is arportant research branch, its application in indaistontrol more
widely, but the application of the kinetic modelsn@latively rare diseases. Using control theonylinear observer
method, reasonable structure nonlinear controbertlie number of incidence has a latency periothef SEIR

model to estimate the dynamics of infectious dissaa new way, this estimation method is simple effettive,

and not dependent model can predict the type afadis incidence and estimates the number of thasdis¢he
simulation results show that the method is effectiv

NONLINEAR OBSERVER ESTIMATED INCIDENCE OF INFECTIOUS DISEASES

Research on nonlinear control system design ha® maght progress in recent years [6-8], but theltseachieved
in terms of nonlinear observer is not much, esfigai@nlinear observer in the control system pargmestimation
applications are rare. In this paper, the litemat[8] gives a parameter estimation method basechamiinear

observer, this nonlinear observer for multiple pagters of the system can only be estimated, batcas be carried
out simultaneously on the status and parameteteeomount of output estimates. The process obksting a

nonlinear observation is as follows:
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First, consider the following systemst)= f(x,ug ), wherex in the system state is outputjs the control input, and
0 is a vector of parameters to be estimated. Isssiimed that the state and the control vector isiasd variable
parameter vectors.

According to the standard theory can be construasefbllows Nonlinear Observer [10]:
é =-¢g(x)+z (2)

2=-®(x)f(x,uf ) (3)

OX;

Which ¢x) is a nonlinear function, andp(x) is the Jacobian matrix of sheet@(x){amx)} o is the
]

definition of the estimated value of the parameterin addition, the observer error depends on:
e=-0=-0(x)x- =~ (x) f(x 8 ¥ f(x 6~ & (4)

The observer for parameter estimation of the strecshown in figure 2:

!

ﬁ’ State Observer ~ —» ]Eaj;ir:e‘te:’ o >
tate Variables stimato Parameter Estimate
T T u

Control
Fig. 2: Nonlinear parameter estimation observer schematic diagram

In the nonlinear observer of use, the non-lineaction ¢ x) is important, L(t)=®(x)F(x,u) is a positive definite
matrix, where the matrixF(x,u)=[af(x,ug )/, | .

PREDICTION METHOD OF DISEASE INCIDENCE IN THE EPIDEMIC DYNAMICS MODEL WITH
LATENT PERIOD

Consider the actual situation spread of infectidiseases, in order to make the model better géhénwith the
actual situation, the system (1) to make the follgwmprovements: First, consider the impact of inmzation, the
introduction of vaccination items pS, where p iscaptible class S the proportional coefficient rafriunization;
while common infectious diseases are all incubaperiod, so on the basis of SIR epidemic model, atided
latency of class E(t), wheieis the time t to the onset of the incubation pettiee proportion of patients with factor ;
fatal disease with an assumption, a is a latengatients E, | invectives mortality; disease ocence rate(t)Sl,
and other symbols are the same meaning and thensy).

pS
G(t)SI HE ol
S » E S | R
akE al

Fig. 3: The epidemic dynamics model with latent period diagram

Under the above assumptions, the correspondingtiofes disease dynamics model:

S=-B(1) SI- pS
E=A(t)SI- uE- aE
[ = uE -4l -al
R=JI

(5)

Since our main disease inciderff S| estimated, so here only consider the systntgnsisting of the first three
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equations, and assuming thaf3(t)SI, and the disease incideng#)SI parameters to be estimated. Further, since in
practice, the immunization of susceptible can harodled, so that the model can be seen as a faotounization
power control system, the systerqt)= f(x,ug ) thatis u$S. Therefore, the following simplified system:

S=-6-u
{E:H—,uE—aE ©6)

By a system parameter estimation method for noafirbdserver (2), (3) given for the system (6), stablish the
corresponding nonlinear systems Observer:

{2=@(E)((/1+ 9 E-6) @

b=@E)+z

Where z is the observer state variables, is the estimated number of incidence, but alsoacihg@ut observer,

#x) is a nonlinear function, ang (1) =[a§(x)]m_

Because the system (6) is only one of the paramédebe estimatel, so for nonlinear observer (7), we take the
functiongx) = kx. Becausegx) corresponding Jacobian matrix igx) =k, so there isL) =k . Obviously, whem >0,
L is positive definite, parameter estimation methiodsieet the conditions.

SIMULATION

Nonlinear observer on the incidence of infectioiseases SEIR model with vaccination simulation expents.
Figure 4, 5, 6 respectively, wh&r0.5,k=2 andk=12, the comparative picture of disease incidgi{t&! values of
SIR model with nonlinear numerical simulation methto estimate the value of the observer, which esyst
parameters were takg(t) = 0.02,. = 0.2, a = 0.05.
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Fig. 4 When k = 0.5, the number of incidence of the epidemic model smulation diagram
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Fig. 5When k =2, the number of incidence of the epidemic model simulation diagram
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Fig. 6 When k = 12, the number of incidence of the epidemic model smulation diagram

In addition, the use of these diseases as welstimates of the incidence of susceptible momet,nihmber of
infected persons can obtain an estimate of thespanding infection ratg and Figure 7 is k = 12 during infection

rate f simulation results, when t=20, estimated valughef infection rateB is close to the value of the model
parametep=0.02, the error is less than™10

0.1
0.09
0.08
0.07
0.06

0.05

Infection rate

0.04

0.03

.................

Time t

Fig. 7When k = 12, infection rate of the epidemic model estimates

CONCLUSION

When the use of differential dynamic model of tiegagation of infectious diseases, mainly reliedraditional
methods for solving differential equations of thedry, but due to the complexity of the model aisdheoretical
solution is often difficult to draw, so its limiiahs. The use of non-linear controller to estintageparameters of the
model, such as the common type of disease incidéhisemethod is simple. Meanwhile, this method nahonly
estimate the coefficient estimates and infectiossase incidence rate and other parameters suctorality and
illness recovery rate can also be estimated, and bartain advantages in terms of adaptability acclracy of
prevention and control of infectious diseases lwsrial applications
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