
Available online www.jocpr.com 
 

Journal of Chemical and Pharmaceutical Research, 2015, 7(3):2449-2456                    
 

 

Research Article ISSN : 0975-7384 
CODEN(USA) : JCPRC5 

 

2449 

Cytokine secretion of human keratocytes following 
crosslinking/riboflavin-UVA photodynamic inactivati on (PDI), in vitro 

 
Tanja Stachon1*, Jiong Wang1,2, Xufei Song1, Achim Langenbucher3, Berthold Seitz1 and 

Nóra Szentmáry1 

 
1Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany 

2Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China 
3Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany 

_____________________________________________________________________________________________ 
 
ABSTRACT 
 
Crosslinking/Riboflavin-UVA photodynamic inactivation (PDI) is a potential treatment option in keratoconus and in 
therapy resistant infectious keratitis. We aimed to evaluate the impact of crosslinking/riboflavin-UVA-PDI on 
TGFβ1, FGFb, VEGF, HGF, KGF, IL-6 and IL-8 secretion of normal human keratocytes, in vitro. Primary human 
keratocytes were isolated by digestion in collagenase (1.0 mg/ml) from human corneal buttons, and cultured in 
DMEM/Ham's F12 medium supplemented with 10% FCS. Cell cultures underwent UVA-light illumination (8.0 
mW/cm2) for 4.10 minutes during exposure to 0.1% concentration of riboflavin-5-phosphat. Five and 24 hours after 
crosslinking, cytokine concentration was determined in the culture supernatant using ELISA. Five hours after 
riboflavin-UVA-PDI, FGFb, VEGF and HGF secretion of keratocytes decreased significantly (p<0.01; p<0.05; 
p<0.01) and TGFβ1, IL-6 and IL-8 secretion remained unchanged. Twenty-four hours following 
riboflavin-UVA-PDI, FGFb and KGF secretion decreased (p<0.01; p<0.01) and IL-6 secretion increased 
significantly (p<0.01), whereas TGFβ1, VEGF and HGF secretion remained unchanged. 
Crosslinking/riboflavin-UVA-PDI decreases FGFb, VEGF and HGF secretion 5 hours and FGFb and KGF 
secretion 24 hours after treatment, while it increases IL-6 secretion of keratocytes after 24 hours. In the short term, 
riboflavin-UVA-PDI does not have an impact on TGFβ1 and IL-8 secretion of keratocytes, in vitro.  
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INTRODUCTION 
 

In recent years corneal crosslinking (CXL) has been successfully used to stop the progression of keratoconus or as 
alternative antimicrobial therapy for therapy resistant infectious keratitis. In treatment of keratoconus, crosslinking 
between collagen fibers is supposed to stop the disease progression. In infectious keratitis, first excitation of the 
photosensitizer riboflavin through UVA light, then relaxation from the exited state results in free oxygen radicals 
and reactive oxygen species production, which leads to local damages of microorganisms but also of the surrounding 
tissue. As an antimicrobial treatment, crosslinking is one modality of so-called photodynamic therapy (PDT) or 
photodynamic inactivation (PDI). 
 
Although studies verified that epithelial-off treatment and 30 minutes-long-illumination does stop keratoconus 
progression, up-to-date crosslinking is still an off-label therapy [1, 2]. We also do know that at least 400 µm corneal 
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thickness is necessary in order to avoid corneal endothelial cell damage during treatment. The exact role of recently 
introduced riboflavin-solutions which support prompt intraoperative increase in corneal thickness still has to be 
clarified. 
 
Cytokines play an important role in immunological and inflammatory processes of the ocular surface. During 
keratitis interleukin-6 (IL-6) and interleukin-8 (IL-8) are secreted as response to inflammatory stimulus [3]. 
Transforming growth factor β1 (TGFβ1) is also involved in inflammatory reactions and induces myofibroblast 
differentiation [4]. Fibroblast growth factor basic (FGFb), vascular endothelial growth factor (VEGF) and 
keratinocyte growth factor (KGF) are markers of angiogenesis [5]. Decisive factors for wound healing are FGFb, 
hepatocyte growth factor (HGF), TGFβ1 and KGF. KGF is also described as a mediator of stromal-epithelial 
interactions [6, 7, 8, 9]. To the best of our knowledge, growth factor and interleukin secretion of keratocytes has not 
been analysed following crosslinking, yet.  
 
The purpose of our present study was to determine the impact of crosslinking/riboflavin-UVA PDI on growth factor 
and interleukin secretion of human keratocytes, in vitro.  
 

EXPERIMENTAL SECTION 
 

Materials 
Dulbecco's Modified Eagle Medium: (Nutrient Mixture F-12 (DMEM/F12)); FCS (fetal calf serum 10%); P/S (1% 
of 10000 u penicillin/ 10 mg streptomycin per ml); 0.05% trypsin/ 0.02% ethylenediaminetetra-acetic acid (EDTA), 
Riboflavin-5-phosphate, Dextran and Bradford Reagent  were purchased from Sigma-Aldrich Chemie GmbH 
(Munich, Germany), Collagenase A, and Dispase II were obtained from Roche Diagnostics (Mannheim, Germany). 
All ELISA assays were performed with the DuoSet ELISA Development System from R&D Systems GmbH 
(Wiesbaden-Nordenstadt, Germany). 
 
Isolation of primary human corneal keratocytes  
Human corneas not suitable for corneal transplantation were obtained from the LIONS Cornea Bank Saar-Lor-Lux, 
Trier/Westpfalz. Keratocytes were isolated as described previously [10]. In short, the human corneoscleral buttons 
were aseptically rinsed in phosphate-buffered saline (PBS) before removal of the endothelium including Descemet’s 
membrane by sterile surgical disposable scalpel. A central corneal button with epithelium was cut using a 8.0 mm 
Barron’s trephine and thereafter incubated in culture medium containing 2.4 U/ml Dispase II for 4 hours at 37 °C. In 
the following, the corneal button was washed with PBS for several times and the already loose corneal epithelium 
was removed with surgical disposable scalpel. The remaining corneal stroma was incubated in culture medium with 
1.0 mg/ml collagenase A for 8-10 hours at 37 °C. The digested tissue and cells were pipetted three times and 
centrifuged at 800 g for 7 minutes and finally resuspended in 1.0 ml culture medium, which consisted of basic 
medium (DMEM/F12) supplemented with 10% FCS and 1% P/S. The cell suspension was seeded in 6-well plates 
and the medium was changed 24 hours after seeding. Medium was changed every 2 to 3 days until keratocytes 
reached confluence. The cells were subcultured in 25 cm2 culture flasks after 5 to 10 days following dispersal with 
0.05% trypsin-EDTA for 3 to 5 minutes. The passage 4 to 8 of cells was used for experiments.  
 
Cell culture 
Cultured keratocytes showed typical morphologic characteristics of corneal stromal cells. After the proliferation 
period had started, a confluent monolayer was generally reached between day 3 and 5. Keratocytes were used at this 
stage for further experiments. 
 
Crosslinking / Riboflavin-UVA photodynamic inactivation  
Human keratocytes were seeded in 24-well tissue culture plates and were allowed to grow for 48 hours before 
photodynamic treatment. Cells were washed with PBS once before riboflavin-5-phosphate was added. The 
concentration of riboflavin-5-phosphate was 0.1%, diluted in 20% Dextran-PBS. Thereafter, the cells were exposed 
directly to UVA light (375 nm) for 4.10 minutes (2 J/cm2). Following illumination, cells were washed twice with 
PBS, fed with culture medium and cultivated at 37 °C for 5 hours or 24 hours before measurements. The supernatant 
was collected and stored until ELISA measurement at -80°C. In summary, the cells were treated with the following 
combinations: riboflavin-5-phosphate-UVA, riboflavin-5-phosphate only, UVA only. The control cells were 
incubated only in the dark for 4.10 minutes.  
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Measurement of TGFβ1, FGFb, VEGF, HGF, KGF, IL-6 and IL-8 
Five hours and twenty-four hours after the photodynamic inactivation the concentration of TGFβ1, FGFb, VEGF, 
HGF, KGF, IL-6 and IL-8 in each well was measured by taking a 100 µl aliquot of the supernatant of the wells. 
Measurements were performed by ELISA with the following measurement ranges: TGFβ1: 16-2000 pg/ml, FGFb: 
8-1000 pg/ml, VEGF: 16-2000 pg/ml, HGF: 60-8000 pg/ml, KGF: 16-2000 pg/ml, IL-6: 10-600 pg/ml and IL-8: 
16-2000 pg/ml. Measured concentrations below the above values were considered as zero. The growth factor 
concentrations were quantified by using a human recombinant TGFβ1, FGFb, VEGF, HGF, KGF, IL-6 and IL-8 as 
standard. The measurements were performed following the manufactures’ ELISA-protocols. In each well, the 
concentration of the growth factors in the supernatant was standardized to the cell protein concentration of the 
respective well. The absorbance was measured at 450 nm (Model Infinite F50, Tecan GmbH, Crailsheim, Germany). 
The experiments were repeated four times using keratocyte cultures of 5 different patients regarding each well.  
 
Protein measurement 
After taking the supernatant for ELISA, the total protein concentration of each well was measured following 
detachment of the cells. Protein quantity was determined according to the method of Bradford, which is based on the 
formation of a complex between the dye, Brilliant blue G and proteins in solution. The absorbance was measured at 
595 nm and the concentrations were quantified using bovine serum albumin (BSA) as standard protein. 
 
Statistical Analysis  
For statistical analysis the GraphPad Prism 2.01 was used. Data are represented as mean ± standard deviation (SD). 
Statistical analysis was performed using Wilcoxon-Mann-Whitney Test. P values below 0.05 were considered 
statistically significant.  
 

RESULTS 
 

The concentration of TGFβ1, FGFb, VEGF, HGF, KGF, IL-6, and IL-8 in the supernatant of keratocytes 5 hours 
after riboflavin-UVA-PDI is summarized at Table 1 and Figure 1. The secretion of KGF was below the detection 
limit in the treated and untreated cell cultures 5 hours after PDI. We could not detect changes in the secretion of 
TGFβ1 and IL-6 of keratocytes in any of the examined groups 5 hours following riboflavin-UVA treatment. 
 
Five hours after PDI, using 0.1% riboflavin-5-phosphat and illumination, the mean FGFb concentration in the 
supernatant was 0.43 ± 0.1 pg/µg protein. This was significantly lower than FGFb concentration in the supernatant 
of untreated keratocyte cultures (0.89 ± 0.72 pg/µg protein; p<0.01). The FGFb concentration was also significantly 
decreased for this time point using UVA-light only (0.46 ± 0.15 pg/µg protein; p<0.01), compared to controls.  
 
The concentration of VEGF 5 hours after riboflavin-UVA-PDI (0.89 ± 0.30 pg/µg protein) was significantly lower 
than in control cells (1.33 ± 0.68 pg/µg protein; p<0.05). The VEGF concentration also decreased significantly using 
UVA-light illumination separately (0.94 ± 0.61 pg/µg protein; p<0.05). The HGF concentration was significantly 
lower following PDI (2.22 ± 1.10 pg/µg protein; p<0.01) compared to controls (4.13 ± 1.65 pg/µg protein).  
 
Using riboflavin-5-phosphat without subsequent illumination, the concentration of IL-8 in the supernatant of 
keratocytes increased significantly (2.72 ± 0.98 pg/µg protein;  p<0.01) compared to controls (1.87 ± 0.42 pg/µg 
protein).  
 
The concentration of TGFβ1, FGFb, VEGF, HGF, KGF, IL-6 and IL-8 24 hours following riboflavin-UVA-PDI is 
summarized at Table 2 and Figure 2. TGFβ1 and HGF secretion of keratocytes remained unchanged in all the 
examined groups 24 hours after treatment, compared to control cultures.  
 
The secretion of FGFb was significantly lower (0.22 ± 0.10 pg/µg protein) compared to controls (0.64 ± 0.43 pg/µg 
protein; p<0.01), for this time point. FGFb concentration also decreased using UVA-light only (0.20 ± 0.10 pg/µg 
protein; p<0.01), compared to control cultures.  
 
The secretion of KGF after riboflavin-UVA-PDI (0.27 ± 0.15 pg/µg protein), or using UVA-light only (0.46 ± 0.28 
pg/µg protein), decreased significantly (p<0.01, p=0.04) compared to control cells (0.62 ± 0.30 pg/µg protein).  
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VEGF secretion of keratocytes decreased significantly using UVA-light illumination only (3.39 ± 1.94 pg/µg protein 
versus 7.07 ± 3.8 pg/µg protein; p<0.01) and IL-8 secretion increased significantly following the use of 
riboflavin-5-phosphat without illumination (10.85 ± 3.99 pg/µg protein; p<0.01), compared to controls (7.44 ± 2.84 
pg/µg protein).  
 
Twenty-four hours following PDI, using 0.1% riboflavin-5-phosphat and UVA-light, the mean IL-6 concentration in 
the supernatant was 2.59 ± 1.08 pg/µg protein. This was significantly higher than the IL-6 concentration in the 
supernatant of untreated cell cultures (0.81 ± 0.31 pg/µg protein; p<0.01).  
 

DISCUSSION 
 

Several authors reported on occurrence of early bacterial or acanthamoeba keratitis following crosslinking therapy 
[11, 12, 13]. In contrast, case series describe the success of crosslinking in treatment of non-healing, therapy 
resistant bacterial or acanthamoeba ulcers or keratitis [14]. Cytokines and growth factors play an important role in 
wound healing and inflammatory processes in the cornea. To the best of our knowledge, this is the first study 
illustrating the growth factor and interleukin secretion of primary human keratocytes following crosslinking. A 
limitation of our study is that using ELISA, only secreted growth factors were measured and total protein or mRNA 
analysis was not performed.  
 
We demonstrated that crosslinking using the therapeutical concentration of riboflavin-5-phosphat decreases FGFb, 
VEGF and HGF secretion 5 hours after treatment. Twenty-four hours following riboflavin-UVA-PDI, FGFb 
secretion is still decreased, whereas VEGF and HGF secretion normalizes in culture. In the short term, crosslinking 
does not have an impact on TGFβ1 secretion of keratocytes, in vitro.  
 
FGF promotes angiogenesis, cell proliferation and migration. With reduced FGFb secretion 5 and 24 hours after 
CXL, angiogenesis and keratocyte proliferation may be reduced in the cornea. In accordance with that, our previous 
study verified decreased proliferation of keratocytes 24 hours after CXL [15]. FGFb also induces the differentiation 
of keratocytes into a fibroblastic phenotype. Therefore, with reduced FGFb secretion after CXL, a reduced 
percentage of differentiated keratocytes (into fibroblastic phenotype) are expected. In accordance with that we have 
shown in our previous studies a promoted myofibroblastic transformation and an increased expression of the 
hemopoetic stem cell marker CD34 24 hours after crosslinking therapy using the same concentration of riboflavin 
[15]. It is known that HGF and TGFβ1 induce myofibroblastic transformation of keratocytes. In accordance with 
decreased HGF and unchanged TGFβ1 secretion, we detected an increased myofibroblastic transformation after 
treatment [15]. We relate the increased myofibroblastic transformation to the impact of the decreased FGFb 
secretion. However, to the best of our knowledge the interaction of different cytokines in the cornea has not been 
analyzed, yet. 
 
HGF is secreted through the stromal cells of the cornea and are known to inhibit the process of epithelialization [16]. 
In contrast, KGF supports epithelial wound healing [17]. Our findings suggest that the decreased secretion of HGF 5 
hours after CXL supports epithelial healing and the decreased secretion of KGF 24 hours after treatment inhibits the 
epithelial wound healing. The exact role of crosslinking on epithelial proliferation and migration has to be further 
analyzed. 
 
Interestingly, in our previous studies with the photosensitizer chlorine e6 and 670 nm wavelength illumination, the 
impact on growth factor secretion of keratocytes was in part similar; HGF secretion decreased 5 hours and KGF 
secretion decreased 24 hours after treatment, however FGFb secretion increased after 5 hours [18]. We correlate the 
increased FGF secretion to the decreased keratocyte viability and increased apoptotic keratocyte death following 
chlorine e6 photodynamic therapy, with a photosensitizer with higher photosensitizing efficacy (more free oxygen 
radical production). The increased FGFb secretion may be a response to the induced cell death. In accordance with 
our hypothesis, we could not observe induced apoptosis in normal keratocytes, following riboflavin-UVA-PDI. 
 
Lee et al. reported on the inhibitory effect of HGF on apoptosis of the cells. Using the photosensitizer chlorine e6 
the HGF secretion was decreased, but obviously not enough to prevent keratocyte apoptosis. In contrast, using 
riboflavin-UVA-PDI, HGF secretion of keratocytes was at higher levels than following chlorine e6-PDI: it could 
still prevent apoptosis of keratocytes [19]. 
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Interestingly, 5 hours after CXL VEGF secretion was significantly decreased, which indicates that 
riboflavin-UVA-PDI may inhibit hemangiogenesis and lymphangiogenesis in the short term. In contrast, using the 
photosensitizer chlorine e6, only a slight increase of VEGF secretion could be measured after 24 hours, which could 
result in promotion of hem- and lymphangiogenesis using this photosensitizer. The exact molecular mechanism here 
still has to be clarified. 
 
Konstantopoulos [20] et al. reported of IL-6, IL-8 and IL-1β as the key cytokines in corneal inflammation. They are 
shown to be chemotactic for PMNs in infected corneal tissue which can cause corneal destruction. We could detect 
an increase of IL-6 but no effect on IL-8 secretion in keratocytes 24 hours after treatment, in vitro. Increased levels 
of IL-6 in early stages of keratitis are able to recruit polymorphonuclear neutrophils (PMN) into the cornea [21], 
which is a favorable effect in the short term. Interestingly, these results differ from our previous measurements using 
the photosensitizer chlorine e6: using this treatment IL-6 and IL-8 decreased significantly 5 hours after treatment 
and normalized 24h after PDI [22]. 
 
For keratoconus patients, Kolozsvári et al described that secretion of several interleukins is correlated with the stage 
of the keratoconus disease [23]. Response of keratoconus keratocytes on crosslinking treatment also has to be further 
analyzed. 
 
In summary, crosslinking/riboflavin-UVA photodynamic inactivation decreases FGFb, VEGF and HGF secretion 5 
hours and FGFb and KGF secretion 24 hours after treatment, whereas it increases IL-6 secretion of keratocytes after 
24 hours. In the short term, riboflavin-UVA-PDI does not have an impact on TGFβ1 and IL-8 secretion of 
keratocytes, in vitro. To determine the exact role of the secreted cytokines on corneal epithelial cells and keratocytes, 
further studies are needed. 
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Figure 1. TGFβ1, FGFb, VEGF, HGF, IL-6 and IL-8 concentration (mean pg/µg protein ± SD) 5 hours following 
crosslinking/riboflavin-UVA photodynamic inactivati on. Significant differences are indicated. 
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Figure 2. TGFβ1, FGFb, VEGF, HGF, KGF, IL-6 and IL-8 concentration (mean pg/µg protein ± SD) 24 hours following 
crosslinking/riboflavin-UVA photodynamic inactivati on. Significant differences are indicated. 

 
Table 1. Concentration (pg/µg protein) of different growth factors and interleukins in the supernatant of keratocyte cultures five hours 

after crosslinking/riboflavin-UVA photodynamic inactivation. Values indicate mean ± SD. 
 

 
 

Keratocytes Keratocytes 
+ UVA 

Keratocytes 
+ riboflavin 

Keratocytes 
+ riboflavin 

+ UVA 
* p-value † p-value ‡ p-value 

TGFβ1 0.31 ± 0.22 0.23 ± 0.15 0.29 ± 0.19 0.25 ± 0.17 0,29 0,94 0,47 
FGFb 0.89 ± 0.72 0.46 ± 0.15 1.00 ± 1.30 0.43 ± 0.1 <0,01 0,60 <0,01 
VEGF 1.33 ± 0.68 0.94 ± 0.61 1.10 ± 0.71 0.89 ± 0.38 0,04 0,24 0,04 
HGF 4.13 ± 1.65 4.13 ± 1.87 3.79 ± 2.22 2.22 ± 1.10 0,76 0,24 <0,01 
KGF n.d. n.d. n.d. n.d. n/a n/a n/a 
IL-6 0.24 ± 0.08 0.29 ± 0.14 0.30 ± 0.09 0.29 ± 0.09 0,34 0,08 0,61 
IL-8 1.87 ± 0.42 1.84 ± 0.45 2.72 ± 0.98 2.35 ± 1.67 0,86 <0,01 0,80 

* p-values indicate the difference between “Keratocytes ” versus “Keratocytes + UVA” groups (Wilcoxon-Mann-Whitney test). 
† p-values indicate the differences between “Keratocytes” versus “ Keratocytes + riboflavin” groups (Wilcoxon-Mann-Whitney test). 

‡ p-values indicate the difference between “Keratocytes” versus “Keratocytes + riboflavin + UVA” groups (Wilcoxon-Mann-Whitney test). 
Significant p-values are shown in bold. 

n.d. = not detectable 
n/a = not applicable 
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Table 2. Concentration (pg/µg protein) of different growth factors and interleukins in the supernatant of keratocyte cultures twenty-four 
hours after crosslinking/riboflavin-UVA photodynamic inactivation. Values indicate mean ± SD. 

 
 
 

Keratocytes Keratocytes 
+ UVA 

Keratocytes 
+ riboflavin 

Keratocytes 
+ riboflavin 

+ UVA 
* p-value † p-value ‡ p-value 

TGFβ1 0.42 ± 0.26 0.56 ± 0.18 0.43 ± 0.29 0.52 ± 0.28 0,06 0,79 0,20 
FGFb 0.64 ± 0.43 0.2 ± 0.10 0.87 ± 1.14 0.22 ± 0.10 <0.01 0,86 <0.01 
VEGF 7.07 ± 3.80 3.39 ± 1.94 5.96 ± 3.86 6.33 ± 2.97 <0,01 0,30 0,55 
HGF 16.84 ± 10.01 12.95 ± 7.56 13.82 ± 9.73 11.08 ± 3.26 0,23 0,29 0,09 
KGF 0.62 ± 0.30 0.46 ± 0.28 0.46 ± 0.26 0.27 ± 0.15 0,04 0,07 <0.01 
IL -6 0.81 ± 0.31 0.95 ± 0.37 0.99 ± 0.36 2.59 ± 1.08 0,44 0,29 <0,01 
IL-8 7.44 ± 2.84 6.23 ± 1.80 10.85 ± 3.99 6.63 ± 2.47 0,12 <0,01 0,30 

* p-values indicate the difference between “Keratocytes ” versus “Keratocytes + UVA” groups (Wilcoxon-Mann-Whitney test). 
† p-values indicate the difference between “Keratocytes” versus “Keratocytes + riboflavin” groups (Wilcoxon-Mann-Whitney test). 

‡ p-values indicate the difference between “Keratocytes” versus “Keratocytes + riboflavin + UVA” groups (Wilcoxon-Mann-Whitney test). 
Significant p-values are shown in bold. 
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