Journal of Chemical and Pharmaceutical Research

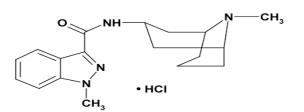
CODEN(USA): JCPRC5

J. Chem. Pharm. Res., 2011, 3(3):470-476

Development and Validation of new RP-HPLC Method for the Estimation of Granisetron Hydrochloride in Bulk and Pharmaceutical Dosage Form

S. Gopalakrishnan¹, B. Jeyashree², M. Thenmozhi¹ and A.Chenthilnathan^{1*}

¹Department of Pharmaceutical Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India ²The Madras Pharmaceuticals, Chennai, Tamil Nadu, India


ABSTRACT

A rapid and sensitive reverse phase high performance liquid chromatography (RP-HPLC) method has been developed for estimation of Granisetron hydrochloride in bulk and pharmaceutical dosage forms. Granisetron hydrochloride was chromatographed on a reverse phase kromasil C_{18} column (250 x 4.6m; 5µm) in a mobile phase consisting of 0.05 M potassium dihydrogen phosphate buffer (pH 3.0 adjusted with orthophosphoric acid) and acetonitrile in the ratio of 70:30. The mobile phase was pumped at a flow rate of 1.0 mL/min with detection at 301 nm. The retention time for granisetron hydrochloride was 4.28 mts. The detector response was linear in the concentration of $16\mu g-26\mu g/mL$ with correlation coefficient of 0.9988. The percentage recovery of granisetron hydrochloride was found to be 100.64%. The proposed method was found to be simple, fast, accurate, precise and reproducible and could be used for routine quality control analysis of granisetron hydrochloride in bulk and pharmaceutical dosage forms.

Key words: Granisetron HCL, RP-HPLC, Syrup, Method Validation.

INTRODUCTION

Granisetron hydrochloride (Figure 1) is an effective and potent antiemetic drug which is used in the treatment of vomiting and nausea resulting from cancer chemotherapy and radiotherapy in adults and children. Granisetron hydrochloride is also effective in the management of post-operative nausea and vomiting due to the anesthetics [1, 2]. Chemically it is *endo*-N-(9-methyl-9-azabicyclo [3.3.1] non-3-yl)-1-methyl-1H-indazole-3-carboxamide hydrochloride. Granisetron hydrochloride selectively blocks type 3 serotonin (5-HT3) receptors.

Figure 1: Structure of Granisetron Hydrochloride

Granisetron hydrochloride dosage forms are not yet official in USP [3] or BP [4]. A review of the literature revealed that a very few HPLC methods have been reported for determination of granisetron hydrochloride in pharmaceutical dosage forms [5, 6].

Hence, in this present investigation an attempt has been made to develop an accurate, precise and economically viable reversed phase HPLC method for the estimation of Granisetron Hydrochloride in bulk and in pharmaceutical dosage form.

EXPERIMENTAL SECTION

Chemicals and reagents

Acetonitrile of HPLC grade was purchased from E.Merck (India) Ltd., Mumbai. Potassium dihydrogen phosphate and orthophosphoric acid of AR grade were obtained from Qualigens Fine Chemicals Ltd., Mumbai. Granisetron Hydrochloride was a gift sample by The Madras Pharmaceuticals, Chennai. The commercially available Granisetron hydrochloride syrup was procured from the local market.

Instrumentation and chromatographic conditions

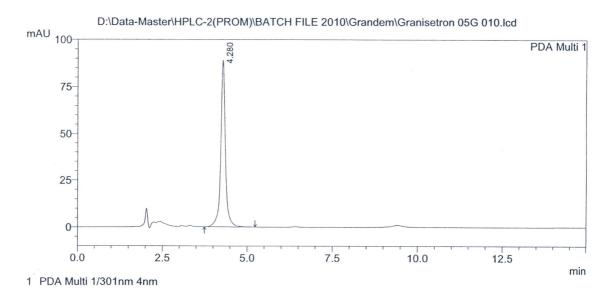
The chromatographic separation was carried out on HPLC system (Shimadzu Co, Tokyo, Japan) with UV- Visible dual absorbance detector (PDA), kromasil C_{18} column (250 x 4.6mn; 5µm). The mobile phase consisting of phosphate buffer (pH 3.0 adjusted with orthophosphoric acid) and acetonitrile were filtered through 0.45µ membrane filter before use, degassed and were pumped from the solvent reservoir in the ratio of 70:30 v/v was pumped into the column at a flow rate of 1.0 mL/min. The detection was monitored at 301 nm. The volume of injection loop was 20 µl prior to the injection of the drug solution; the column was equilibrated for at least 30 min. with the mobile phase following through the system. The column and the HPLC system were kept in ambient temperature (25° C).

Preparation of stock solution

About 22 mg of Granisetron hydrochloride was weighed in 100 mL volumetric flask. About 50 mL of mobile phase was added, sonicated to dissolve the drug completely and the volume was made up with mobile phase. 5 mL of above solution was diluted to 50 mL with mobile phase. (20 μ g/mL)

Analysis of syrup formulation

Accurately weighed a portion of syrup equivalent to 2 mg of Granisetron hydrochloride in a clean and dry 100 mL volumetric flask. 80 mL of mobile phase was added, sonicated to dissolve for 5 to 10 mts and make up the volume with mobile phase and filtered through 0.45μ membrane filter. ($20 \mu g/mL$)


RESULTS AND DISCUSSION

All of the analytical validation parameters for the proposed method were determined according to International Conference on Harmonization (ICH) guidelines [7].

Specificity

The specificity of the HPLC method is illustrated in Figure 2 where complete separation of Granisetron hydrochloride was noticed in presence of syrup excipients. In addition there was no any interference at the retention time of in the chromatogram of placebo solution. In peak purity analysis with PDA, purity angle was always less than purity threshold for the analyte. This shows that the peaks of analyte were pure and excipients in the formulation does not interfere the analyte.

Figure 2: Typical chromatogram of a syrup sample solution containing of 20 µg/mL of Granisetron hydrochloride

S.No.	% Recovery / concentration	Placebo weight (mg)	Standard Weight (mg)	Standard Area	Synthetic mixture Area	Amount recovered (mg)	Recovered (%)
1.	Standard			912560			
2.	80	12.408			727979	79.77	99.71
3.	80	12.546			736209	80.68	100.85
4.	80	12.678	23.4		730016	80.00	100.00
5.	100	12.374			924715	101.33	101.33
6.	100	12.490			923640	101.21	101.21.
7.	100	12.405			916713	100.46	100.46
8.	120	12.410			1099952	120.53	100.44
9.	120	12.587			1104510	121.03	100.85
10	120	12.672			1105967	121.19	100.99
	Mean						
	Standard deviation						
			RSD in %				0.5394

Table 1: Accuracy for Granisetron hydrochloride

Accuracy

Accuracy of the method was calculated by recovery studies at three levels, 80%, 100% and 120% by standard addition method (Table 1). The mean percentage recoveries obtained for Granisetron hydrochloride was 100.64. This indicated that the method was highly accurate.

Precision

The precision of an analytical procedure expresses the closeness of agreement between a series of measurements obtained from multiple sampling of the homogenous sample under the prescribed conditions.

Reproducibility

Examines the precision between laboratories and is often determined in collaborative studies. Reproducibility data for Granisetron hydrochloride was shown in Table 2. This indicated that method was highly precise.

S.No.	Sample Name	Concentration (µg/mL)	Area	
1.	Standard -1	20	912096	
2.	Standard -2	20	915332	
3.	Standard -3	20	918282	
4.	Standard -4	20	913696	
5.	Standard -5	20	911608	
	Mean		914202.80	
	Standard deviation			
	RSD in 9	6	0.2963	

Table 2: Reproducibility for Granisetron HCL

Repeatability

Repeatability is the precision of a method under the same operating conditions over a short period of time. One aspect of this is instrumental precision. A second aspect is sometimes termed intra-assay precision and involves multiple measurements of the same sample by the same analyst under the same conditions. Repeatability data for Granisetron hydrochloride was shown in Table 3. This indicated that method was highly precise.

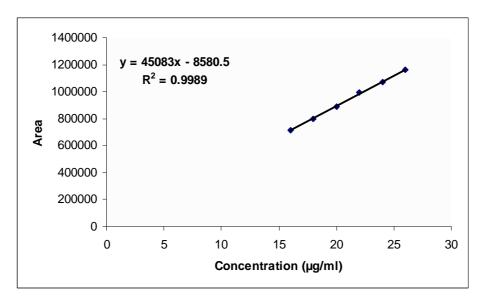

S.No.	Sample Name	Wt.taken (mg)	No. of readings	Area	Assay (%)		
1.	Standard -1	23.4	2	917609			
2.	Sample -1	6233.7	1	864547	97.35		
3.	Sample -2	6165.9	1	864060	98.36		
4.	Sample -3	6452.2	1	903812	98.32		
5.	Sample -4	6223.1	1	866269	97.71		
6.	Sample -5	6125.9	1	850930	97.50		
7.	Sample -6	6472.8	1	910465	98.73		
	Mean						
	Standard deviation						
	RSD in %						

Table 3: Repeatability for	Granisetron hydrochloride
----------------------------	---------------------------

Linearity of response

The linearity of an analytical method is its ability to elicit test results that are directly, or by a well defined mathematical transformation, proportional to the concentration of analyte in the samples within a given range. The Linearity of this method was determined at six concentration

levels from $16\mu g/mL - 26\mu g/mL$. The plot of peak area of each sample against respective concentration of Granisetron hydrochloride was found to be linear (Figure 3) in the range of $16 - 26\mu g/mL$. Beer's law was found to be obeyed over this concentration range. The regression equation was found to be Y= 45083x - 8580.5 and correlation coefficient of the standard curve was found to be 0.9989.

Figure 3: Linearity of Granisetron hydrochloride

Limit of detection (LOD) and Limit of Quantitation (LOD)

System suitability was done. LOD & LOQ was determined by calibration curve method. Different concentration levels were prepared & analysed. LOD & LOQ data was shown in Table 5. The results demonstrated that the method was highly sensitive.

S.No	Concentration (µg/mL)	Standard weight (mg)	Standard Area	Mean	Standard deviation	RSD (%)
			9770			
1.	0.24		9469	9582.33	163.6897	1.7082
			9508			
			15077		7 441.7492	2.9374
2.	0.36		14579	15038.67		
		23.6	15460			
		25.0	17694			
3.	0.42		17562	17641.00	69.7352	0.3953
			17667			
		0.48	19875	19900.67	58.8586	
4.	0.48		19968			0.2958
			19859			

Linear regression coefficient	0.9984
Slope	43309
Y-intercept	700.06
LOD (µg/mL)	0.016
LOQ (µg/mL)	0.049

Robustness

Change in wave length $(\pm 2.0 \text{ nm})$

Three sample preparations will be analyzed as per the methodology at two different wavelengths i.e. 299 nm and 303 nm. The robustness data by changing wavelength for Granisetron hydrochloride was shown in Table 6. It was observed that there were no marked changes in the chromatograms, which demonstrated that the proposed method was robust.

S.No.	Sampla Nama	Wt. taken	Aı	ea	Assay (%)	
5.110.	Sample Name	(mg)	at 299 nm	at 303 nm	at 299 nm	at 303 nm
1.	Standard preparation	23.4	916544	904200		
1.			918675	900921		
2.	Sample -1	6233.7	856276	855591	97.86	97.95
3.	Sample -2	6165.9	857147	856052	99.04	99.08
4.	Sample -3	6452.2	895497	893499	98.88	98.82
		98.59	98.62			
	Stand	0.6382	0.5930			
	R	SD in %			0.6473	0.6013

Table 6: Change of wave length for Granisetron HCL

Change of Temperature $(\pm 2^{\circ}C)$

Three sample preparations will be analyzed as per the methodology at two different temperature i.e. 23° C and 27° C. The robustness data by changing temperature for Granisetron hydrochloride was shown in Table 7. It was observed that there were no marked changes in the chromatograms, which demonstrated that the proposed method was robust.

Table No.7:	Change of Tempe	erature for Granise	tron hydrochloride
	onenge or rempt		

S.No.	Sample Name	Wt. taken Area		ea	Assay (%)	
5.110.	Sample Name	(mg)	at 23° C	at 27° C	at 23° C	at 27° C
1	Standard managemention	23.4	9144442	916926		
1.	1. Standard preparation		916104	917761		
2.	Sample -1	6233.7	866110	865602	97.77	97.50
3.	Sample -2	6165.9	871604	873386	99.48	99.45
4.	Sample -3	6452.2	913207	914862	99.60	99.56
	Ν	98.95	98.84			
	Standar	1.0202	1.1608			
	RS	D in %			1.0311	1.1744

CONCLUSION

In this present study an attempt has been made to develop Reverse Phase – HPLC (RP-HPLC) method for the determination of Granisetron hydrochloride in pure and syrup dosage form. The results obtained were reproducible and reliable. The validity and precision of the methods were evident from the statistical and analytical parameters obtained. Therefore, it is concluded that the proposed RP-HPLC method was found to be simple, rapid, sensitive, precise, economical and accurate. Hence, this method can easily and conveniently adopt for routine quality control analysis of Granisetron hydrochloride in pure and its pharmaceutical formulations.

Acknowledgements

The authors are thankful to the management of The Madras Pharmaceuticals, Chennai – 600 096, Tamil Nadu, India for providing the necessary facilities to carry out for the research work.

REFERENCES

[1] Brunton, L. L., Lazo, J. S., Parker, K. L. Goodman and Gilman's, 11th ed.; McGraw-Hill Medical Publishing Division: New York, **2005**. 407.

[2] Aapro, M. The Oncologist, 2004, 9, 673-686.

[3] The United States Pharmacopoeia 31, The National Formulary 26; United States Pharmacopoeial Convention, Inc.: Rockville, MD, **2008**.

[4] The British Pharmacopoeia; British Pharmacopoeial Commission: London, UK, 2008.

[5] Venkatalakshmi. R, Sasikal. C, Swathi. R, Tejasaini. G, Srujana. D, Sravan Kumar Reddy. G, Jeevan Kumar. K, *Int.J.Ph.Sci.* **2009**, 1(2), 336-341.

[6] Kareemuddin Ansari. K, Mohiuddin. Md, Avinash. D, Mohammad Younus, Syed Kaleemuddin, *Journal of Pharmacy Reasearch.* **2011**, 4(2), 488-491.

[7] ICH guidelines, analytical method validation (Q3). Geneva, July 2000.