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ABSTRACT

Medical image fusion plays important roles for accurate clinical diagnosis and pharmacology determination. In this
article, the fusion on CT/MRI medical images is carried out based on the curvelet transform due to its high
sengitivity to two dimensional edges and curves. After analyzing the sub-band coefficients decomposed from the
original images, three methods are put forward to manipulate the transformed coarse and fine scales. Results imply
that the maximally selecting the coefficient at every scale from the original images is optimal to achieve more
effective fusion than the combined methods as maximal selection at fine scales but weighted averaging or simply
averaging coefficients at coarse scales. For the latter two methods, the weighted averaging at coarse scale is better.
More MRI information extraction is important for the fusion performance, since the MRI image has more details
than CT. The algorithms proposed in this article can be integrated into the multi-modal medical imaging instrument
to acquire higher accuracy for clinical and pharmacology decision.
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INTRODUCTION

Medical images can be acquired from many instrumenth as CT (Computerized Tomography), MRI (Magnet
Resonance Imaging), PET (Positron Emission Tomdyapnd so orffl]. Computer assistance in these imaging
processes can not be neglected. For example, tltenbnomputer controls the X-ray tube for CT soarg on
different sections of the pathologically changedues. Except the X-ray piray emission control, another essential
application of computer is signal processing ondigitalized image$2-3]. Buades et al. compare several methods
for image denoising based on the local smoothirer$i, including Gaussian filter, anisotropic filter and
neighborhood filter. Such denoising achievementiésived from locally averaging the image pixel mat#].
Regionally processing on medical images is impaytias Hill et al. review the medical image registration based
spatially rigid or non-rigid method®]. Watershed is an effective algorithm through Icabperating for image
segmentatiof6]. When mapping pixel matrix into high-resolutioraks, one image can be transformed into a slice
of coefficient matrices in order to respectivelypnesent the coarse and fine information of the &nabhe
redundancy information of medical images can be pressed through manipulating the wavelet transfdrme
coefficients even at three-dimension (3{D). Yang et al. also propose an algorithm for image enhaect based
on theHaar wavelet transform and soft-threshold treatmenthenhigh-frequency sub-bands of the im§&je Other
than the wavelet transform, there have severalisradolution methods also efficient for medical gegprocessing,
such as framelet transform, contourlet transfordgelet transform, curvelet transform and sq®40].

When it comes to the multi-modal images for intéigeaclinical diagnosis and pharmacology deternmamtthe
image fusion is an essential topic in medical impgecessing field. Namely, the multi-sourced imagksuld be
informatively merged together. The easiest metlsodpierated through adding the image pixels, butynaefects
can not be avoided during direct pixel fus[@d]. The fusion operation at transformation scaleéardidate to fuse
images with higher accuracy. Wavelet transformeasdiicial for fusing information at coarse and fseale based
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on the methods such as modulus maxima crif@ély wavelet pyramid13] and so on. Though wavelet transform is
effective to represent the one-dimensional (1-Bcewise smooth signals, there have limitationglmompose the
two dimensional (2-D) lines or curves, whereasdhsential features of medical images are embeddé#tei2-D
edgeq14]. The novel curvelet transform is consequently iggpfor compensating such limitatiofis]. There have
several reports on the multi-spectral remote sgnsirage fusion, though its application on medicahge fusion
should be further investigatdti6-17]. In this article, the curvelet transform fusion @M/MRI image set is focused
on, and several fusion strategies are put forwaite fusion effect is quantitatively evaluated by ttactors
including average gradient, edge intensity and alunhformation. The algorithms established in thiticle can be
jointly utilized for multi-modal clinical and phamwology analysis on the pathologic change.

EXPERIMENTAL SECTION

The two dimensional (2-D) discrete curvelet transfq DCT) on medical image is consisted of the fallg
procedures.

Firstly, the image is decomposed into sub-bandsutiir convolution as
A =R f+Af =, 0f +W¥, OF . 1)

In which, the first component is related to low-péa®atment on thie and the second component is about band-pass
information extraction fronf. Consequently, the signélhas been sub-banded. Secondly, smooth partitibms a
operated on the band-pass decomposed componedtse@aormalization on the partitioned segments Vadd.
Finally, ridgelet transform is applied to the segiee squares by representing them with a few officamnts
indexed by scale, orientation and spatial locatibwerse transform on the coefficients can recowsthe processed
images.

The curvelet transform is anisotropy sensitive igctdminate out the 2-D edges in the images. Theablof this
article is to manipulate the coefficient matriceewery sub-band for medical image fusion. Suclpbfuscheme is
shown in Fig. 1. The selected CT and MRI imagesehbgen transformed into many coefficient matrices t
represent the information embedded in the imagesades with different resolution.
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Coefficient matrix in coarse scale

Coefficient matrix in fine scale

Fig. 1. Fusion scheme of the CT/MRI medical imagdsased on curvelet transform
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Since the coarse scales and the fine scales reprdgterent information of the images, there slibalssign
different methods for maximally utilizing the resgige information. The fusion methods propositiom @&valuation
is the major task of this article.

RESULTS AND DISCUSSION

The selected CT and MRI image from the same pakiamé been spatially registered as shown in Fighe. CT
image can scan out the cerebrovascular patholdgioge, cerebral hemorrhage, intracranial pressume,so on.
For the MRI image, it is utilized for discriminaginthe soft tissues to observe the cerebrovascueident,
cerebrovascular tumors etc. CT possesses highabpatiolution but low contrast when scanning sSues.
Contrarily, MRI has high contrast on soft tissueuph low in resolution. The two images are completansy.
Fusion of CT/MRI image set is significant from ttiaical and pharmacology viewpoints.

CURVELET DECOMPOSED SUB-BANDS ANALYSIS
The coefficients at decomposed scales are diffeneatientation and spatial location to represéet fragments of
the images. In Fig. 2, the coarse and fine infolwnah different scales is graphically exampled.

(a) (b)
(©) (d)

Fig. 2. Curvelet transformed sub-bands, exampled bga) CT and (c) MRI image at low-frequency scale,ra by (b) CT and (d) MRI
image at high frequency scale

At low frequency scale, the outer profiles of th€/KIRI images have been segmented out. For the fnégjuency
information, there have edges or curves in a gidieection. Every scale is related to a coefficiemtrix. And
fusion algorithms are designed for fusing the pomding coefficients. It also should be noticedt tmore
information is embedded in the high resolution saall MRI image as shown in Fig. 2d, since thereehmore
fragments than that CT in Fig. 2b.

MAXIMUM COEFFICIENT SELECTION FUSION METHOD

The rational method for comparing the informationoaint embedded in a coefficient is the coefficiealue. And
the bigger the coefficient is, the more importaotts coefficient becomes for fusion. Consequently,ttze
coefficients of CT and MRI image are compared \eitich other at the same scale. After traversinipalsub-bands,
the maximum coefficients are selected out and fustedthe corresponding scales.

Such fusion method is present in Eq.(2). Since dhevelet transformed coefficient is complex in fatmthe
absolute values of the coefficients are applieccéomparison.

Method 1: Cr (i, j) =QxCy (i, j) + @-Q)xCs (i, j). &

1 if|C (L)BIC; (.))]

inwhich Q ={ it |CL 6,1 KICLG, D)
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Fig. 3. The fused image based on thdethod 1 through maximally selecting the coefficients

The fused image is shown in Fig. 3. Compared tootiginal images, there have CT information appeanethe
MRI structure. The fused image is more informative.

In order to quantitatively evaluate the fusion effahree parameters such as average gradient,ieidgsity and
mutual information are calculated and present in.TaThere has distinct improvement for the fusedge, i.e. the
average gradient has been increased to 4.9318hwhidgher than 4.3591 of MRI and 2.3076 of CTdAhe edge
intensity has been heightened to 50.2508. It imsplieat more details have been integrated togethesrder to
discriminate out the information source in the dmsimage, the mutual information parameter indedteat the
fused image is embedded with more information sediftom MRI image rather than CT. About one-thirdren
information of MRI is appeared in the fused image.

Table 1. Evaluation on original CT/MRI images and he fused image based on Method 1

Image . . .
Parameters CTimage MRIlimage Fused image through Method 1
Average gradient@ ) 2.3076 4.3591 49318
Edge intensitylg) 23.6800 45.0382 50.2508
Mutual information K1) 0.7969 1.0676 _

Such a deduction can be verified by the sub-bamdmposition of the fused image, as shown in Figt 4eems
that the decomposed sub-band of the fused imagwie similar to that of MRI. Such a phenomenonsisribed
that the MRI image has more details, or in otherdschas more edges and macrostructures than CThvigi
guantitatively verified by its higher edge integsiind average gradient parameters. Such edgegewendosed into
every sub-band by the anisotropy seeking from datweansform. Consequently, higher fusing weighaicquired
by the coefficient in MRI sub-bands.

Fig. 4 Curvelet transform of the fused image at thesame sub-band as Fig. 2b and 2d

DIFFERENT TREATMENT ON LOW-FREQUENCY SUB-BANDS

For comparison, the other methods are put forwardtreating with the curvelet transformed coeffite Such

methods are based on the observation that mori idédamation is decomposed into the high-frequesab-bands,
but the coarse information in low-frequency subdsaare also important to determine the image @rodis shown
in Fig. 2. The maximal selection on coefficientshigh sub-bands is rational, whereas the fusiorhatkin low

sub-bands can be differently operated accordirigqt¢3) and Eq.(4).
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Co(,)*+Cs G, 0) 3
2 1
in which LOlow frequency sub-bands.

Method 2. Cr (i, j) =

(4)
Cr (. )
Cr(.)+C; ()

in which LOlow frequency sub-bands.

wer =20 o),

Method3:  Cf(i,j) = Co(i,j)+Cs(, )
1 ’ 2 '

The fused images based on the different methodshanen in Fig. 5. When analyzed by the quantitatimeameters
in Tab. 2, it implies that the weighted averagingtbe coarse scale has achieved more effectiverfusian the
simple averaging method, since average gradientedné intensity derived from method 3 are remaskaigher
than that of method 2. Such a difference is asdritbat the method 3 has extracted more MRI rathen {CT
information, which is verified through comparingttwo mutual information parameters in Tab. 2. Ni@é more
inner edges and microstructures. Consequenthoriusom method 3 has more details and edges oltaine

(b)

Fig. 5. The fused image based on (&)ethod 2 by averaging and (b)Method 3 by weighted averaging treatment on the coefficiestat
low-frequency sub-bands, with maximally selectionmthe coefficients at high-frequency sub-bands

Table 2. Evaluation on the original CT/MRI images ad the fused images

Image Fused by Method 2  Fused by Method 3
Parameters
Average gradient@ ) 4.5140 4.9355
Edge intensitylg) 46.9294 49.8279
Mutual information ) with CT 0.7981 0.7916
Mutual information 1) with MRI 1.0501 1.0572

When compared all the three fusion methods, moré Miermation are extracted by the method 1 fusedde,

which achieves the highest edge intensity evenghdhe average gradient is slightly lower than tfathe method
2. The method 1 through maximal coefficient setactt all the sub-bands is prior to the latter taegthods. For the
latter method 2 and method 3, the weighted avegagimethod 2 is relatively better.

CONCLUSION

Multi-modal medical image fusion has medical sig@ifce. In this article, the curvelet transform imoek is put
forward for such purpose, since curvelet transfoam discriminate out the 2-D edges or curves inica¢dmages
with higher sensitivity. Three fusion methods astablished according to the curvelet transformearsm or fine
sub-bands. After evaluated by quantitative pararsgtesults indicate that the fusion method basednaximal
selection on the coefficient at every correspondinig-band of the original images is the optimald Ame combined
method through weighted averaging at coarse scalaraximal selection at fine scale achieves moi@ imative
fusion than the method with simply averaging atrseascale. More MRI information extraction can ioye the
fusion performance.

1087



Xiaojun Wang and Weidong Lai J. Chem. Pharm. Res., 2014, 6(3):1083-1088

Such proposed algorithms can be integrated intonthié-modal imaging instruments for improving ttlnical and
pharmacology activities.
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