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ABSTRACT 

 

Ontology similarity calculation and ontology mapping are crucial research topics in information retrieval. Ontology, 

as a concept structure model, is widely used in biology, physics, geography and social sciences. In this paper, we 

present new algorithms for ontology similarity measurement and ontology mapping using harmonic analysis and 

diffusion regularization on hypergraph. The optimal function gets from new algorithms manifests good smoothness 

and well reflects the structure of the ontology graph. Two experimental results show that the proposed new 

technologies have high accuracy and efficiency on ontology similarity calculation and ontology mapping in certain 

applications. 
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INTRODUCTION 

 

Ontology is described as the concept structure in computer science which has raised many attentions from 

researchers. In information retrieval, ontology has been used to compute semantic similarity (for instance, see [1]) 

and search extensions for concepts. Every vertex on an ontology graph represents a concept; a user searches for a 

concept A, will return similarities concepts of A as search extensions. Let G be a graph corresponding to ontology O, 

the goal of ontology similarity measure is to approach a similarity function which maps each pair of vertices to a 

real number. Choose the parameter M 
, the concepts A and B have high similarity if Sim(A,B)>M. Choose the 

parameter M 
, let A,B be two concepts on ontology and Sim(A,B)>M, then return B as retrieval expand when 

search concept A. Therefore, the quality of similarity functions plays an important role in such applications. Some 

effective methods for ontology similarity calculation are given by [2], [3], and [4]. 

 

Let graphs G1, G2, …, Gk corresponding to ontologies O1, O2,…, Ok, respectively, and G=G1+G2+…+Gk. For every 

vertex vV(Gi), where 1 i k, the goal of ontology mapping is finding similarity vertices from G-Gi. From this 

point of view, the ontology mapping problem is can be regard as ontology similarity measure. The key trick for 

ontology similarity measure and ontology mapping is to find the best similarity function Sim: V×V    {0}, 

which maps each pair of vertices to a non-negative real number. 

 

One trick to design similarity functions for ontology applications is followed from the graph learning method. With 

such technology, we obtain the optimal function, which maps each vertex in ontology graph or multi-ontology graph 

into a real number. By calculating the difference between the real number of two vertices, we determine the 
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similarity between their correspond concepts.  

 

There are several theory analyses for ontology algorithms. [5] studied the uniform stability of multi-dividing 

ontology algorithm and gave the generalization bounds for stable multi-dividing ontology algorithms. [6] researched 

the strong and weak stability of multi-dividing ontology algorithm. [7] learned some characteristics for such 

ontology algorithm. [8] studied the multi-dividing ontology algorithm from a theoretical view. It is highlighted that 

empirical multi-dividing ontology model can be expressed as conditional linear statistical, and an approximation 

result is achieved based on projection method. [9] presented the characteristics of best ontology score function 

among piece constant ontology score functions. [10] investigated the upper bound and lower bound minimax 

learning rate are obtained based on low noise assumptions. Recently, [11] and [12] proposed splitting trick for vertex 

partition of AUC criterion multi-dividing setting and presented several statistic results. 

 

In this paper, we present the harmonic analysis and diffusion on hypergraph data and apply it in the field of ontology 

applications. The purpose of such trick is to improve the smoothness of the objective function and reflect the 

intrinsic structural characteristics of the ontology graph. The organization of this paper is described as follows: we 

first present the technology of harmonic analysis and diffusion for hypergraph setting. Next, we describe the new 

ontology similarity measure and ontology mapping algorithms using the tricks that we show in next section. Then, 

these algorithms are explored in the simulation studies in biology ontology and physical education ontology, 

respectively.  

 

HARMONIC ANALYSIS AND DIFFUSION ON HYPERGRAPH DATA 

Diffusion on discrete data and harmonic analysis are important tricks in the implement of machine learning 

algorithms, especially in semi-supervised and transductive learning settings. The success of such algorithms relies 

heavily on the assumption that the optimal function to be learned is smooth with respect to the geometry of the data. 

In this section, we present a method for modifying the given geometry on hypergraph so the optimal function to be 

learned is smoother with respect to the modified geometry, and hence more amenable to deal with using harmonic 

analysis methods. It helps to handle the relationships between smoothness, sparsity and evolution of heat. 

 

The smoothing operation of the diffusion not only depended on the geometry of the space, but also relied on the 

geometry and the characters of the feature function f. Hence, it is necessary to modify the geometry of a data set 

with features from f and structure K on the modified f-adapted data set. These actions are because f may not smooth 

with respect to the geometry of the space, but has properties which are well encoded in its features. In this section, 

we aim to discover the geometry in hypergraph so that the functions on such structure to be learned are as smooth as 

possible with respect to that geometry.  

 

Setting  

The model of a hypergraph, just like modeled of a graph or a manifold, can be cognized by considering a natural 

random walk K on it. The random walk on hypergraph allows us to construct diffusion operators on the data set and 

to relate to some basic functions. Let ( )t

xK y  be the probability of being at y at time t, conditioned on starting at x, 

for an initial condition x . 

 

Specifically, the space is a finite weighted hypergraph H= (V, E, W), consisting of a vertex set V, a hyperedge set E 

 2
V
 such that eE is a subset of V, and a nonnegative function W: E 

. Let W(e) be the weight for 

hyperedge e. For v  V, the degree of vertex v is defined as ( )d v = ( ) ( , )
e E

w e h v e


 , where 

( , )h v e =
1, if 

0, if 

v e

v e





. Let x and y be vertices on hypergraph. A filter acting on functions on V can be defined 

by normalization of the weight matrix as follows:  
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( , )K x y = { , }

1
( )  if 

( )

( )

x y e

w e x y
e

d y












otherwise

. 

 

Here K is a filter with ( , )
y V

K x y
 =1, and multiplication Kf can be considered as a local averaging operation 

with locality calculated by W. As in graphs and manifolds, the multiplication by K can be interpreted as a 

generalization of Parzen window type estimators to functions in hypergraphs. Although K is not column-stochastic, 

the operation fK of multiplication can be regarded as a diffusion of the vector f. Hence, such filter can be K
t
 times 

iterated. 

 

In what follows, let X be a data set constructed from a hypergraph H: the vertices of H are the data points in X, and 

weighted hyperedges are constructed that connect nearby data points. 

 

Harmonic Analysis on Hypergraph 

  Let { i } be eigenfunctions of K which satisfy iK = i i  , and i be eigenfunctions of the hypergraph  

Laplacian: 

 

L=

1 1

2 2D WD
 

=

1 1

2 2D KD I , 

 

where D is the diagonal matrix with entries ( )d x  and I is the identity matrix. Since { i } is an orthonormal basis, 

any function gL
2
(X) can be denoted as g= , i i

i I

g


  . The larger is i, the less smoothness the function i  is, 

with respect to the geometry given by W, and i  determines the frequency of i . These eigenfunctions always 

employed in dimensionality reduction implements. 

 

For a function g on hypergraph H, the gradient on the hyperedge of H is given by 

 

( , )g x y =

{ , }

( ) ( )
( )( )

( ) ( )x y e

g y g x
w e

d y d x

 . 

 

We use x y to denote that there exist hyperedge e such that {x, y} e. Then 

 
2

( )g x =
2

( , )
x y

g x y . 

 

In this paper, we use Sobolev norm to measure the smoothness of g:  

 

1

2

H
g =

2
( )

x

g x +
2

( )
x

g x . 

 

The first term 
2

( )
x

g x  determines the size of the function g, and the second term 
2

( )
x

g x  decides the size 

of the gradient. The smaller 1

2

H
g , the smoother is g. Furthermore, we infer 

 

1

2

H
g = 2

2

( , )L X d
g  ,g Lg . 
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Therefore, it ensures that a function projecting onto the first few terms of its expansion in the eigenfunctions of L is 

a smoothing operation. 

 

Regularization via Diffusion 

For better solution the problem of denoising and function extension, it is meaningful to search the smoothest 

function f  on a data set X with geometry given by W. It satisfies that f  is not too far from given f. In the 

denoising application, let   be Gaussian white noise of a given variance and a function f +X  is given. A 

relatively large data set is given in the function extension or interpolation problem, but the values of f are showed at 

only relatively few labeled points, and the aim is to find the value of f on the other unlabeled points. These two kinds 

of implement, with no priori information on f, are impossible; the problems are open. It is suitable to suppose that f 

is smooth function, and thus we led to the task of searching a smooth f  close to f. 

 

In classical Euclidean space, a standard technology of mollification is to carry out the heat equation for a short time 

with initial condition specified by f. It reveals that the heat equation plays a good role on a weighted hypergraph: if f 

is a function on vertex set V, let f0=f, and fk+1=Kf. If ( )kg x = 

1

2 ( ) ( )kd x f x , then 

 

1k kg g  = kLg . 

 

This implies that multiplication by K is just a procedure in the formation of the density normalized heat equation. 

Moreover, a fast calculation implies this is the gradient descent for the smoothness energy functional 
2

g . 

Hence, harmonic interpolation can be done on X via iterating K. 

 

More general mollifiers can be designed using an expansion on the eigenfunctions { i } of K. In what follows, we 

suppose that all inner products are taken against the measure d, i.e., ,a b = ( ) ( ) ( )a x b x d x  and  are 

orthonormal. Thus, f= , i if    and f  can defined by 

 

f = ,i i i

i

f   ,                                                                                                                                             (1) 

 

where lim i
i

 =0. For the interpolation problem, we use least squares to estimate the inner products , if  . 

Following are some classic examples for choosing parameters i : 

 

(i) i =
1,  if 

0, otherwise

i I



, I is determined by variance of  . 

 

(ii) i =
t

i  for some t>0, this corresponds to setting f = ( )tK f , i.e., kernel smoothing on the data set with a 

sample-dependent kernel. 

 

(iii) i = ( )iP  , where P is given rational function or polynomial. 

   

ONTOLOGY SIMILARITY MEASURE AND ONTOLOGY MAPPING ALGORITHM DESIGN 

In this section, we pose the new ontology learning algorithms based on harmonic analysis and diffusion. Specially, 

the idea is manifested as follows: the ontology graph G is a special case of hypergraph with e =2 for each eE. 

From this point of view, the gradient on ontology graph G is given by: 
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( , )g x y =
( ) ( )

( , )( )
( ) ( )

g y g x
w x y

d y d x
 . 

 

Via the harmonic analysis and regularization diffusion, we get the function f on V using algorithm (1). Then, the 

ontology graph is mapped into a line consisting of real numbers. The similarity between two concepts can be 

measured by comparing the difference between their corresponding real numbers. For each vV(G), ( )f v  is a 

target value for vertex v using regular graph. We use the following tricks to get the similarity vertices of v and return 

the result list to the users in search expansion applications: Choose parameter M, return vertex set {u V(G), 

( ) ( )f u f v M } as an outcome for vertex u. 

 

In regard to ontology mapping application, we assume vV(Gi), where 1 i k.  Choose parameter M, return 

vertex set {uV(G-Gi), ( ) ( )f u f v M } as the outcome for vertex v in multi-ontology graph. 

 

EXPERIMENTAL SECTION 

 

Two experiments concern ontology calculation and ontology mapping are desired below. In order to adjacent to 

ontology algorithm setting, we should use a vector to express each vertex’s information. This vector contains the 

information of name, instance, attribute and structure of vertex, where the instance of vertex refers to the set of its 

reachable vertex in the directed ontology graph. We use Gaussian kernel function to compute W: 

 

w(e)=w(x,y)=

2
x y

te




, 

 

where parameter t . Let i = i . 

 

In the first experiment, we use biology ontology O1 which was constructed in http: //www.geneontology.org. We 

present the main structure of “GO” ontology in Fig. 1. P@N criterion (Precision Ratio, see [13]) is used to measure 

the equality of the experiment. We first give the closest N concepts for each vertex on the ontology graph with the 

help of experts, and then we obtain the first N concepts for every vertex on ontology graph by the algorithm and 

compute the precision ratio. At the same time, we apply fast ontology method  [14], half transductive ranking 

ontology trick [15] and push ranking ontology technology [16] to the “GO” ontology. Calculating the accuracy via 

these three algorithms and compare the results to the data from algorithm presented in our paper. Part of the data 

refer to Table 1. 

 

For the second experiment, we use physical education ontologies O2 and O3 (Fig. 2 and Fig. 3 present the 

structure of O2 and O3). The goal of this experiment is given ontology mapping between O2 and O3. We also 

use P@N to measure the equality of experiment. Again, we apply ontology algorithm in [14] and [2]to 

“physical education” ontology, and compare the precision ratio which we get from three methods. Some 

experiment results refer to Table 2.  
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Fig. 1: “GO” Ontology O1 
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Fig. 2: “Physical Education” Ontology O2 
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Fig. 3: “Physical Education” Ontology O3.

Table 1. The experiment data of ontology similarity calculation 

 

 
P@3 average  

precision ratio 

P@5 average  

precision ratio 

P@10 average  

precision ratio 

P@20 average  

precision ratio 

Algorithm in our paper 56.46% 67.72% 78.38% 87.74% 

Algorithm in Huang et al., (2011) 52.78% 59.63% 72.14% 79.39% 

Algorithm in Huang et al., (2011) 53.48% 57.31% 62.56% 71.93% 

Algorithm in Wang et al., (2011) 57.34% 63.74% 69.17% 73.68% 
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From the experiment results display above, we arrived at the conclusion that our algorithm is more efficiently than 

algorithms raised in [14], [15] and [16] especially when N is lager enough. Therefore, this new ontology similarity 

algorithm with harmonic analysis and diffusion regularization has high efficiency in certain applications. 

 
Table 2. The experiment data of ontology mapping 

 

 P@1 average  

precision ratio 

P@3 average  

precision ratio 

P@5 average  

precision ratio 

Algorithm in our paper 67.74% 77.42% 89.68% 

Algorithm in Huang et al., (2011) 61.29% 73.12% 79.35% 

Algorithm in Gao and Liang (2011) 69.13% 75.56% 84.52% 

 

The experiment results in Table 2 reveal that our algorithm is more efficiently than algorithms raised in [14] and [2] 

especially when N is enough lager.  

 

CONCLUSION 

 

In this paper, we present the technology of harmonic analysis and diffusion, and apply it to ontology application. 

The optimal function we get form the regularization is well suitable for the structure of ontology graph. The new 

algorithms have high quality according to the experiment data we show above. 
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