Available online <u>www.jocpr.com</u>

Journal of Chemical and Pharmaceutical Research, 2022, 14(3):26-39

Research Article

ISSN : 0975-7384 CODEN(USA) : JCPRC5

Development of UV Visible Spectrophotometric Method for Estimation of Cefipime Hydrochloride in Bulk and Dosage Form

Sathyanarayana L, Samatha K^{*}, Susmitha K, Sanath kumar K

Department of Pharmacy, Sree Chaithanya Institute of Pharmaceutical Sciences, Telangana, India

Received: 22-Mar-2022, Manuscript No. JOCPR-22-52726; Editor assigned: 24-Mar-2022, PreQC No. JOCPR-22-52726 (PQ); Reviewed: 05-Apr-2022, QC No. JOCPR-22-52726; Revised: 11-Apr-2022, Manuscript No. JOCPR-22-52726 (R); Published: 18-Apr-2022, DOI: 10.37532/0975-7384.2022.14(3).019.

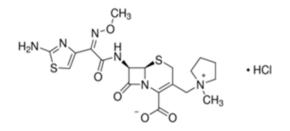
ABSTRACT

The three simple, accurate, rapid, and sensitive UV-Visible spectrophotometric methods have been developed for estimation of Cefepime Hydrochloride in bulk and pharmaceutical formulation. It describes development of 3 new visible spectrophotometric based on different chemical reactions namely cefepime hydrochloride and reagent (1,10 Phenanthroline α -napthylamine (BM reagent). Among 3 methods CFP1 (512 nm) and CFP2 (565 nm) more sensitive followed by CFP3 (510 nm) because of higher λ_{max} compared to methodsCFP1 and CFP2. The proposed 3 methods are based on exploitation of 3 structural feature of molecule (Aromatic amino group and oxidized nature of CFP in developing simple and sensitive method for assay of Cefepime hydrochloride. The result of Analysis of pharmaceutical formulation reveals that the proposed methods are suitable for Analysis. All these methods were used to produce coloured species. The methods were extended for determination of Cefepime hydrochloride in parenteral preparation was chosen. All the proposed methods are simple and reliable and provide a wide choice for determination of Cefepime hydrochloride in bulk or in pharmaceutical formulation depending on specific analytical situation.

Keywords: Cefepime hydrochloride; UV-Visible spectrophotometer; BM reagent; α -napthyamine; λ_{max}

INTRODUCTION

Cefepime is a fourth-generation cephalosporin antibiotic developed in 1994. Cefepime is active against Grampositive and Gram-negative bacteria, with greater activity against both than third-generation antibiotics. Cefepime is usually reserved to treat severe nosocomial pneumonia, infections caused by multi-resistant microorganisms (e.g. *Pseudomonas aeruginosa*) and empirical treatment of febrile neutropenia [1].


Drug Profile

Cefipime Hydrochloride

Category: Fourth generation of cephalosporins

Molecular formula: $C_{19}H_{28}Cl_2N_6O_6S_2$

Molecular structure:

Molecular Weight: 571.5 g/mole

Chemical name: $(6R-(6\alpha,7\beta(Z))-1-((7-(((2-amino-4-thiazolyl)(methoxyimino)acetyl)amino)-2-carboxy-8-oxo-5-thia-1-azabicyclo(4.2.0)oct-2-en-3-yl)methyl)-1-methylpyrrolidinium chloride monohydrochloride.$

MATERIALS AND METHODS

Materials Required

Pure sample: Cefepime Hydrochloride.

Market sample: Maxipime 1 g vial (smith Kline beecham), batch no g42343 labelled to contain Cefepime Hydrochloride equal to 1 g of cefepime.

Apparatus: Electronic analytical balance, distilled water, pipette, volumetric flask, beaker, measuring cylinder

Instrumentation: Shimadzu UV Visible Spectro Photometer (UV 1800) with 1 cm matched quartz cells were used for special measurement. The spectrophotometer was equipped with UV probe software.

Chemicals and reagents: Methanol, sodium hydroxide. Ethanol, sodium nitrite, Hydrochloric acid, ammonium sulphate, ferric chloride hexa hydrate, 1,10 phenanthroline, α -napthylamine, BM reagent(n-1-napthyl ethylene diamine dihydrochloride).

Solvent system: 0.1 N Methanol, 1 ml HCl, 1 ml sodium nitrite.

Preparation of Standard Drug Solution

For methods CFP1 and CFP2: A standard stock solution of 1 mg/ml was prepared by dissolving 100 mg of cefipime hydrochloride in 100 ml of distilled water and this stock solution was diluted stepwise with distilled water to obtain the working standard solutions of concentration 100 mcg/ml CFP1 and CFP3 and 50 mcg/ml for CFP2.

Preparation of working standard solution: Accurately measured 1 ml of standard stock solution was pipette out into 10 ml volumetric flask and diluted using 0.1 N Methanol up to the mark to prepare the concentration of 100 mcg/ml CFP1 and CFP3 and 50 mcg/ml for CFP2.

Preparation of reagents: All the chemicals and reagents used were of analytical grade and the solutions were prepared in double distilled water [2] (Tables 1-3).

Table 1: Method CFP1

Sodium nitrite	Prepared by dissolving 200 mg of sodium nitrite 100 ml of distilled
(S.d fine chem.,0.2% w/v.2.89 \times 10^{-2} M)	water.
HCL (S.d,fine-chem,1M)	Prepared by dissolving 3.65 ml of hydrochloric acid in 100 ml of
	distilled water.
Ammonium sulphate	Prepared by dissolving 500 mg of ammonium sulphate in 100 ml
(S .d .fine-chem, $0.5\% \text{ w/v4.38} \times 10^{-2} \text{ M}$)	distilled water.
A-napthyl amine(α-NA)	Prepared by dissolving 200 mg of α -napthylamine in 100 ml
(S .d. fine-chem. $0.2\%1.39 \times 10^{-2}$ M)	methanol.

Table 2: Method CFP2

Sodium nitrite	Prepared by dissolving 200 mg of sodium nitrite 100 ml of distilled
(S.d fine chem., 0.2% w/v. 2.89×10^{-2} M)	water.
HCL	Prepared by dissolving 3.65 ml of hydrochloric acid in 100 ml of
(S.d,fine-chem,1 M)	distilled water.
Ammonium sulphate	Prepared by dissolving 500 mg of ammonium sulphate in 100 ml
(S.d.fine-chem, $0.5\% \text{ w/v4.38} \times 10^{-2} \text{ M}$)	distilled water.
BM Reagent	Prepared by dissolving 100 mg of BM Reagent in 100 ml of distilled
(S.d. fine-chem.0.1% w/v,3.85 \times 10 ⁻³ M)	water.

Table 3: Method CFP3

Ferric	chloride	hexa-hydrate	Prepared by dissolving 80 mg of ferric chloride in 100 ml
(s.d.fineche	em.,0.03 M)		distilled water.
1,10-phenanthroline (s .d. finr-chrm.,0.1 M)			Prepared by dissolving 1.98 gm of 1,10 Phenanthroline in
			slightly warm distilled water to facilitate proper mixing.

Recommended procedure: After systematic and detailed study of the various parameters involved, as described under results and discussions, the following procedures were recommended for the assay of CFP in bulk samples and pharmaceutical formulations.

For Bulk Samples

Method A: Aliquots of standard drug solution of cefipime hydrochloride (0.5-4.0 ml) (100 mcg/ml) were taken and transferred into series of graduated test tubes. To each test tube 1 ml (1 M) of hydrochloric acid and 1 ml sodium nitrite (0.2% w/v) were added, mixed and cooled in ice-bath for 5 mins, then 1 ml of ammonium sulphamate (0.5% w/v) was added and the test tubes were kept at room temperature for 3 mins for complete neutralization of the excess nitrous acid formed in the reaction [3-5]. Then finally 1 ml of α -naphthylamine solution (0.1% w/v) was added and mixed well, immediately pink color was developed. The volumes in each test tube were adjusted to 10 ml with distilled water. The absorbances of the solutions were measured at 512 nm against reagent blank, and the

calibration curve was plotted. Similarly the absorbance of the sample solution was measured, and the amount of cefipime hydrochloride was determined by referring to the calibration curve [6].

Method B: Aliquots of standard drug solution of cefipime hydrochloride 0.5-4.0 ml (50 mcg/ml) were taken and transferred into series of graduated test tubes. To each test tube 1 ml of hydrochloric acid (1 M) and 1 ml sodium nitrite (0.2% w/v) were added, mixed and cooled in ice-bath for 5 mins, then 1 ml of ammonium sulphamate (0.5% w/v) was added and the test tubes were kept at room temperature for 3 mins for complete neutralization of the excess nitrous acid formed in the reaction [7]. Then finally 2 ml of BM reagent solution (0.1% w/v) was added and mixed well. The volumes in each test tube were adjusted to 10 ml with distilled water. The absorbances of the purple colored solutions were measured at 565 nm against reagent blank, within 30 mins and the calibration curve was plotted. Similarly the absorbance of the sample solution was measured, and the amount of cefipime hydrochloride was determined by referring to the calibration curve [8].

Method C: Aliquots of standard drug solution of cefipime hydrochloride 0.25-4.0 ml (100 mcg/ml) were taken and transferred into series of graduated test tubes. To each test tube 2 ml of Ferric chloride (0.03 M) and 2 ml of 1, 10-Phenanthroline (0.1 M) was added. The test tubes were allowed to stand in water bath at 600°C for 15 mins. The test tubes were then cooled to room temperature and the solutions were made up to 10 ml with distilled water. The absorbance of the red colored chromogen was measured at 510 nm against reagent blank and a calibration curve was constructed. The absorbance of the sample solution was measured, and the amount of cefipime hydrochloride was determined by referring to the calibration curve [9].

For pharmaceutical formulations: Powder for Injection containing cefipime hydrochloride was successfully analyzed by the proposed methods.

Method CFP1, CFP2 and CFP3: The methods were extended for the determination of cefipime hydrochloride in parenteral preparation (Cefrom 1.0, Aventis) was chosen. The powder for injection contains sodium carbonate as excipients. A quantity of the powder equivalent to 100 mg was accurately weighed and transferred to 100 ml volumetric flask and made up to mark with distilled water. The contents of the flask were thoroughly mixed and filtered. Appropriate volume of the filtrate was suitably diluted to get a 100 mcg/ml concentration [10-12]. The sample solution was analyzed as described, in the above mentioned methods (Table 4).

Pharmaceutical formulation	Reference method				
	Cefipime vial (Cefrom 1.0, Aventis) containing 1 gm of drug. Powder				
	equivalent to 50 mg of drug was accurately weighed and taken in a 50 ml				
	volumetric flask. Added 1 ml of 1.0 N NaOH to dissolve and then Volume was				
	made up to 50 ml with distilled water to get concentration of 1 mg per ml and				
Powder for injection	filtered. From this stock solution, serial dilution was made in the concentration				
	range of 20 to 100 mcg/ml and their absorbances were measured at 230 nm. The				
	concentration of the drug was computed from its calibration graph.				

Table 4: Reference method for the assay of CFP in formulation

The concentration of drug was computed from its calibration curve. The absorption spectrum and the Beer's law plot of the bulk drug pertaining to the reference method are presented in Figures 1 and 2.

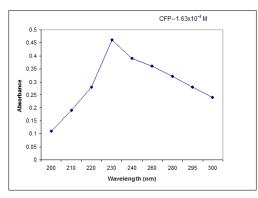


Figure 1: Absorption spectrum of CFP in distilled water (UV Reference method)

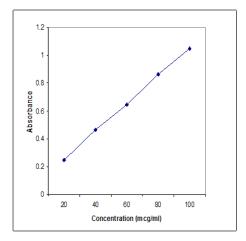


Figure 2: Beer's law plot of CFP in distilled water (UV Reference method)

RESULTS AND DISCUSSION

Spectral Characteristics

In order to ascertain the optimum wavelength of maximum absorption (λ_{max}) of the colored species formed in each one of the four methods, specified amounts of CFP in final solution (100 mcg/ml, 150 mcg/ml and 200 mcg/ml for methods CFP1, CFP2 and CFP3 respectively) were taken and the colors were developed separately following the above mentioned procedures [13]. The absorption spectra were scanned on a spectrophotometer in a wavelength region of 360-800 nm against a corresponding reagent blank. The reagent blank absorption spectrum of each method was also recorded against appropriate solvent. The results were graphically presented in Figure 3,4 and 5.

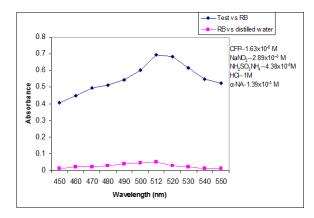


Figure 3: Absorption spectrum of CFP with α-naphthylamine (CFP1)

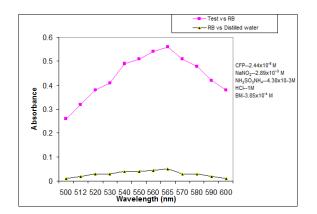


Figure 4: Absorption spectrum of CFP with BM reagent (CFP2)

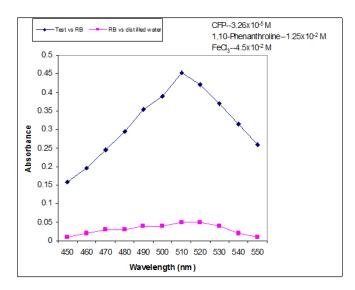


Figure 5: Absorption spectrum of CFP with FeCl3/1, 10- Phenanthroline (CFP3)

Parameters fixation: In developing these methods, a systematic study of the effects of various parameters in the methods concerned were undertaken by varying one parameter at a time and controlling all other parameters to get maximum color development, minimum blank color, reproducibility and reasonable period of stability of final colored species formed. The following studies were conducted [14].

For CFP1: The optimum conditions in these methods were fixed based on the study of the effects of various parameter such as volume of α -naphthylamine, volume of sodium nitrite, time required for maximum color requirement, order of addition of reagents and the stability of the colored species after final dilution were studied and the results are incorporated in Table 5.

	Optimum	Conditions	
Parameter	range	in	Remarks
		procedure	
λmax (nm)	512 nm	512 nm	
Volume of 1.39 \times 10 ⁻⁴ M α -	0.5-3.0 ml	1 ml	More than 1.0 ml results in high blank values.
naphthylamine required for			
color development			
Volume of 2.89× 10 ⁻³ M	0.5-2.0 ml	1.0 ml	The absorbance increases steadily over the range of
Sodium nitrite solution, needed			0.5 to 1 ml of NaNO ₂ solution and then remains
for diazotization			constant even after adding more.
Volume of 1 M HCl, required	0.5-2.0 ml	1 ml	Minimum amount of 1 ml of HCl is necessary to
for diazotization.			maintain acidic conditions (when no acid is present,
			diazotization does not occur).
Volume of 4.38×10^{-3} M	0.5-2.0 ml	1 ml	1 ml of ammonium sulphamate is sufficient to
Ammonium sulphamate			neutralize the excess nitrous acid.
Time required for diazotization	2-25 min	5 min	The same absorbance is noticed over the time
			interval 2-15 min. For 15-30 min the results are
			erratic. On standing overnight the color disappears
			indicating the benzene diazonium chloride
			analogue had undergone decomposition.
Effect of temp. on diazotization	5-20°C	5-10 °C	The absorbance increases when kept at temp. of 5-
			10°C, so it is necessary to cool the solution in ice.
			Low absorbance values are obtained when the
			above temp. is not maintained.
Solvent for final dilution	Distilled	Distilled	
	water	water	

Table 5: Optimum conditions established in CFP1

ĺ	Stability of the colored species	10-60 min	40 min	After 40 min, the absorbance starts to decrease.
	after final dilution			

For CFP₂: The optimum conditions in these methods were fixed based on the study of the effects of various parameter such as volume of BM reagent, volume of sodium nitrite, time required for maximum color requirement [15,16], order of addition of reagents and the stability of the colored species after final dilution were studied and the results are incorporated in Table 6.

Parameter	Optimum	Conditions in	Remarks		
	range	procedure			
λ _{max (nm)}	565 nm	565 nm			
Volume of 3.85×10^{-4} M	0.5-3.0 ml	2 ml	More than 2.0 ml results in high blank values		
BM reagent required for color			(color becomes more intense in blank).		
development					
Volume of 2.89×10^{-3} M	0.5-2.0 ml	1.0 ml	The absorbance increases steadily over the		
Sodium nitrite solution.			range of 0.5 to 1 ml of $NaNO_2$ solution and		
			then remains constant even after adding more.		
Volume of 1 M HCl	0.5-2.0 ml	1 ml	Minimum amount of 1 ml of HCl is necessary		
			to maintain acidic conditions (when no acid is		
			present, diazotization does not occur).		
Volume of 4.38×10^{-3} M	0.5-2.0 ml	1 ml	1 ml of ammonium sulphamate is sufficient to		
Ammonium sulphamate			neutralize the excess nitrous acid.		
Time required for	2-25 min	5 min	The same absorbance is noticed over the time		
diazotisation			interval 2-15 min. For 15-30 min the results are		
			erratic. On standing overnight the color		
			disappears indicating the benzene diazonium		
			chloride analogue had undergone		
			decomposition.		
Effect of temp. on	5-20°C	5010 [°] C	The absorbance increases when kept at temp of		
diazotization			$5-10^{\circ}$ C, so it is necessary to cool the solution in		
			ice. Low absorbance values are obtained when		
			the above temp is not maintained.		
Solvent for final dilution	Distilled water	Distilled water			
Stability of the colored	5-30 min	30 min	After 30 min, the absorbance starts to decrease.		
species after final dilution					

 Table 6: Optimum conditions established in CFP2

For CFP_3 : The optimum conditions were fixed based on the study of effects of various parameters such as volume and concentration of 1,10-phenathroline, heating time and temperature for color development and stability of the colored species after final dilution, by measuring the absorbances at 510 nm against reagent blank and results were incorporated in Table 7.

Parameter	eter Optimum range Conditions		Remarks
		procedure	
λ_{\max} (nm)	510 nm	510 nm	
Volume of 0.03 M Ferric	0.5 ml-3.0 ml	2.0 ml	<3.0 ml of Ferric Chloride results
Chloride required for maximum			in decrease of absorbance.
color development			
Effect of Volume of 0.02 M	0.5-3.0 ml	2.0 ml	1.5 ml of 1,10-phenathroline was
1,10-phenanthroline required			found to be necessary for
for complex formation			maximum absorbance and to cover
			broad range of Beer's law limit.
			No added advantage was observed
			with more than 1.5 ml
Effect of temperature and time	60-80°C	60°C	No color development was found
			at room temperature. Heating in
	10-20 min	15 min	boiling water bath for 15 min was
			required to obtain maximum color
			development and better results
			(sensitivity and reproducibility).
Order of addition of reagents	Drug, FeCl ₃ and 1,10-	Drug, FeCl ₃ and	Change in order of addition has
	phenanthroline	1,10-	less effect.
		phenanthroline	
Stability of colored species,	45 min- 8 hrs	2 hrs	The colored complex was stable
after final dilution			for a period of 2 hrs, the
			absorbance decreased slowly with
			time after 2 hrs.

Table 7: Optimum conditions established in CFP₃

Optical Characteristics

In order to test whether the colored species formed in the proposed methods adhere to Beer's law, the absorbance at appropriate wavelength of a set of solutions containing varying amounts of CFP and specified amounts of reagents (as given in the recommended procedures for each method) were recorded against the corresponding reagent blanks. The Beer's law plots of these systems were recorded graphically.

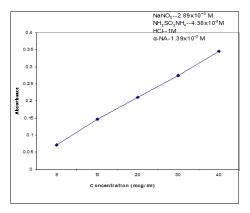


Figure 6: Beer's law plot of CFP with α -naphthylamine (CFP1)

Figure 7: Beer's law plot of CFP with BM reagent (CFP2)

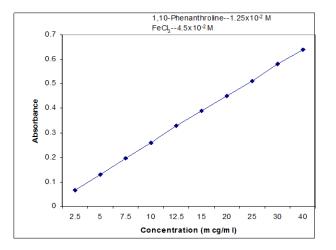


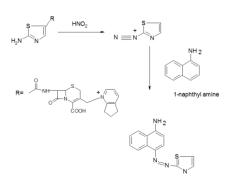
Figure 8: Beer's law plot of CFP with FeCl₃/1,10 Phenanthroline (CFP3)

Precision: The precision of the proposed methods was ascertained from the absorbance values obtained by actual determination of six replicates of a fixed amount of CFP in final solutions (100 mcg/ml, 50 mcg/ml and 100 mcg/ml for CFP1, CFP2 and CFP3 respectively). The percent relative standard deviation and percent range of error (0.05 and 0.01 confidence limits) were calculated for the proposed methods and incorporated in the Table 5.

Accuracy: To determine the accuracy of the proposed methods, different amounts of bulk samples of CFP within the Beer's law limits were taken and analyzed by the proposed methods. The results (percent error) are recorded in Table 8.

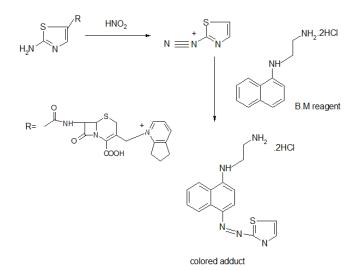
Parameters	CFP ₁	CFP ₂	CFP ₃			
$\lambda_{\mu\alpha\xi}(\nu\mu)$	512	565	510			
Beer's law limits (mcg/ml)	05-40	2.5-20	2.5-40			
Molar absorptivity (l/mol.cm)	7.52×10^3	4.69×10^{3}	1.26×10^{3}			
Sandell's sensitivity	0.6849	0.8928	0.4065			
(micrograms/cm ² /0.001 absorbance unit)						
	06.20	10.04	16.04			
Optimum photometric range (mcg/ml)	06-38	18-04	16-04			
Regression Equation [*] (Y)	7.4×10^{-3}	8.71×10^{-3}	1.54×10^{-2}			
Slope (m)						
Standard deviation on slope (Sm)	4.71×10^{-4}	1.96×10^{-5}	1.66×10^{-4}			
Intercept (c)	5.37×10 ⁻²	9.71×10^{-3}	9.43×10^{-2}			
Standard deviation on intercept (Sc)	1.51×10^{-2}	2.99×10^{-3}	2.83×10^{-2}			
Correlation Coefficient (r)	0.9998	0.9989	0.9999			
Precision (%Relative Standard Deviation)	0.14	0.774	0.282			
Standard error of mean	0.0185	0.0043	0.017			
% range of error (confidence limits) [*] 0.05	0.972	0.313	0.246			
level; 0.01 level	1.524	0.492	0.386			
% error in bulk samples	0.71	-0.14	-0.18			
Note: [*] Y=mx+c, where X is the concentration in micrograms/ml and Y is absorbance unit.						

Table 8: Optical and regression characteristics, precision and accuracy of the proposed methods for cefipime hydrochloride


Interference studies: The effect of a wide range of concomitants and additives usually present in the formulations for the assay of CFP under optimum conditions were investigated separately. In all the methods prepared, the commonly used concomitants and additives in the preparation of formulations did not interfere with the assay of CFP by proposed methods.

Analysis of formulations: Commercial formulations (Film coated Tablet, ZERODAX[®], 200 mg), containing CFP were successfully analyzed by the proposed methods. The results obtained by the proposed and reference methods for formulations were compared statistically with t- and F- tests and found not to differ significantly. The results were summarized in Table 9.

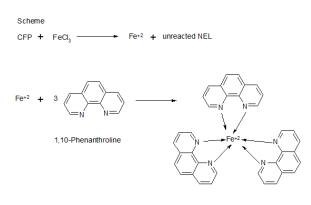
	Labelled Amount		% found by the proposed methods* % found by the reference method % Recovery ± RSD** Proposed method		e % Recovery ± RSD** ce Proposed method		% recovery found by the reference method		
		CFP 1	CFP 2	CFP 3		CFP 1	CFP 2	CFP 3	
ZEDORAX®	200 mg	100.19 ± 0.23	100.26 ± 0.38	100.52 ± 0.27	$\begin{array}{c} 100.23 \pm \\ 0.36 \end{array}$	99.86 ± 0.43	99.71 ± 0.47	100.49 ± 0.51	100.69 ± 0.33
TABLET		t=0.25	t=0.10	t=1.88	-	-	-	-	-
		F=2.44	F=1.11	F=1.77	-	-	-	-	-
	200 mg	99.99 ± 0.26	100.1 ± 0.17	100.79 ± 0.63	100.21 ± 0.38	99.96 ± 0.17	99.59 ± 0.47	100.43± 0.31	100.41 ± 0.43
		t=1.15	t=0.64	t=1.92	-	-	-	-	-
		F=2.13	F=4.99	F=2.74	-	-	-	-	-
	200 mg	100.44 ± 0.45	100.33 ± 0.30	100.35 ± 0.44	100.3 ± 0.33	100.12 ± 0.13	99.75 ± 0.59	100.04 ± 0.59	100.49 ± 0.38
		t=0.61	t=0.20	t=1.2	-	-	-	-	-
		F=1.85	F=1.21	F=1.21	-	-	-	-	-
	Note: **Average \pm standard deviation of six determinations, the t- and F-test values refer to comparison of the proposed method with the reference method. Theoretical values at 95% confidence limit, t=2.57, F= 5.05								


 Table 9: Assay of CFP by different methods

Chemistry of the colored species CFP1: Primary aromatic amines133 $ArNH_2$, undergo reaction with an acidic nitrous acid solution to give diazonium salt. The highly reactive diazonium salt $Ar-NH_2+Cl^-$ will react with a second organic compound, α -NA containing a carbon atom of high electron density to yield a colored diazo compound. This reaction is called diazo-coupling reaction. CFP which contains a primary aromatic amino group undergoes diazotization in the presence of nitrous acid and hydrochloric acid to yield a diazonium intermediate, which then couples with α -NA, to yield a colored chromogen (Scheme 1).

Scheme 1: Proposed scheme for CFP1

CFP2: The technique involves the diazo coupling of the amino group present in CFP, in acidic nitrous acid solution to yield a diazonium salt, which undergoes electrophilic substitution to a high electron density carbon compound namely B.M reagent (N-(1-naphthyl) ethylenediamine) to yield a colored chromogen. The excess nitrous acid is destroyed by adding ammonium sulphamate (Scheme 2).



Scheme 2: Proposed scheme for CFP2

CFP3: Step I: When treated with known excess of Fe(III) drug undergoes oxidation giving oxidation products of drug (CFP) inclusive of reduced form of Fe(III) i.e Fe(II). Ods are suitable for their analysis with virtually no interference of the usual additives, presented in pharmaceutical formubesides unreacted Fe(III). Fe(II) has a tendency to give colored complex on treatment with 1,10-phenanthroline.

 $CFP + Fe(III) \longrightarrow Oxidation product of CFP + Fe(II)+Unreacted Fe(III)$

Step II: The next step concerns with the estimation of Fe (II) with 1, 10-phenanthroline which forms colored tries complex (Ferroin)(Scheme 3).

Ferroin complex

Scheme 3: Proposed scheme for CFP3

CONCLUSION

There are only few methods reported for the assay of CFP utilizing visible Spectrophotometry and hence there is dearth of analytical methods for the determination of CFP. It can be seen from the results presented all the proposed methods have good sensitivity, precision and accuracy. Results of the analysis of pharmaceutical formulations reveal that the proposed methylations.

Among the three proposed methods, CFP1 and CFP2 are the most sensitive followed by CFP3. Methods CFP2 has the advantage of higher λ_{max} compared to methods CFP1 and CFP3. As the three proposed methods are based upon the exploitation of different structural features of the molecule, each method has its own merits in different situations. All the proposed methods are simple, sensitive and reliable and provide a wide choice for the determination of CFP in bulk or in pharmaceutical formulations, depending on the needs of the specific analytical situation.

REFERENCES

- [1] Rabouan-Guyon RSM, Guet AF, Courtois PY, et al. Int J Pharm. 1997;154:185-190.
- [2] Yahav D, Paul M, Fraser A, et al. *Lancet Infect Dis.* **2007**;7:338-348.
- [3] Evagelou V, Tsantili -Kakoulidou A and Koupparis M. J Pharm Biomed Anal. 2003;31:1119-1128.
- [4] Sprauten PF, Beringer PM, Louie SG, et al. *Antimicrob Agents Chemother.* **2003**;47:1991-1994.
- [5] Sunnyvale CA. J chem. 2005.
- [6] Palacios JJ, Sanchez MC and Carranza JH. *Electro analysis*. **2000**;12:296-300.
- [7] Tseng SH, Yang YH, Chen YR, et al. *Electrophoresis*. **2004**;25:1641-1647.
- [8] Yang YH, Wu WY, Yeh HH, et al. *Electrophoresis*. 28:1788-1797.
- [9] Linger EL, Monteil H and Jehl F. J Chromatogr. 1997;690:181-188.
- [10] Calahorra B, Campanero MA, Sadaba B, et al. *Biomed Chromatogr.* **1999**;13:272-275.
- [11] Chang L, Chou MH, Lin MF, et al. *J Chromatogr.* **2001**;914:77-82.
- [12] Breilh D, Lavallee C, Fratta A, et al. J Chromatogr. 1999;734:121-127.
- [13] Valassis IN, Parissi-Poulou M and Macheras P. J Chromatogr B Biomed Sci Appl. 1999;72(1):249-255.
- [14] Kinowski CJM, Lefrant JY and Bressolle F. J Chromatogr B Biomed Sci Appl. 2000:377-386.
- [15] Gonzalez AO, Palacios FJJ, Mochon MC, et al. J Pharm Bio Anal. 2004;36(1):117-123.
- [16] Heyman and Liu L. *J Chrom B.* **2010**; 878:1623-1628.