Available online <u>www.jocpr.com</u>

Journal of Chemical and Pharmaceutical Research, 2014, 6(3):502-506

Research Article

ISSN : 0975-7384 CODEN(USA) : JCPRC5

Design and implementation of production logistic prediction software system

Yin Jing*, Meng Xiangying and Chennan

School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China

ABSTRACT

Focus on the information management in the modern chemical industry, the production logistic prediction model is set up with the objective is not only to minimize the warehousing costs, but also to reduce the machine switching time. On the base of the core model, the prediction software system of production logistic is designed and developed. At last, the implementation effectiveness is illustrated.

Key words: information management, production system, logistic prediction.

INTRODUCTION

In the modern chemical and pharmaceutical enterprises, management informatization has become the focus of academic research and application practice. There has been many research results obtained, such as ERP, OA, MES and etc , which make the working efficiency get improved^[1].Meanwhile, as for working site management, especially for the increasingly complex logistic optimization, there rarely been realized by software system. The design idea of logistic information system for chemical and pharmaceutical enterprises is discussed in [2]. On the logistic prediction, the bottleneck closed loop method based on bottleneck polymorphism is proposed in [3]. In the paper, by deeply analysis of the process flow in the production line, the optimization model of logistic prediction is setup. On this basis, the application software system is implemented, by which the real time machine unit prediction and inventory prediction can be realized.

PROCESS FLOW ANALYSIS

With the data of domestic chemical enterprises, the typical hybrid process flow in the work shop can be illustrated as Fig. 1. In the system, there are five machine units, one raw material storehouse and two WIP storehouses with limited content. MU A has three process switching modes which provide three kinds of production respectively, which are FP(A), RM(B) and RM(C). The technical routes are identified as arrows, that are the material flow routes. The aim of the system is not only to minimize the warehousing costs, but also to reduce the time cost of machine process switching under the premise of guarantee the continuous of processing.

III. LOGISTICS PREDICTION MODEL SETUP

In order to convenient, introduce the following signs:

On the basis of process flow analysis mentioned above, the prediction model is setup as follow:

$$Min\{\sum_{j=1}^{N}\sum_{u\in U_{j}}[(s_{ju}+s_{ju})\times ts_{ju}+(s_{ju}+s_{j,u+1})\times tc_{ju}]\times H_{j}/2$$

$$+\sum_{j=1}^{N}|U_{j}|\times C_{j}\}$$

$$s.t.$$

$$s_{j,u+1} = s_{ju} + ts_{ju}\times(v_{0}-v_{j}) - tc_{ju}\times v_{j} \ge SL_{j}$$

$$\forall j = 1, ..., N, u \in U_{j}$$

$$(1)$$

$$Machine Unit$$

$$(2)$$

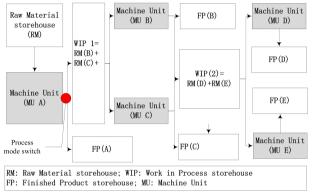


Figure 1. Process flow

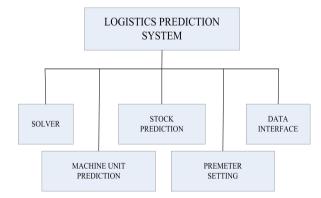
Т	Plan period	
j	Serial number of WIP storehouses	
и	Serial number of supply times to WIP storehouses	
ts _{ju}	The time period of u th supply of j th storehouse	
tC ju	The interval of j th storehouse between u th supply and $(u + 1)$ th supply	
S ju	the quantity of WIP in j th storehouse before u th supply	
S ' ju	The maximum quantity of WIP in j th storehouse after u th supply	
U_{j}	The set of j th storehouse supply times in plan period	
SH_j	The upper limit of j th storehouse	
SL_j	The lower limit of j th storehouse	
v_j	The external demand of j th storehouse	
${\cal V}_0$	Production rate	
В	The shortest switching time for machine unit	
H_{j}	The storage cost of j th storehouse per time unit	
C_{j}	The switching cost for supply j th storehouse	
$s'_{ju} = s_{ju}$	$+ts_{ju} \times (v_0 - v_j) \le SH_j$	(2)
$\forall j = 1, \dots$	$, N, u \in U_j$	(3)
$ts_{ju} \ge B,$	$tc_{ju} \ge 0, \forall j = 1,, N, u \in U_j$	(4)

$$s_{ju}, s_{ju}, ts_{ju}, tc_{ju} \in Z$$

$$T = \sum_{u \in U_{j}} (ts_{ju} + tc_{ju}), \forall j = 1, \dots, N$$
(6)

The objective function is to minimize the cost of warehousing and machine process switching, as formula (1). Formula (2) represents the quantity balance of WIP. Formula (3) represents the maximum of WIP in storehouses must meet with the content limit. Formula (4) represents the minimum switching time period and supply interval is non-negative. Equation (5) represents the all variables data type are integer. The Equation (6) represents the machine units cannot be idle. Deb et al. put forward the NSGA II algorithm, and is one of the most effective evolutionary algorithm by far^[4], this paper adopts the NSGA II algorithm to solve the above example, crossover probability $P_c = 0.7$; Mutation probability $P_m = 0.1$.

IV. SOFTWARE DESIGN


A. Database Design

SqlSever 2000 is adopted and there are totally eighteen classes defined in the database, as shown in table 1.

Class Name	Description
Machine	Machine units class
Stock	Storehouse class
MachineItem	Material group class for specific machine unit
StockItem	Material group class for specific stock
FlowTree	Process flow tree class
CrossFlow	Crossover logistic class
Calculator	Computing class
FlowForest	Process flow tree class: trees identify the relationship between operations
StockTrace	Tracker that record the stock variation
FlowParser	Class of the material group string analytic
ShiftAlgorithm	Switch algorithm class that must be inherited by specific algorithm
DBUtil	Database communication class
ItemAppraise	Class for evaluate the process condition of specific material on machine unit
DataType	Self-definition date type class
CommUtil	Common used object class
ShiftCause	Recorder class of switch cause
AppraiseLog	Tracker class of switch process
Log	Log class

TABLE I. CLASS DEFINITION IN THE PROGRAM

B. Software Function Design

Figure 2 The system function

C# is adoped in the system development. There are five functions modules in the logistics prediction system, including data interface, parameter setting, stock prediction, machine unit prediction and solver, as shown in Fig.2.

3	推算参数												
	推算产线	1420-1550	~	冷却时长(小时)	72								
	推算起点			记录库存间隔	6			保存设定(5)		٦.	重新加载数据(L)		
	推算天数			要料比(1-2)									
	推算模式	优化切换模式	~	☑ 显示日志									
	产线图	机组	库	材料组别	交叉	物流		合同量	存货				
	产线	机组编号	⊻ 机组	模式 💌	机组类型		Y	机组速度	×	前库	下限	⊻ 前库上网	
	1550	C309	非模		成品				30		1	00	
	1550	C312	非模		成品/半成	品			100		25	00	
•	1550	C318	非模	πt.	成品				45		5	00	
	13												
	材料组分⊻ 1	合同需求量		■ 用户设定需求	求量 🕑	顺序	号				停机开始时间		
	81		16045.	271	16045	•				1	1899-12-30 00:	00:00	
										2	1899-12-30 00:	00:00	
										3	1899-12-30 00:	00:00	
										4	1899-12-30 00:	00:00	
										5	1899-12-30 00:	00:00	

Figure 3 Machine units setting

Figure 3- Figure 5 illustrate how to set parameters according to specific production line, including machine units setting, stock setting, material group setting and requirement quantity setting.

	产线图	机组		库	材料组	别	交叉物流	合同	量	
	产线 💌	库编号	×	库存下限(目	目标) 💌	库存上降	R 💌	库类▼		材料组别
•	1550	C31			25000		30000	原料库		81
	1550	C32			10000		15000	中间库		05
	1420	C34			2300		4000	中间库		81
	1550	C57			4500	1	8000	中间库		82
	1420	C81			15000		20000	原料库		82
	1420	C82			3000		6000	中间库		28
	1550	C85			6000		8000	中间库		05
	1550	D01			2000		3500	中间库		81
	1550	D02			2000		3500	中间库		81

Figure. 4 The stock setting

产线图	机组	库	材料组别	交叉物流	合同量	存货	
产线	≥ 材料组别	⊻ 类型	×	工艺路径			
1550	02	主体物流		stockC31[0]-nac	hineC302[2,220]-stock#02[0]	
1420	04	内部交叉		stockC81[1227.8]-nachineC202[2,150]-stockC32[22	9.28]-machineC312[0,100]-st
1550	05	主体物流		stockC31[5565.1]-nachineC302[2,220]-stockC32[358	86.49]-aachineC312[0,100]-s
1550	07	主体物流		stockC31[64.51]	-machineC302[2	220]-stock#07[0]	
1420	08	主体物流		stockC81[24.11]	-machineC202[2	,150]-stock#08[0]	
1420	09	主体物流		stockC81[15.95]	nachineC202[4	,100]-stockC82[0]-	nachineC212[0,60]-stock#09[
1550	16	交叉物流		stockC32[7111.7	7]-machineC208	[0,40]-stock#16[0]	
1420	18	内部交叉		stockC81[0]-mac	hineC202[2,150]-stockC32[0]-mach:	ineC208[0,40]-stock#18[0]
1550	19	主体物流		stockC31[3477.8	4]-machineC302	[2,220]-stockC32[2:	356.69]-machineC208[0,40]-s
1420	1.4	内部交叉		stockC81[615.62]-nachineC202[2,150]-stockC32[848	5.06]-machineC308[0,36]-sto
1550	1B	主体物流		stockC31[90]-ma	chineC302[2,22	0]-stockC32[540.5]	machineC308[0,36]-stock#1B
1550	25	交叉物流		stockC57[3136.6	1]-machineC211	[0,28]-stock#25[0]	
1550	26	交叉物流		stockC32[0]-nac	hineC208[0,40]	-stock#26[0]	

Figure.4 The material group setting

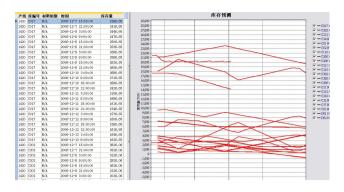

机组编号	~	材料组别	▼ 类	型	×	合同需求量	×
C202		08	成品	2			835.139
C211		4K	成品				628.851
C212		09	成品	7			609.5
C302		4E	3EF	花品			19.182
C202		30	3EF	^{夜品}			1332.682
C202		39	成品	3			15118. 787
C302		07	成品	3			2402.2
C312		27	3EF	^夜 品			652.05
C312		4D	315.6	成品			179.395
C318		81	成品	3			16045.271
C211		26	3EF	^夜 品			276.587
C309		3M	成品	3			1639.23
C118		80	成品	3			42034.694
C202		09	3EF	^夜 品			624.734
C209		4D	成品	3			359,679

Figure.5 The requirement quantity setting

C. Application Effect

The running effect of the prediction system developed in the paper can be illustrated as shown in Fig.6 -Fig.7

As shown in Fig.6, on the interface, the real-time stock condition and changing trend of specific material stored in the warehouse can be seen. Once the urgent events occur, for example content limit exceeded, warning will be given. As shown in Fig.7, on the interface, the real-time machine condition and changing trend of specific material processed on the machine unit can be seen. Once the urgent events occur, such as machine stopped waiting for raw material, warning will be given.

Figure.6 Inventory prediction

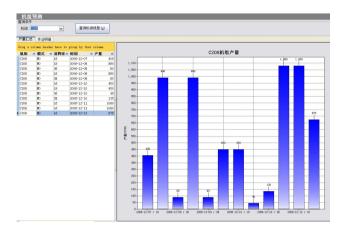


Figure.7 Machine unit prediction

CONCLUSION

As one of the new hot points discussed in the modern chemical industry information management, the real-time prediction of production logistics is concerned in the paper. Through study the process flow on the production line, the logistics prediction model is setup, which aims at not only decreasing the cost of process switching and material warehouse but also meeting with machine requirements and content limits. With the model embedded, the application software system is designed and realized. By real-time monitoring and predicting, the condition of raw material, work in process and finished product can be illustrated on the interface and this can well help to improve operation efficiency and economic benefits.

In the paper, the solving algorithm adopted in the paper is a kind of general algorithm. In the next work, new solving procedure will be designed and algorithm will be realization with considering the specific characteristics of problem.

REFERENCES

- [1] Hua Lanrong. Digitalization. promote production logistics automation. Modern Manufacture. 2008, (31).
- [2] Zhao Jun. Digital technology and application. 2013, (8).
- [3] Liu Zhi, Tang Juan, Fei Zhimin. Computer Integrated Manufacturing Systems, 2012, (11).
- [4] Deb K, Pratap A, Agarwal S, et al. Evolutionary Computation, IEEE Transactions, 2002, 6(2): 182-197.