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ABSTRACT

This paper discusses two approaches In the fireetfeatures namely ongoing attacks, autonomicgsréen actions,
and risk measure are Integrated to our Autonomioudl Intrusion Detection Framework (ACIDF) as mobktie
current security technologies do not provide theeesial security features for cloud systems sucsaaly warnings
about future ongoing attacks, autonomic preventetions, and risk measure. The early warnings agaaled
through a new finite State Hidden Markov predictiondel that captures the interaction between tha&ckers and
cloud assets. The risk assessment model meas@rgmtbntial impact of a threat on assets givero@surrence
probability. The estimated risk of each securitgrals updated dynamically as the alert is correthto prior ones.
This enables the adaptive risk metric to evaluagedioud’s overall security state. The predictigatem raises early
warnings about potential attacks to the autononimponent, controller. Thus, the controller can tgkeactive
corrective actions before the attacks pose a ssrimeurity risk to the system.

Keywords: Hidden Markov model (HMM), user action Recognitismart home systems, intention prediction

INTRODUCTION

Prediction techniques are essential tools to re@achffective decision on countering an attack. @lae two main
models that can be used for the prediction targetetly, (1) Finite-context models, that are applisthg Markov
Models, MM, and Variable Order Markov Model, VMMh&se models assign a probability to a symbol basdte
context in which it appears and, (2) Finite-statedeis. These models are applied using Hidden MaMotuels,
HMM, which are composed of an observable part dd#dents,” and a hidden part called “states.”

A state stores information about the past sincfliécts changes in the system from the startégtlsent moment. A
transition indicates a state change and is desttiyea condition that needs to be fulfilled in arde enable the
transition. Events are observed with different ptality distribution depending on the state of gystem. These
models provide flexible structure that can modehptexsources of sequential data. However dealirty MM
typically requires considerable understanding ansight look into the problem domain in order totties possible
model architectures. A bad prediction model mawlteis: (1) reducing network/host performance, {@pngly
disconnect users from the network/host, (3) hightctor administrators’ reestablishing services, @) a DoS attack
for the network, which will eventually have to bisabled.

Attacker may combine multiple security vulnerai@it into an intelligent attack. For such a targ&ick, he often
adopts persistent attack approach consisting oéquence of attack behaviors continuously until tduget is
compromised.

For example, hacker may first attempt to comproraiseasy target in a cloud. A compromised mactaiteer by

malicious insider or service hijacking, may abukmud computing or attack one or more machines endioud,
causing more serious damage than in a network@mwient where machines are distributed and indepénde
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Intrusion detection system (IDS) and firewall, ntoring network activities at gateway level, are sidered as
efficient attack prevention mechanisms. The trafffiout gateway violating pre-defined rules will béerted or

blocked, but not for that inside the perimeter. ¢tersuspicious events inside a cloud might notiéxteal by IDS or

firewall and a sequence of planned attacks miglsuiceessful even IDS and firewall is deployed atghteway level.
Therefore, intrusion detection in cloud should eiaarboth inbound and outbound traffic. In a clom¥ieonment,

many audit logs are recorded, such as web traffisystem log, and many alert logs are also repdmetDS or

firewall. A vast amount of logs requires human anthputing resources to filter out false alarms tanidentify real

attacks. Some attack attempts recorded in a lotgptmmigt be successful as the target machine doepassess the
vulnerability exploited by the attack, like an Apacserver is attack-free from IS vulnerabiliti&@herefore, alert or
warning from a log might not be able to plot theokehpicture. However, multiple logs could indic#ta previous

attack is successful as a compromised target n@ielsome attack trace in different logs. Multipdgd in cloud

should be examined and analyzed to identify sufglestacks.

BACKGROUND ANDLITERATURE REVIEW

The potential impact of intrusions in cloud systesteadily increases because of the huge amoutbud cesources
that an intruder may control and use to implememthér attacks. Furthermore, the deficiencies ef ¢harrent
intrusion detection technology hinder its adopiioelouds.

Most of these technologies suffer of single poirfadure and none of these solutions use an autinicesponse, risk
metric, or prediction features. In this section, highlight these features in details.

Widely adopted mechanisms to implement a faultrémiesystem [6] includes (1) replication of softevagents, (2)
redundant processing components, (3) integrity khéar self-healing, (4) reconfigurable hardward agstructuring
architectures, and (5) fault detection using Hesatlmessages. The proposed framework adopts 8, 3asthe most
effective mechanisms to achieve the self-resiliearod the fault tolerance capabilities.

Alerts correlation and risk assessment processasaptritical role in both the detection and prédit phases. The
detection component produces a large number ofsaleat disturbs the intrusionresponse componehttiais can
increase the impact on the network and resultsDo&.

There are two different approaches for alerts ¢aticen namely: (1) the alert filtering approachttlalects just true
alerts from the raw ones that are generated bycti@ecomponents and it causes false negativesedigiion but
prevents the application of high impact reactiomshie network by the response component, (2) tbe aéverity
modulation that modulates the quality of alerts gederates prediction alarms for the most intargssiteps of
multi-step attacks and consequently it improvesattegliction accuracy.

A planned attack normally is performed in a longrtdime frame with persistent and stealthy attaickswvoid

violation of IDS rules, such as two password gugssonstantly in a long duration which triggersatert and will not

be discovered by IDS. To determine if a machineider attack, the proposed approach extracts aiyzas the logs
related to the observing machine to identify whetlie attack sequence exists. This study adoptshididiarkov

Model (HMM) to model the sequence of anomaly bebi@viAs mentioned above that different attack stias may
leave traces in different logs. An attack plan oteests for a long duration, so the detection shanfer and correlate
various logs in a period of time. A successful @ttaonsists of at least three stages: (1) recosamai®: gathering
information from a target machine, such as scgrassword guess; (2) intrusion: intruding/exploitthg target with
the vulnerability found; (3) attacking: using thengpromised machine to attack others.

The model consists of three states corresponditigetdhree stages described above, and the ohsexwétom the
analyzed logs are shown in the second layer, wigch observation requires the correlations of \eigjs extracted
features listed in the lowest layer. Each machiit&lly is at state Reconnaissance, as each isnthd threat of being
scanned or discovered. A machine whose state tearfsom the initial state to the next state, Ision, indicates that
an intrusion happened after the target has beemsdeor attempted login. The logs related to thgetsare analyzed
and the observed events will be obtained to apgmyproposed HMM to see if the state has been teahshttack
sequence will then be identified as described above

THE FORMAL DEFINITION OF THE MODEL
Assume that the cloud system can be modelel Hifferent states, i.eS={ s1, . . . ,sNrepresenting different
security conditions. The security state of the dleystem changes over time and the sequence &$ staturred in the

cloud system is denoted a= X,,.. X, , whereX, I S. The cloud system is monitored Kyhost-based and network

based IDS sensors. A senkajenerates observation messages from the obsersgtiobol set {1, . . . , M}, where
M is the number of messages for sedsdrhe sequence of observed messages is deno@d &d,. . . , d, where
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0, LVis the observation message received at tiffide HMM consists of a state transition probaypititatrix P, an

observation probability matri®, and an initial state distribution vectoand is denoted by a tuple,(Q,z). The state
transition probability matri¥® describes the probabilities of transitions betwienstates of the model. Each entry,
pij, describes the probability that the model wilhsger to statsj at time t + 1 given that it is in stadeat time t, i.e.,

pij=p(xt +1=sj|xt =si), 1<, j < N. The observation probability matri@ describes the probabilities of
receiving different observations given that thaeysis in a certain state. Each entpyg(m) represents the probability
of receiving the observation symbiwl from sensok at time t, given that the system is in stateat time t,i.e.,
gn(m)=P(t =m|xt =sn),1<n <N,1<k <K,1<m <M.

The basic idea underlying our proposed predictiod@his to employ a HMM to track the evolution bétattack in
the system. That way, while an attack is in progyréfee state changes and we can trigger appropeisp@nses based
on a predefined confidence level threshold, whiabuld result in a lower false positive rate. Thedicgon
component has all the detailed information aboeintfalicious activity such as severity, confidereeel, and the cost
of asset targeted. The following sections desahbegrediction components in details and give atjral example for
the model.

THE PREDICTION COMPONENTS

1) States: the system is assumed to be in one of the followistates: Hale (H): indicates that system is warkiell
and there is no malicious activity or any attengpbteak into the system, Investigate (I): indicatest malicious
activities are attempted against the system, Attg&k indicates that intrusion has been started @nchow
progressing, and Penetrate (P): indicates thatsinin successfully compromised the system. Thehgghpwn in Fig.
1 defines the relationship among these states.

Fig. 1. Therelation between the proposed HMM states

2) Observations: O=o0l, . .. ,d, are alerts from the detection sensors. Obsenatiause the system model to move
among states. We consider the severity of thestsale observation and each alert have four pasrieflects the
state of the system: Low, Medium, High, and Veryhhor (, M, H, ). The alert severity function is described later
inthis section.

3) State Transition Probability Matrix (P): the state transition probability matrix describke probability of
moving among states. The following steps describe to build the HMM states and to calculate thengition
possibilities.

a) Construct a signature sequence vector to cottiaisequences of signatures that define eactkatiad. ist all
possible combinations of the signatures that maghlaged by more than one attack in the signatuyeesee vector.
At the same time let every possible instance remtssa state in HMM, then refine these statesstcoct a minimal
state set,c) Calculate the transition possibilggneen states using the Forward-Back Propagatiaimjig algorithm
to find, given an output sequence or a set of sequences, the best set of state transition apdtquiobabilities. The
idea is to derive the maximum likelihood estimat¢he HMM parameters given the set of output seqesn

Observation Transition Probability Matrix (Q): thbservation transition probability matrix descrilbes probability
of moving among observations.

Initial State Distribution Veectora)): it describes the probability of states when foamework starts.
Alert Observation Probability Matrix (A): describtre probability of having a specific alert in @sific state.

This matrix helps in computing the alert severitgdtion as we will explain later. A is built baseul the training data
in the attack dataset.

Assets Cost Matrix (C): Each of the states of ty&esn is associated with a cost vector, indicathrg potential

consequences of the state in question. E.g., Aeasor of the database server in the cloud sy&tethe four defined
states (H, I, A, P) can be defined as C(DBServef)),=3, 7, 25}. A group of these vectors construitts final C
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Matrix.
The Output or emission probability Matrix (Y):

It represents how likely the output result is fack sequence of attack states. It is an empty xth@i collects the
final output probabilities.

Alert Severity Function: It describes the seveoitgach alert at specific state s. We model thissgy function based
on Eq.1 as shown in Eq.2 and 3. The computed $gverinapped to one of the four priorities (L, M, ¥ to reflect

the state of the system as we will explain lateh@prediction algorithm.( * AP *)/ (2)= ( * (CSerity * NOccurance
/ AFrequency) *) / (3).Where,: Alert Risk at a sifie state s, Asset Cost at a specific state sisAédmputed using
the C vector and it represents the potential caresseps of the state s on the asset in question

AP: Alert Priority. It is computed based on CSetyerNOccurance, and AFrequency as shown in Eq.3;&88g:
Current alert severity defined by the firing IDS.bDrance: Number of occurrences of current aled specified
correlation time slot defined in the correlatiomgess,AFrequency: Acceptable frequency of thig gler day based
on the training data computed from the attack @datdstection Reliability at a specific state sisltcomputed
according to the alert position corresponding ito Matrix A.

HMM Prediction Algorithm
The Pseudo Code for the prediction algorithm aedallrt risk modulation approach is shown in Algori 1.

The algorithm starts by computing the alert risll #ren mapping this risk to one of the 4 definstt levels.

Algorithml: HMM Prediction and Alert Risk
M odulation

1.Algonthum HMM_Prediction & Alert_ Risk Modulation

2. Inputs: Alert, Accept Alert Freq, P, Q. 1A, C, Cur_ Obs, Obs_prob,
s, Asset, n, Thresheold, L M, H, V.

3. Begin

4. =Compute Asset Cost(Asset 5, C)

3. A Frequency = Choose Acceptable Alert (Alert, Accept Alert Freq)
6. =Compute Detection Reliability (Alert, 5, A)

7. ={Max(* Max{AR)* Max()) /

8. = *{CSeventy * NOccurance / AFrequency) * )/

9. IF (<L) Then // Alert Risk Levelis low (L=
025

10.0bs_prob =1

11. Else IF { =M) Then// Alert Risk Levelis Medium (M=0.30)
12.0bs_prob =2

13. Else IF (= H) Then // Alert Risk Level is

High (H=0.73)

14.Obs_prob =3

15 Elze // Alert Risk Level is Very High (V=0.73)
16.0bs_prob =4

17.End If

18 sum trp =0

19 sum_final=0

20.TF (Cur_Obs=1) Then // Initial Observation
21.For (i=1 tom)

22. Tmp[Cur_Obs, 1] = afi] * Q1, Obs_prob]

23 sum tmp = sum_tnp + Tmp[Cur_Obs, 1]

24 End For

23 For (i=1 ton)

26 Final[Cur Obs, i] = Tmp[Cur Obs, i] /sum trp
27.End For

28 Elze // Other Prediction Obzervations

29 For 1=1 tom)

30.For (k=1 ton)

Attack Sequence Detection (ASD)
The test data is collected from a campus networkrdier to better represent the applicability ef pnoposed system,
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two types of logs, audit logs and alert logs, acduded in the preliminary experiment, one from wralffic (audit log)

and the other from IDS (alert log). Logs of consgeeufive weeks are collected with average of fmillions of web

requests each day and ten thousands of IDS abartisveeek. To identify attack sequence, the logeefirst week are
observed and the suspicious machines in state Reiszance are extracted for further analysis. ©lgs bf the

following weeks are analyzed and the subsequeatlstrelated to the suspicious machines are idkhtihe

preliminary results show that the proposed systamidentify attack plans with persistent and loegfrency attack
activities.

CONCLUSION

In this paper, we have presented a cloud based AGHE)F, that provides autonomic and prediction aafies that
enable it to work efficiently with cloud environnten ACIDF enables cloud consumers to protect thiud
applications and data from various types of harrofider-attacks.

Also ASD study examines the stages of an attaak sl analyzes logs to identify attack sequencescélusage of
Hidden Markov model, suitable for predicting attatlefore they are obvious and also for recogniiing sequence
events to detect attacks. The preliminary resthiésvsthat both the proposed detection models argegit to identify
attacks.

REFERENCES

[1] Online Risk Assessment and Prediction Models FortoAomic Cloud Intrusion Prevention Systems:
978-1-4799-7100-8/14 /$31.002014 |IEEE

[2] Hisham A. Kholidy, FabrizioBaiardi, SalimHariri, IDSGA: A Data-Driven Semi-Global Alignment Approach
for DetectingMasquerade Attacks”, in IEEE Transawdi on Dependable and Secure Computing, acceptethan
printing in May2014.

[3] Top Threats to Cloud Computing V1.0 https://clowdsiyalliance.org/topthreats/c sathreats.v1.0.pdf

[4]W. Lee, S. J. Stolfo, and K. W. Mok, “Minidgidit Data to Build Intrusion Detection Models,d#&th
international conference on knowledge discoverydetd mining, New York, AAAI Press 66-712998.

[5]W. Lee and S. J. Stolfo, “A framework for constingtfeatures and models for intrusion detectionesys,” ACM
Trans.Inf. Syst. Secur., vol. 3, no. 4, pp. 227+2&v. 2000.

[6]C. C. Lo, C. C. Huang, J. Ku, “ACooperatil@rusion Detection System Framework for Cloud
ComputingNetworks,” ICPPW ’'10 Proceedings of thd2@Bth International Conference on Parallel Prangss
Workshops, IEEE Computer Society, pp. 280-284, Wagbn DC, USA 2010. ISBN: 978-0-7695-4157-0.

[7]S. Sridhar, M. Govindarasu, and C Liu. Risk Anaysi Coordinated Cyber Attacks on Power Grid. Garand
Optimization Methods for Electric Smart Grids — Roviglectronics and Power Systems, Vol. 3, Parp2,/p-294,
2012.

[8] C. Zhou, C. Leckie, and S. Karunasekera. A deteaifcoordinated attacks and collaborative intragletection.
Computer and Security, Vol. 29, pp 124-12010.

[9] S. Zargar, H. Takabi, and J. Joshi. DCDIDP: A Dlistied, Collaborative, and Data-driven Intrusiortéation and
Prevention Framework for Cloud Computing EnvirontsenProceedings of International Conference on
Collaborative Computing: Networking,

437



