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ABSTRACT 
A quantitative structure property relationship (QSPR) study was performed to develop a model that 
relates the structures of 39 ofAdamantine derivatives drugs to simple descriptors. The usefulness of the 
quantum chemical descriptors, were calculated at the level of the DFT theory using 6-31+G** basis set , 
and used to represent molecular structures. A subset of the calculated descriptors selected using stepwise 
regression that used in the QSPR model development. In this study Multiple Linear Regressions (MLR) 
were employed to model the relationships between molecular descriptors and biological activities of 
molecules using stepwise method and genetic algorithm as variable selection tools.. Biological activities 
contain the octanol/water partition coefficient (log P). The final regression equation included four 
parameters that consisted of Clog P, Mulliken charge, Isotropic parameters and Mass, all of which could 
be related to log P. Application of the developed model to a testing set of 39 of Adamantine derivatives 
drugs demonstrates that the new model is reliable with good predictive accuracy and simple formulation. 
The use of descriptors calculated only from molecular structure eliminates the need for experimental 
determination of properties for use in the correlation and allows for the estimation of log P for molecules 
not yet synthesized. The prediction results are in good agreement with the experimental values. Statistical 
qualities (RMAX= 0.927 , R2

MAX= 0.858 Q2=0.713at B3LYP/6-31+G**) was obtained by this approach. 
 
Keywords: partition coefficient octanol- water (LogPo/w), Adamantine derivatives, QSAR, DFT, 
MLR 
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INTRODUCTION 
 

Diamondoids are classed with organic nanostructures; therefore, adamantane derivatives have 
become particularly popular with the development of nanotechnologies. The applications of 
adamantine derivatives are diverse: from antiviral drugs to nanorobots and molecular 
machines.The octanol-water partition coefficient (log Po/w) is the parameter most widely used to 
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measure hydrophobicity [1], because it has been shown that this partition system is a good model 
for many biological processes [2]. Hence, it was deemed advantageous to develop a model to 
predict partition coefficient using only theoretically derived descriptors. However, using in vivo 
methods to measure the logarithmic values of partition coefficient drug concentration ratios (log 
Po/w) in humans is not possible, and to do so in animal models is expensive and time 
consuming. The partition coefficient of a solute between 1-octanol and water was first introduced 
in 1964 by Hansch and Fujita [3], and since then, many different approaches have been 
developed in an attempt to estimate this property. Quantitative structure–activity relationship 
(QSAR) analysis is an effective method in research into rational drug design and the mechanism 
of drug actions. In addition, it is useful in areas like the design of virtual compound libraries and 
the computational-chemical optimisation of compounds. QSAR studies can express the 
biological activities of compounds as a function of their various structural parameters and also 
describes how the variation in biological activity depends on changes in the chemical structure 
[4]. Recently, a QSAR study of biological activity has been published by our group [5-7]. If such 
a relationship can be derived from the structure-activity data, the model equation allows 
medicinal chemists to say with some confidence which properties are important in the 
mechanism of drug action. The success of a QSAR study depends on choosing robust statistical 
methods for producing the predictive model and also the relevant structural parameters for 
expressing the essential features within those chemical structures. In a QSAR study the model 
must be validated for its predictive value before it can be used to predict the response of 
additional chemicals. Validating QSAR with external data (i.e. data not used in the model 
development), although demanding, is the best method for validation [8-9]. However the 
availability of an independent external validation set of several compounds is rare in QSAR. 
Thus, the input data set must be adequately split by experimental design or other splitting 
procedures into representative training and validation/test sets [10-12]. In the present work, the 
data splitting was performed randomly and was confirmed by the factor spaces of the descriptors, 
as in our previous work [13–17]. Finally, the accuracy of the proposed model was illustrated 
using the following: leave one out, bootstrapping and external test set, cross-validations and 
chance correlation techniques. Several research groups have modeled the partition coefficient 
(LogP).As expected; the models typically show good fitting and prediction statistics with less 
than ten simple descriptors.  
 

EXPERIMENTAL SECTION 
 
Methodology 
Data set 
The properties data used in this study are the LogPo/w of the set of 39 Adamantine derivatives 
[17],[18]. The data set was randomly divided into two subsets: the training set containing 38 
compounds (80%) and the test set containing ?compounds (20%). The training set was used to 
build a regression model, and the test set was used to evaluate the predictive ability of the model 
obtained. The properties data for the complete set of compounds are presented in Table 1, 2.To 
derive QSAR models, an appropriate representation of the chemical structure is necessary. For 
this purpose, descriptors of the structure are commonly used.  
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Table 1. Experimental values of LogPo/w  for Adamantine derivatives training set 
 
Compound logP 

Pred. 
Ref. 

Adamantine 2.69 2.82 [18] 
1 3 dimethyl adamantine 3.56 3.51 [18] 
1,3,5 -trim ethyl adamantine 3.99 4.34 [18] 
1-adamantanol 2.66 1.96 [19] 
1-buthyl adamantine 4.31 4.21 [18] 
1-ethyl adamantine 3.52 3.43 [18] 
1-isopropyl adamantine 3.85 3.83 [18] 
1-propyl adamantine 3.92 3.80 [18] 
2-buthyl adamantine 4.21 4.08 [18] 
2-ethyl adamantine 3.42 3.54 [18] 
2-isopropyl adamantine 3.75 3.98 [18] 
2-methyl adamantine 3.02 3.22 [18] 
2-propyl adamantine 3.81 3.73 [18] 
1-bromo adamantine 2.66 3.36 [19] 
methyl-(1-adamanthyl) ketone 2.9 3.08 [18] 
propyl-(1-adamanthyl) ketone 3.93 4.08 [18] 
2-adamantanon 2.31 2.71 [19] 
ethyl-(1-adamanthyl)ketone 3.53 3.67 [18] 
1-methyladamantane 3.13 3.01 [18] 
1- sec butyl adamantine 4.25 4.12 [18] 
1-tert-buthyl adamantine 4.29 4.19 [18] 
1-amino adamantine 1.11 1.63 [18] 
2-amino adamantine 2.44 1.69 [19] 
1-carboxcylic acid adamantine 2.36 2.73 [19] 
1-aceti acid adamantine 2.29 2.72 [19] 
1.3-diacetic acid adamantane 1.89 1.94 [19] 
1-adamantanol-3 carboxylic acid 1.12 1.27 [19] 
1-adamantyl Ethan amine 3.28 2.41 [19] 
3,5 -dimethyl-adamantine 1-amine 3.31 2.84 [18] 
2-bromo ethyl adamantine 5.094 4.22 [19] 
1-adamantane ethanol 3.227 2.69 [19] 
1-ethyl-3-methyl-adamantane 4.35 3.92 [18] 
1.3.5.7.tetra methyl adamantine 4.42 4.86 [18] 
 

 
Table 2. Experimental values of LogPo/w  for adamantine derivatives test set 

 
Compound logP Pred. Ref. 
1.3 diethyl adamantine 4.35 4.34 [18] 
1n-methyl-amino adamantine 1.51 2.06 [18] 
1-n-n dimethyl adamantine 1.88 2.49 [18] 
2-chloro adamantine 3.865 3.41 [19] 
1-chloroadamantane 2.6 2.76 [19] 
2-isobuthyl adamantine 4.15 4.20 [18] 

 
Molecular descriptor generation 
To derive QSAR models, an appropriate representation of the chemical structure is necessary. 
For this purpose, descriptors of the structure are commonly used. These descriptors are generally 
understood as being any term, index or parameter conveying structure information. Commonly 
used descriptors in the QSAR analysis are presented in Table 2. Some of the descriptors are 
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obtained directly from the chemical structure, e. g. constitutional, geometrical, and topological 
descriptors. Other chemical and physicochemical properties were determined by the chemical 
structure (lipophilicity, hydrophilicity descriptors, electronic descriptors, energies of interaction). 
In this work, we used Gaussian 03 for ab initio calculations. HF method at 6-31+G** were 
applied for optimization of adamantine derivatives and calculation of many of the descriptors. At 
first adamantine derivatives were built by Hyperchem software and some of the descriptors such 
as surface area, hydration energy, and refractivity were calculated through it. The rest of the 
descriptors were obtained of Gaussian calculations. A large number of descriptors were 
calculated by Gaussian package and Hyperchem software. One way to avoid data redundancy is 
to exclude descriptors that are highly intercorrelated with each other before performing statistical 
analysis. Reduced multi collinearity and redundancy in the data will facilitate selection of 
relevant variables and models for the investigated endpoint. Variable-selection for the QSAR 
modeling was carried out by stepwise linear regression method. A stepwise technique was 
employed that only one parameter at a time was added to a model and always in the order of 
most significant to least significant in terms of F-test values. Statistical parameters were 
calculated subsequently for each step in the process, so the significance of the added parameter 
could be verified.  
 

Table 2. The calculated descriptors used in this study 
 

Descriptors Symbol Abbreviation Descriptors Symbol Abbreviation 
 

Quantum 
chemical 

descriptors 

Molecular Dipole 
Moment 

MDP  
Quantum 
chemical 

descriptors 

difference between 
LUMO and HOMO 

E GAP 

Molecular Polarizability MP Hardness 
[ η=1/2 

(HOMO+LUMO)] 

Η 

Natural Population 
Analysis 

NPA Softness ( S=1/ η ) S 

Electrostatic Potentialc EP Electro negativity 
[χ= -1/2 (HOMO–

LUMO)] 

Χ 

Highest Occupied 
Molecular Orbital 

HOMO El Electro philicity 
(ω=χ2/2 η ) 

Ω 

Lowest Unoccupied 
Molecular Orbital 

LUMO MullikenlChargeg MC 

 
 

Chemical 
properties 

 
 

Partition Coefficient Log P  
 

Chemical 
properties 

 

Molecule surface area SA 

Mass M Hydration Energy HE 

Molecule volume V Refractivity REF 

 
RESULTS AND DISCUSSION 

 
In a QSAR study, generally, the quality of a model is expressed by its fitting ability and 
prediction ability, and of these the prediction ability is the more important. In order to build and 
test the model, a data set of 39 compounds was separated into a training set of 33 compounds, 
which were used to build the model and a test set of 6 compounds, which were applied to test the 
built model. With the selected descriptors, we have built a linear model using the training set 
data, and the following equation was obtained: 
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LogP=0.101(±0.040)σ5+0.011(±0.004)M+3.836(±0.959)MC4+0.700(±0.070) 
LogP+0.707(±1.3990) 

Q2=0.713R=0 .927        R2=0.858 
 
In this equation, N is the number of compounds, R2 is the squared correlation coefficient, Q2 
isthe squared cross-validation coefficient, and F is the Fisher F statistic. The figures in 
parentheses are the standard deviations. The built model was used to predict the test set data 
andthe prediction results are given in Table 1.As can be seen from Table 1, the calculated values 
for the LogPo/w are in good agreement with those of the experimental values. The predicted 
values for LogPo/w for the compounds in the training and test sets using equation LogPo/w were 
plotted against the experimental LogPo/w values in Figure 1.and the comparison between LogPo/w 
using prediction and the experimental .A plot of the residual for the predicted values of RI for 
both the training and test sets against the experimental LogPo/w values are shown in Figure 2. As 
can be seen the model did not show any proportional and systematic error, because the 
propagation of the residuals on both sides of zero are random. The real usefulness of QSAR 
models is not just their ability to reproduce known data, verified by their fitting power (R2), but 
is mainly their potential for predictive application. For this reason the model calculations were 
performed by maximising the explained variance in prediction, verified by the cross-validated 
correlation coefficient,Q2.This indicates that the obtainedregression model has a good internal 
and external predictive power. 

 
Figure1. The predicted versus the experimental LogPo/w by MLR. 

 
 Also, in order to assess the robustness of the model, the chance correlation  test was applied in 
this study. The dependent variable vector (LogPo/w) was randomly shuffled and The new QSAR 
models (after several repetitions) would be expected to have low R2 and R values (Table 3). If 
the opposite happens then an acceptable QSAR model cannot be obtained for the specific 
modeling method and data. 
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Table 3. The R2
train and R values after several chance correlation tests 

 
R2 R N 

0.384 0.619 1 
0.218 0.467 2 
0.229 0.478 3 
0.258 0.508 4 
0.275 0.525 5 
0.266 0.516 6 
0.113 0.365 7 
0.439 0.663 8 
0.139 0.373 9 
0.191 0.437 10 

 
The MLR analysis was employed to derive the QSAR models for different anti-cancer drugs. 
MLR and correlation analyses were carried out by the statistics software SPSS (Table 4). 
 
Table 4. The correlation coefficient existing between the variables used in different MLR and equations with 

B3LYP/6-31+G** method. 
 

 PC MC4 LogP M σ5 
PC 1 0 0 0 0 

MC4 0.335 1 0 0 0 
LogP 0.875 0.163 1 0 0 

M 0.322 0.326 0.282 1 0 
σ5 0.292 0.47 0.2 0.159 1 

 

 
Series 1: the values of log P were obtained by using prediction. 

Series 2: the values of log P were obtained by using Experimental methods 
 

Figure 3. The comparison between properties (LogPo/w) using experimental and prediction 
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Interpretation of descriptors 
The QSAR developed indicated that Nuclear magnetic Resonance (σ5), mass (M), Mullikan 
charge  (MC4) and  Partition coefficient (LogP) compound LogPo/w. negative values in the 
regression coefficients indicate that the indicated descriptor contributes positively to the value of 
LogPo/w, whereas positive values indicate that the greater the value of the descriptor the lower the 
value of LogPo/w. In other words, increasingthe σ5, MandMC4 will decrease  LogPo/wand 
increasing the LogPincreases extent of LogPo/w of the adamantine derivatives. The standardized 
regression coefficient reveals the significance of an individual descriptor presented in the 
regression model. 

 
CONCLUSION 

 
In this article, a QSAR study of 38adamantine derivatives. was performed based on the 
theoretical molecular descriptors calculated by the GAUSSIAN software and selected. The built 
model was assessed comprehensively (internal and external validation) and all the validations 
indicated that the QSPR model built was robust and satisfactory, and that the selected descriptors 
could account for the structural features responsible for the adamantine derivatives properties  of 
the compounds. The QSPR model developed in this study can provide a useful tool to predict the 
LogPo/w of new compounds and also to design new compounds with high LogPo/w. 
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