Journal of Chemical and Pharmaceutical Research

J. Chem. Pharm. Res., 2010, 2(2): 209-212

Corrosion study rebars in reinforced concrete structure by open circuit potential method

^aV. R. Rathi, ^bS. J. Kokate, ^aS. D. Nirmal^{*}

Pravara Rural Engineering College, Loni Department Analytical Chemistry, P.V.P. College, Pravaranagar, MS, India

Abstract

In present investigation an attempt has been made to investigate corrosion rate of mild steel, Tor steel and CRS steel in reinforced concrete structure by open circuit potential difference method obtained reliable results in OCP method. The four concrete block from sites have been selected. The factor causing corrosion and conditions of the environment has been studied. Attempt has been made to consider conditions which will help to get greater protection against corrosion problem for industries as well as household articles.

Key words: Reinforced concrete; OCP method.

Introduction

Corrosion of rebars is one of the major durability problems for reinforced concrete structure. The effect of inadequate workmanship like proper cover, placing, compaction and curing of concrete on carbonation are the factors responsible for the corrosion of reinforcement in concrete structures. Corrosion is the destructive attack on a metal or a metal alloy by chemical or electrochemical reaction with its environment [1-4]. There are different factors influencing corrosion such as acids, oxidizing agents and temperature. The numbers of methods are available for study of the corrosion viz. surface potential test method, open circuit potential test method and method of weight loss. The present work deals with the study of the effect of water cement ratio, grade of concrete and type of steel on corrosion of steel in concrete using open circuit potential test method. This the most suitable method for the detecting the percentage of corrosion of the rebars, because in this method the bars are directly connected to the electrode it gives

S. D. Nirmal *et al*

direct readings of the corrosion current in my and based on standards fixed we can detect the condition of rebars.

Materials and Methods

Experimental Section

Open circuit potential of steel (OCP)

In this technique the corrosion potential of the rebar is measured with respect to standard reference electrode such as saturated calomel electrode, copper-copper sulphate electrode, silversilver chloride electrode. In view of reinforced concrete structure. The steel bars should be accessible in few locations for getting electrical connection. A high impedance voltmeter with accuracy of ± 10 mv is normally used. Results are reported in Table 1. For the test standards are fixed by applying Cu/CuSO₄ electrodes. Potential more than 350 mv or 0.35 V CSE, very high (about 95%) probability of presence of active corrosion. Potential more than 200 mv or 0.20 V CSE, very high probability of no corrosion. Potential in the range of 0.20 V to 0.35 V or 200 MV to 350 MV approximately 50% probability of corrosion

Results and Discussion

It was observed from readings in Table 1. That the flow of corrosion current is more at less cover depths and less at more cover depths also mild steel and tor steel both are get affected due to the corrosive environment. Though the open circuit potential method data useful is ascertaining the condition of rebar embedded in concrete in a NDT way it is only qualitative OCP values are influenced by moisture content in the concrete.

	Table 1.	Corrosion	Rate by	Open	circuit	Potentia	Method
--	----------	-----------	---------	------	---------	-----------------	--------

Time for exposure = 7 days; Density of Steel (D) = 7.78 gms/cm^3 ;						
Sr.	Symbol	Grade of	Water cement	Type of steel	Cover in	OCP Readings in
No		concrete	ratio		mm	mV
					10	-272 mV
1	A-1	M15	0.40	Mild Steel	30	-108 mV
					45	-103 mV
					10	-260 mV
2	A-2	M15	0.40	Mild Steel	30	-121 mV
					45	-081 mV
					10	-352 mV
3	A-3	M15	0.40	Tor Steel	30	-130 mV
					45	-127 mV
					10	-378 mV
4	A-4	M15	0.40	Tor Steel	30	-144 mV
					45	-114 mV
					10	-091 mV
5	A-5	M15	0.40	CRS Steel	30	-039 mV
					45	-035 mV
					10	-097 mV
6	A-6	M15	0.40	CRS Steel	30	-042 mV
					45	-041 mV
7	B-1	M15	0.45	Mild Steel	10	-178 mV

S. D. Nirmal et al

					30	-169 mV
					45	-041 mV
					10	-172 mV
8	B-2	M15	0.45	Mild Steel	30	-100 mV
					45	-041 mV
					10	-209 mV
9	B-3	M15	0.45	Tor Steel	30	-175 mV
					45	-067 mV
					10	-275 mV
10	B-4	M15	0.45	Tor Steel	30	-160 mV
					45	-077 mV
					10	-059 mV
11	B-5	M15	0.45	CRS Steel	30	-041 mV
					45	-032 mV
					10	-056 mV
12	B-6	M15	0.45	CRS Steel	30	-042 mV
					45	-030 mV
					10	-077 mV
13	C-1	M15	0.5	Mild Steel	30	-060 mV
10	01		010		45	-054 mV
					10	-071 mV
14	C-2	M15	0.5	Mild Steel	30	-068 mV
17	0.2	WI15	0.5	Wind Steel	45	-041 mV
					10	-01/6 mV
15	C 3	M15	0.5	Tor Steel	20	-0140 mV
15	C-3	IVI I J	0.5	101 Steel	30 45	-0122 mV
					45	-062 mV
16	C 4	M15	0.5	Tor Steel	10	-0130 mV
10	C-4	IVI I J	0.5	TOI SIEEI	30	-0124 mV
					4.5	-0/7 mV
17	C 5	M15	0.5	CDC Steel	10	-04/10
1/	C-5	INT S	0.5	CKS Sleel	30	-042 III V
					43	-028 III V
10	0.6	115	0.5		10	-068 mV
18	C-6	M15	0.5	CRS Steel	30	-065 mV
					45	-035 mV
10	5.4				10	-085 mV
19	D-1	M15	0.55	Mild Steel	30	-081 mV
					45	-067 mV
					10	$-0^{2}/2 \text{ mV}$
20	D-2	M15	0.55	Mild Steel	30	-068 mV
					45	-060 mV
					10	-109 mV
21	D-3	M15	0.55	Tor Steel	30	-087 mV
					45	-070 mV
					10	-135 mV
22	D-4	M15	0.55	Tor Steel	30	-078 mV
					45	-072 mV
					10	-010 mV
23	D-5	M15	0.55	CRS Steel	30	-011 mV
					45	-008 mV
					10	-030 mV
24	D-6	M15	0.55	CRS Steel	30	-020 mV
					45	-015 mV

S. D. Nirmal *et al*

Conclusion

- Open circuit potential method is more suitable than other method because less instrumentation is required in this method and which gives quick result for further repairs and rehabilitation.
- Open circuit potential method suitable on the field where the spalling or cracking of concrete has taken place due to increase in volume of concrete due to rust formation.
- The bars at cover depth of 10 mm are severally affected by the corrosion. The potential difference in OCP method is maximum at 10 mm.
- Corrosion knowledge is very important for planning to reduce corrosion.
- As bars are more susceptible to corrosion if cover is in between 10 to 15 mm. Therefore in recent revision of I.S. 456-2000, the code has recommended minimum cover to concrete as 20 mm and minimum grade of concrete used is M20 in R.C.C. works.

Acknowledgements

The authors are thankful to the Management, Pravara Rural Education Society for providing necessary facilities in the department.

References

[1] H. H. Uligh, Corrosion and corrosion control – An Introduction to Corrosion Science and Engineering, John Wiley and Sons, New York, **1971**.

[2] V. Kumpawat; V. Garg; R. K. Tak, J. Ind. Council. Chem., 2009, 26, 82.

[3] W. Z. Friend, Corrosion, 1957, 13 81.

[4] F. F. Booth; K. G. Latimer, corrosion Technique, 1962, 315.