Journal of Chemical and Pharmaceutical Research, 2014, 6(6):1179-1183

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Empirical research on the bio-pharmaceutical listed companies' profitability

Zhang Dandan and Shen Juqin

School of Business, Hohai University, Nanjing, P. R. China

ABSTRACT

Based on the domestic and international studies about the profitability, this paper firstly introduces the general situation of the bio-pharmaceutical industry. Then the concept of profitability is defined. 78 bio-pharmaceutical listed companies from Shanghai stock exchange and Shenzhen stock exchange are chosen as research subjects. The comprehensive evaluation of the bio-pharmaceutical companies' profitability from 2010 to 2012 is calculated by using factor analysis. Then this paper use regression analysis methods to study the factors that may affect the company's profitability. Finally, combined with the analysis above, some suggestions are presented to improve the profitability of the bio-pharmaceutical listed companies in China.

Keywords: bio-pharmaceutical; profitability; factor analysis; regression analysis

INTRODUCTION

The profitability plays an important role in the enterprise performance evaluation and financial analysis, getting widespread concern of the stakeholders in all aspects. It reflects not only sale level, the ability to get cash-flow and reduce cost, but also the company's operating benefit and ability to evade risk. [1] Therefore, the profitability evaluation is essential for the company. [2] As a new industry, the bio-pharmaceutical industry is recognized as one of the 21st century's most promising industries. Compared with developed countries, the bio-pharmaceutical industry in China started later, but is developing rapidly. The technology gap between the developed country and developing country has been gradually narrowing as the Human Genome Project, stem cells research, insulin research and other researches have reached the leading level. In order to promote the healthy and sustainable development of bio-pharmaceutical industry, the profitability of the bio-pharmaceutical listed companies from Shanghai stock exchange and Shenzhen stock exchange in China is studied.

EXPERIMENTAL SECTION

1.Definition of profitability

Profitability is the ability of the company to obtain profits. It reflects the company's marketing ability, the ability to reduce costs, the ability to avoid risks, and the enterprise management state. The profitability depends not only on the company's production and operation, but also on the share of economic resources, capital invested, and the value of the product [3].

2. Analysis of the profitability of the bio-pharmaceutical listed companies

2.1 Sample selection and data sources

This paper selected bio-pharmaceutical companies from Shanghai stock exchange and Shenzhen stock exchange, calculate indicators and evaluate the profitability of 78 listed companies from 2010 to 2012.

2.2 Index selection

To calculate the profitability of the bio-pharmaceutical companies, this paper selected 7 financial indicators: operating profit ratio(X_1), sales margins(X_2), return on total assets ratio(X_3), REO(X_4), ratio of profits to cost(X_5), EPS(X_6), per

share cash flow from $operations(X_7)$.

To analysis the factors that may affect the company's profitability, this paper chose 10 financial indicators: assets turnover ratio(Y_1), debt asset ratio(Y_2), ownership concentration(Y_3), intangible assets ratio(Y_4), increase rate of main business revenue(Y_5), total assets growth rate(Y_6), total asset size(Y_7), current ratio(Y_8), proportion of circulating shares(Y_9), capital appreciation rate(Y_{10}).

Index name	Symbol	Formula
operating profit ratio	X_1	X ₁ =operating profit/total revenue
sales margins	X_2	X ₂ =net profit/proceeds of sale
return on total assets ratio	X_3	X ₃ =(total profit+ interest expense)/average total assets
REO	X_4	X ₄ =net profit/total equity
ratio of profits to cost	X_5	X5=total profit/total cost
EPS	X_6	X ₆ =net profit/equity
per share cash flow from operations	X_7	X ₇ =net cash flow from operations/ordinary shares
asset turnover ratio	Y_1	Y ₁ =sales income/total assets
debt asset ratio	Y_2	Y ₂ =total debt/total assets
ownership concentration	Y ₃	Y ₃ =the largest shareholder's stake/total shares
intangible assets ratio	Y_4	Y ₄ =intangible assets/total assets
increase rate of main business revenue	Y ₅	Y ₅ =operating revenue increase in current/operating revenue at first
total assets growth rate	Y_6	Y ₆ =assets increase in current/total assets at first
total asset size	Y ₇	Y ₇ =LN(total assets)
current ratio	Y ₈	Y ₈ =current assets/current liabilities
proportion of circulating shares	Y ₉	Y ₉ =circulating shares/total equity
capital appreciation rate	Y ₁₀	Y ₁₀ =owner's equities in current/owner's equities at first

Table 1 Description of Index

RESULTS AND DISCUSSION

1 Factor analysis

1.1 Correlation matrix

Use SPSS19.0 to calculate comprehensive profitability of bio-pharmaceutical listed companies (F). Firstly determine the correlation between the original data, the correlation matrix shows that most correlation coefficients are more than 0.3. Each variable has a strong correlation, it is necessary for factor analysis.

Table 2Correlation Matrix

	X1	X_2	X ₃	X_4	X ₅	X ₆	X ₇
X_1	1.000	0.975	0.493	0.336	0.971	0.536	0.087
X_2	0.975	1.000	0.485	0.332	0.971	0.519	0.064
X3	0.493	0.485	1.000	0.905	0.511	0.593	0.392
X_4	0.336	0.332	0.905	1.000	0.343	0.529	0.342
X_5	0.971	0.971	0.511	0.343	1.000	0.556	0.115
X_6	0.536	0.519	0.593	0.529	0.556	1.000	0.529
X7	0.087	0.064	0.392	0.342	0.115	0.529	1.000

1.2 KMO and Bartlett's test

In the KMO and Bartlett's test, the KMO is 0.779, which illustrate the correlation between indicators. Bartlett's test value is 2148.652(Sig. =0.000), it get through the significant inspection.

Table 3KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	0.779			
	Approx. Chi-Square			
	df			
Bartlett's Test of Sphericity	0.000			

1.3 Total variance explained

From the factor analysis, two factors explained 82.174% of the variance among the 7 variables. The first characteristic factor is 3.218, the variance of contribution value is 45.967%. The second characteristic factor is 2.534, the variance of contribution value is 36.207%. The contribution of public factor showed that the two factors reflect original indexes.

	Initial Eigenvalues			Extraction Sums of SquaredLoadings			Rotation Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.166	59.517	59.517						
2	1.586	22.657	82.174						
3	0.796	11.376	93.550	1 166	50 517	50 517	2 210	15 067	45.067
4	0.323	4.616	98.166	4.100	39.317	39.317	3.210	45.907	43.907
5	0.076	1.093	99.259	1.380	22.037	02.174	2.334	50.207	62.174
6	0.028	0.396	99.655						
7	0.024	0.345	100.000						

Table 4 Total Variance Explained

Extraction Method: Principal Component Analysis.

1.4 Component matrix

Use orthogonal solution to get the two common factors: commodity management ability(F_1), operating ability(F_2). $F_1=0.339X_1+0.344X_2-0.011X_3-0.075X_4+0.332X_5+0.038X_6-0.180X_7$ $F_2=-0.097X_1-0.106X_2+0.331X_3+0.368X_4-0.083X_5+0.257X_6+0.385X_7$

Table 5Component Score Coefficient Matrix

	Component					
	1	2				
X_1	0.339	-0.097				
X_2	0.344	-0.106				
X3	-0.011	0.331				
X_4	-0.075	0.368				
X_5	0.332	-0.083				
X_6	0.038	0.257				
X_7	-0.180	0.385				

According to the component score coefficient matrix, the comprehensive score model can be established: $F = (45.967\% F_1 + 36.207\% F_2)/82.174\%$

2 Regression analysis

2.1 Correlation matrix

Use Eviews6.0 to analysis the factors that may affect the profitability of the bio-pharmaceutical companies. According to the correlation matrix, the correlation coefficient between Y_6 and Y_{10} is 0.943, while most correlation coefficients are less than 0.4. Special treatment is needed in the regression analysis.

	Y1	Y ₂	Y ₃	Y_4	Y ₅	Y ₆	Y ₇	Y ₈	Y ₉	Y ₁₀
Y_1	1.000	0.373	0.026	0.045	-0.093	-0.122	0.285	-0.300	0.380	-0.130
Y_2	0.373	1.000	-0.254	0.252	-0.067	-0.161	0.294	-0.406	0.468	-0.208
Y ₃	0.026	-0.254	1.000	-0.110	0.029	0.135	0.218	0.227	-0.360	0.108
Y_4	0.045	0.252	-0.110	1.000	0.107	-0.127	-0.104	-0.242	0.203	-0.140
Y ₅	-0.093	-0.067	0.029	0.107	1.000	0.125	-0.056	-0.008	-0.140	0.103
Y_6	-0.122	-0.161	0.135	-0.127	0.125	1.000	0.012	0.335	-0.328	0.943
Y ₇	0.285	0.294	0.218	-0.104	-0.056	0.012	1.000	-0.186	0.150	-0.015
Y_8	-0.300	-0.406	0.227	-0.242	-0.008	0.335	-0.186	1.000	-0.453	0.378
Y ₉	0.380	0.468	-0.360	0.203	-0.140	-0.328	0.150	-0.453	1.000	-0.343
Y ₁₀	-0.130	-0.208	0.108	-0.140	0.103	0.943	-0.015	0.378	-0.343	1.000

Table 6 Correlation Matrix

2.2 Index regression result

In the regression analysis, the dependent variable is the comprehensive profitability of bio-pharmaceutical listed companies, the explanatory variables are the indicators that affect the company's profitability. To avoid the multicollinearity between the explanatory variables, the multivariable linear regression model is constructed based on the correlation matrix above.

 $\begin{array}{l} P_1 = a_0 + a_1 Y_1 + a_2 Y_2 + a_3 Y_3 + a_4 Y_4 + a_5 Y_5 + a_6 Y_7 + a_7 Y_8 + a_8 Y_9 + a_9 Y_{10} \\ P_2 = a_0 + a_1 Y_1 + a_2 Y_2 + a_3 Y_3 + a_4 Y_4 + a_5 Y_5 + a_6 Y_6 + a_7 Y_7 + a_8 Y_8 + a_9 Y_9 \end{array}$

Use Eviews6.0 for least squares estimation, the results are shown in table 7 and table 8.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Y1	0.005922	0.031763	0.186432	0.8523
Y2	-0.507685	0.069004	-7.357270	0.0000
Y3	-0.128062	0.070878	-1.806799	0.0721
Y4	-0.034171	0.210755	-0.162134	0.8713
Y5	0.007341	0.022273	0.329574	0.7420
Y7	0.085800	0.011060	7.757309	0.0000
Y8	-0.000689	0.001838	-0.374661	0.7083
Y9	-0.002112	0.039939	-0.052871	0.9579
Y10	0.014919	0.010953	1.362065	0.1745
С	-1.441178	0.227650	-6.330678	0.0000
R-squared	0.350962	Mean dep	endent var	0.221398
Adjusted R-squared	0.324885	S.D. depe	endent var	0.162583
S.E. of regression	0.133587	Akaike in	fo criterion	-1.146335
Sum squared resid	3.997378	Schwarz	-0.998672	
Log likelihood	144.1212	Hannan-Q	-1.086797	
F-statistic	13.45847	Durbin-W	1.121215	
Prob(F-statistic)	0.000000			

Table 7 Index regression result (1)

Table 8 Index regression result (2))
-----------------------------------	----	---

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Y1	0.006715	0.031632	0.212277	0.8321
Y2	-0.514841	0.068959	-7.465947	0.0000
Y3	-0.131933	0.070499	-1.871412	0.0626
Y4	-0.028490	0.209984	-0.135676	0.8922
Y5	0.005189	0.022248	0.233228	0.8158
Y6	0.030641	0.016203	1.890992	0.0599
Y7	0.085352	0.011021	7.744308	0.0000
Y8	-0.000868	0.001818	-0.477669	0.6334
Y9	0.001510	0.039697	0.038050	0.9697
С	-1.418706	0.226984	-6.250239	0.0000
R-squared	0.355869	Mean dep	endent var	0.221398
Adjusted R-squared	0.329989	S.D. depe	endent var	0.162583
S.E. of regression	0.133081	Akaike info criterion		-1.153925
Sum squared resid	3.967156	Schwarz	-1.006261	
Log likelihood	145.0092	Hannan-Q	-1.094387	
F-statistic	13.75061	Durbin-W	1.097318	
Prob(F-statistic)	0.000000			

It is shown in table 7 and table 8 that R-squared is 0.35, adjusted R-squared is 0.32. The F- statistic is about 13, Prob(F-statistic) is 0.0000. Although the goodness of fitting of the regression equation is low, the F-test is passed, indicating that the model is acceptable.

CONCLUSION

1. conclusions

(1)From the regression results of the two models, the regression coefficients of debt asset ratio(Y_2) and ownership concentration(Y_3) are negative, indicating that a higher debt asset ratio will inhibit the company's profitability, the ownership concentration has a negative impact on the profitability of the bio-pharmaceutical companies.[4]

(2) The regression coefficient of total asset size (Y_7) is positive, the T-test is passed, indicating that the total asset size and the profitability are positively correlated.

(3)According to the regression results in table 7, the total assets growth rate(Y_6) gets through the T-test, the regression coefficient is positive, which means that the higher the total assets growth rate, the higher the company's profitability. In table 8, the regression coefficient of capital appreciation rate(Y_{10}) is positive, suggesting that the capital appreciation rate and the profitability are positively correlated.[5]

(4)In the two models, the asset turnoverratio(Y_1), intangible assets ratio(Y_4), increase rate of main business revenue(Y_5), current ratio(Y_8) and proportion of circulating shares(Y_9) are not pass the T-test. These indicators have little impact on the profitability of the bio-pharmaceutical companies.

2. suggestions

(1)Optimize the capital structure of bio-pharmaceutical listed companies

When making decisions about capital structure, bio-pharmaceutical listed companies should pay attention to its impact on the company's profitability. [6]In order to achieve optimal capital structure, the operating profit and financial risk brought by the financial leverage should be taken into account. For the bio-pharmaceutical listed companies with high debt asset ratio, the company should preclude taking debt, so that the financial risk is in a reasonable range. For the companies with low debt asset ratio, when the return on assets ratio is higher than bank lending rates, they can expand the scale of debt to maximize the tax deductibility.

(2)Expansion the asset of bio-pharmaceutical listed companies

The development of the bio-pharmaceutical industry requires sufficient assets and capital to conduct long-term research and innovation.[7]As for the company's strategy, large companies with good brand have better marketing capabilities to occupy a larger market share. From the perspective of technological innovation, large companies have the ability to gather more technical and R&D professionals to conduct technological innovation. [8]Therefore, Merger and holding shares are encouraged to expand the asset and the scale of production.

(3)Improve product competitiveness of bio-pharmaceutical listed companies

To improve the profitability, bio-pharmaceutical listed companies should focus on the changing market demands, analysis their own strengths and weaknesses, and promote the development of new products.[9]Meanwhile, bio-pharmaceutical companies should enhance their management level, strengthen the management level, increase sales income and make effort to control production costs and related expenses.

Acknowledgement

Thanks to the guidance of my teacher Miss Shen.

REFERENCES

[1]Wu Min, Shen Juqin, Zhang Xuefang. Journal of chemical and pharmaceutical research. 2013, 5(12), 1379-1383.

[2]Chen Hongming, Xu Si. Journal of convergence information technology. 2013, 8(8), 584-591.

[3] Tomas A. Wilson. Review of industrial organization. 1992, 7(2), 151-185.

[4]JiangfeiLeng, Lu li. Modern economy. 2011, 2(5), 893-900.

[5] Zhao Xuanmin, Zhang Xiaoyang. Communication of finance and accounting. 2009, 3(1):12-18.

[6]Li Bin. Technoeconomics & management research.2013(6), 67-71.

[7]Zhu Yi. On economic problems. 2008(2), 46-48.

[8]Zhang Junrui, JiaZongwu, Sun Yumei. Modern economic science. 2004, 26(6), 53-59.

[9]Zhang Baoqing. East China economic management. 2006, 20(8), 146-148.