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ABSTRACT 
 
Maytenus emarginata is a Ethno medicinal plant and the leaves of this plant it is extensively used by the tribal’s of 
south Indian Nallamala forest region, the aim of our extension study of Project work is to evaluate the Molecular 
modeling & docking studies on active compounds of Maytenus emarginata. As we already evaluated the Total 
Phenolic Content, Total Flavanoid Content, Determination of Total Antioxidant Activity, Determination of Reducing 
Antioxidant Power (FRAP), Nitric Oxide Radical Scavenging Activity, Hydroxyl Radical Scavenging Activity, 
Superoxide Radical Scavenging Activity, and Evaluation of α-glucosidase inhibition Activity. In our previous study, 
we also evaluate the gastro protective activity and its effect on antioxidant enzymes of Maytenus emarginata.  
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INTRODUCTION 
 

In recent years, life sciences have undergone an immense transformation, where technological advancements in 
genomics, proteomics, and other high-throughput techniques produce floods of data that need to be stored, analyzed, 
and interpreted in various ways. Biology and medicine have thereby turned into information sciences and new areas 
of comparative biology have emerged. Bioinformatics is a relatively new discipline integrating life sciences with 
computational sciences by attracting scientists from a wide range of areas, including physics, chemistry, biology, 
medicine, mathematics, statistics, and computational sciences. Bioinformatics is crucial by providing tools to enable 
utilization of these gold mines of data in order to better understand the roles of proteins and genes and to obtain 
ideas for new experiments. This has made bioinformatics increasingly important in analysis of large-scale data in 
life sciences. 
 
Bioinformatics and genome science (BGS) are relatively new disciplines, gaining importance across the biomedical 
research, healthcare and agriculture sectors due to their importance in helping to improve the timeliness and 
accuracy of disease diagnosis, prognosis and treatment, as well as enhancing crop yield [1,2,3] 
 
Evaluating a Protein structure for SBDD: 
Once a target has been identified, it is necessary to obtain accurate structural information. There are three primary 
methods for structure determination that are useful for drug design: X-ray crystallography, NMR, and homology 
modeling. The evaluation of structures from each method will be discussed. Crystal structures are the most common 
source of structural information for drug design, since structures determined to high resolution may be available, and 
the method is useful for proteins that range in size from a few amino acids to 998 KD [4]  
 
A distinct approach in drug design comprises the use of bioactive small-molecule libraries. The unique chemical 
diversity available in these libraries represents the space occupied by ligands known to interact with a specific 
target. This type of information is used in ligand-based drug design (LBDD) methods [5] SBDD and LBDD 
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approaches have been applied as valuable drug discovery tools both in academia and industry [6]  owing to their 
versatility and synergistic character. The integration of these approaches has been successfully employed in a 
number of investigations of structural, chemical and biological data [7]. 
 
Covalent Bonds in Molecular Docking: 
Covalent drugs have demonstrated to be opportune alternatives in several therapeutic areas such as cancer, diabetes, 
and infectious, cardio-vascular, gastro-intestinal and neurologic diseases. Recent reports have claimed that 
approximately one-third of the currently marketed enzyme modulators are covalent inhibitors [8] 
 
Despite the recent resurgence of covalent drugs, molecular modeling methods devised to address the problem of 
covalent docking are not as developed as those dedicated to noncovalent docking [9]. 
 
Modeling covalent bonds in molecular docking has been targeted by widely used molecular docking programs such 
as DOCK, AutoDock and Gold. Each of these programs employs a particular approach to manage covalent docking. 
Another program—DOCKovalent—is an adaptation of DOCK 3.6 aimed to perform large-scale, covalent virtual 
screening [10]. 
 
Computer Aided Drug design: 
Computer-aided drug design makes use of the structural knowledge of either the target (structure-based) or known 
ligands with bioactivity (ligand-based) to facilitate the determination of promising candidate drugs. Various virtual 
screening techniques are now being used by both pharmaceutical companies and academic research groups to reduce 
the cost and time required for the discovery of a potent drug [11] 
 
Proteins as drug targets 
At the molecular level, the main targets for drugs are proteins (mainly enzymes, receptors and transport proteins) 
and nucleic acids (DNA and RNA). In recent years, novel drug identification research has been widely conducted. 
For example, Hughes et al [12] summarized the key preclinical stages of the drug discovery process and Enzymes 
are the macromolecule responsible for the catalysis of biochemical reactions is an manifestly target when a disease 
state is associated with production of a biologically active species.  Enzymes are a classic target for therapeutic 
intervention and number of well-studied examples exists. Traditional medicinal chemistry enzyme targets include 
kinases, phospho diesterases, proteases and phosphatases. Addition to this, Histone methyl transferases, de 
methylases, acetyl transferases and de acetylases have been recently ascribed an important role as new classes of 
biological targets for drug discovery [13] An enzyme as Targets for Drug Design is a collection of scientific 
discussions related to enzyme inhibitors that show the many facets of the drug discovery process from the basic 
sciences through clinical applications.  
 
Computational Methodology: 
Hardware Components: 
In present work all the calculations were carried out with high frequency computational analysis such as molecular 
modeling, energy minimizations, design and optimization of lead molecules, protein ligand interaction studies by 
molecular docking etc., a Hi-end server (Pentium IV 3.4 MHzs, AMD Athlon 64 bit, Dual processor with 1 GB 
RAM) manufactured by HCL Corporation, Pondicherry, India was used.  
 
Software Components: 
Most of the software’s used were either Windows or Linux plat form based which were well accepted and referred 
in various publications at high rated research journals.  Academic license was obtained for the commercial software 
used in the present study by requesting the concerned suppliers.  The software used in the present study was briefly 
detailed below.  
 
PyMOL:  
It is an open-source, user-sponsored, molecular visualization system, and widely known as visualization software, 
which is well suited to produce high quality 3D images of small molecules and biological macromolecules such as 
proteins. According to the author, almost a quarter of all published images of 3D protein structures in the scientific 
literature were made using PyMOL.  
 
AUTODOCK-Tool:  
AutoDock is a suite of automated docking tools designed to predict how small molecules, such as substrates or drug 
candidates, bind to a receptor of known 3D structure. AutoDock actually consists of two main programs: AutoDock 
performs the docking of the ligand to a set of grids describing the target protein; AutoGrid pre-calculates these grids. 
In addition to using them for docking, the atomic affinity grids can be visualised. This can help, for example, to 
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guide organic synthetic chemists design better binders. AutoTors in the Autodock tool kit (ADT) software program 
(http://autodock.scripps.edu/resources/adt) was used to define the torsion degrees of freedom during the docking 
process. 
 
Design and selection of Ligand molecules: 
From the available drug molecule which is showing an interaction with that of target protein, the scaffold or skeleton 
molecular structure of ligand molecule was first can drawn by using Hyperchem 7.5. Over thus designed lead 
molecule (parent) different modifications were performed by taking into the consideration of the database of 
substituent’s and spacers (linkers) containing a collection of current drugs at Molinspiraiton server. Then a series of 
lead molecules were thus designed as per molecular substitutions and designated the name and number as per 
instruction manual of Chem Office Ultra 7.0.v [14] These designed lead molecules were then analyzed for following 
Lipinski’s Rule of five.  The Lipinski’s Rule of five states that in general orally active drug should has 
 

 Not more than 5 hydrogen bond donors (OH and NH groups) 
 Not more than 10 hydrogen bond acceptors (notably N and O) 
 A molecular weight under 500g/mol 
 A partition coefficient log P less than 5. 

 
Among all the designed leads, the molecules of high ranking which follow Lipinski’s rule were selected and further 
analysed for binding with the protein model using docking tools. 
 
Lipinski rule of parameters: 
Lipinski's rule of five also known as the Pfizer's rule of five or simply the Rule of five (RO5) is a rule of thumb to 
evaluate drug likeness or determine if a chemical compound with a certain pharmacological or biological has 
properties that would make it a orally active drug in humans. The rule was formulated by Christopher A. Lipinski in 
1997, based on the observation that most orally administered drugs are relatively small and 
moderately lipophilic molecules [15]. 
 
a) LogP (octanol/water partition coefficient)  
LogP is calculated by the methodology developed by Molinspiraiton as a sum of fragment-based contributions and 
correction factors. This Method is very robust and is able to process practically all organic and most organometallic 
molecules. 
 
b) Octanol-water partition coefficient logP 
LogP is used in QSAR studies and rational drug design as a measure of molecular hydrophobicity. Hydrophobicity 
affects drug absorption, bioavailability, hydrophobic drug-receptor interactions, metabolism of molecules, as well as 
their toxicity. LogP has become also a key parameter in studies of the environmental fate of chemicals.  
 
Method for logP prediction developed at Molinspiraiton [16] is based on group contributions.  These have been 
obtained by fitting calculated logP with experimental logP for a training set more than twelve thousand, mostly 
drug-like molecules.  In this way, hydrophobicity values for 35 small simple "basic" fragments have been obtained, 
as well as values for 185 larger fragments, characterizing intramolecular hydrogen bonding contribution to logP and 
charge interactions. Molinspiraiton methodology for logP calculation is very robust and is able to process practically 
all organic and most organo-metallic molecules (Fig.1) 
 
For 50.5% of molecules logP is predicted with error < 0.25, for 80.2% with error < 0.5 and for 96.5% with error < 
1.0. Only for 3.5% of structures logP is predicted with error > 1.0.  The statistical parameters listed above rank 
Molinspiraiton miLogP as one of the best methods available for logP prediction.  MiLogP is used due to its 
robustness and good prediction quality in the popular ZINC database for virtual screen. 
 
The designed compounds have given LogP within limits for the drug like compound characterization. With this 
parameter we have screened the about 50 molecules, among only 13 molecules has shown within range of Log p in 
the means of miLogP values.  
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Fig 1 LogP graph has been constructed between predicted logP and experimental logP for standardization of Molinspiration algorithms 
for calculated drug molecules 

 
c) Molecular Polar Surface Area TPSA: 
It is calculated based on the methodology published by Ertl et al. as a sum of fragment contributions. O and N atoms 
centered polar fragments are considered. PSA has been shown to be a very good descriptor characterizing drug 
absorption, including intestinal absorption and bioavailability.   It is a very useful parameter for prediction of drug 
transport properties. Polar surface area is defined as a sum of surfaces of polar atoms (usually oxygen, nitrogen and 
attached hydrogen atoms) in a molecule. This parameter has been shown to correlate very well with the human 
intestinal absorption, Caco-2 monolayer permeability, and blood-brain barrier penetration.  
 
The calculation of PSA in a classical way, however, is rather time consuming, because of the necessity to generate a 
reasonable 3D molecular geometry and determine the surface itself. Additionally, calculations require specialized 
software to generate the 3D molecular structures and to determine the surface. In today's era of drug development 
shaped by high-throughput screening and combinatorial chemistry, fast bioavailability screening of virtual libraries 
consisting of hundreds of thousands, even millions of molecules is required. That is the reason why in our molecular 
property prediction toolkit so called topological polar surface area - TPSA is implemented.  Briefly, the procedure is 
based on the summation of tabulated surface contributions of polar fragments (atoms regarding also their 
environment). These fragment contributions were determined by least squares fitting to the single conformer 3D 
PSA for 34,810 drugs from the World Drug Index. Topological polar surface area provides results of practically the 
same quality as the classical 3D PSA, the calculations, however, are two to three orders of magnitude faster.  
 
d) Molecular Volume  
Method for calculation of molecule volume developed at Molinspiration is based on group contributions. These have 
been obtained by fitting sum of fragment contributions to "real" 3D volume for a training set of about twelve 
thousand, mostly drug-like molecules. 3D molecular geometries for a training set were fully optimized by the semi 
empirical AM1 method. Molecular volume determines transport characteristics of molecules, such as intestinal 
absorption or blood-brain barrier penetration. Volume is therefore often used in QSAR studies to model molecular 
properties and biological activity. Various methods may be used to calculate molecular volume, including methods 
requiring generation of 3D molecular geometries, or fragment contribution methods such as Mc Gowan volume 
approximation.  Method for calculation of molecule volume developed at Molinspiration is based on group 
contributions. These have been obtained by fitting sum of fragment contributions to "real" 3D volume for a training 
set of about twelve thousand, mostly drug-like molecules. 3D molecular geometries for a training set were fully 
optimized by the semi empirical AM1 method. Calculated volume is expressed in cubic Angstroms (A3).  
Molinspiration methodology for calculation of molecular volume is very robust and is able to process practically all 
organic and most organo-metallic molecules.  
 
ADME Boxes: 
As we all know that, ADME is an abbreviation in pharmacokinetics and pharmacology for "absorption, distribution, 
metabolism, and excretion or elimination. Here, the new functionality builds on Pharma Algorithms’ molecular 
property prediction technology based on dynamically defined molecular fragmentation, adding mechanistic 
modeling of absorption processes such as different routes of permeability and different rates for multiple ionic forms 
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of a compound. The predictive models have been implemented as automated software applications with a 
straightforward graphical user interface designed to meet the needs of medicinal chemists who require interactive 
functionality as well as computational chemists who need to perform virtual screening and high-throughput property 
filtering of virtual libraries. ADME Works can be used for predicting chemical and biological properties of 
compounds based on molecular structures (physicochemical, topological, geometrical, and electronic properties) and 
data on the property of interest [17]. 
 
Absorption module contains a mechanistic predictive model of human intestinal permeability. The predictions take 
into account the transcellular and paracellular routes of permeability and different rates for different ionized forms 
of a compound. The module can be used to predict the following absorption-related properties. 
 
Protein Binding module predicts plasma protein bound fraction and the equilibrium binding constant to blood 
serum albumin of a compound in blood. The protein binding properties are predicted from automatically calculated 
physicochemical properties such as lipophilicity, ionization constants, and hydrogen bonding capacity. 
 
Volume of Distribution module contains a predictive model which generates a quantitative estimate of the apparent 
volume of distribution of a compound. Physicochemical parameters, charge state, lipophilicity and hydrogen 
bonding capacity are automatically calculated and used as inputs to the predictive model of the volume of 
distribution. 
The Absolv module algorithm has been updated to increase the accuracy of predictions. The user interface has also 
been enhanced: contributions of each atom to the currently selected Abraham parameter are color-mapped onto the 
structure, with intensity of the color indicating the degree of contribution of each atom or substructure to the selected 
parameter. 
 
Homology modeling 
Homology modeling, also known as comparative modeling of protein, refers to constructing an atomic-
resolution model of the "target" protein from its amino acid sequence and an experimental three-dimensional 
structure of a homologous protein (the "template"). The 3D homology model of the target protein sequence was 
predicted using crystal structural coordinates of templates on the basis of sequence alignment. All steps of homology 
modeling and refinement were carried out through MODELLER 9v1 using base line commands specified by 
software supplier [18] The method described below is used in the present study to predict the 3D models of proteins. 
 
Preparation of input files for MODELLER: 
There are three kinds of input files required to perform homology modeling using MODELLER. They are PDB 
atom files with co-ordinates for the templates, the alignment file with alignment of the template; structures with the 
target sequence, and finally .PY file (a MODELLER command file that instructs MODELLER what to do). 
 
Atom file:  
Each atom file is named as “code.Pdb” where code is a short protein code, preferably the PDB code. The atom file 
contains the only protein co-ordinates without hetero atoms while modelin g target protein. 
 
Alignment file 
One of the formats for the alignment file is related to the PIR data base format which is the preferred format for 
homology modeling by MODELLER.  
 
Script file (Steering file) 
The script file contains commands for MODELLER. Sample scripts file to produce one model of sequence. A 
number of intermediary files were created as the program proceeds. After 5 minutes on an SGI indigo, the final 
protein model is written to file protein.B999901. A log file was also created with information about the run. 
 
Flowchart of homology modeling by Modeller  
This section describes a flow chart of homology modeling by MODELLER, as implemented in the 'model'. Script 
file   also be used for variety of modeling tasks not only for comparative modeling. Input: script file (steering file; 
alignment file, PDB file(s) for template(s). Out put:: 
 
.log      long file 
.ini       initial conformation for optimization 
.rsr       restraints file 
.sch      VTEM schedule file 
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.B999???? PDB atom file(s) for the model(s) of the target sequence .V9999????   Violation profiles for the model(s) 
The main MODELLER routines used in each step are given in parentheses. 
 
Read and check the alignment between the target sequence and the template structures 
 
(READ_ALIGNMENT and CHECK_ALIGNMENT). 
 
Calculate restraints on the target from its alignment with the templates 
 
Generate molecular topology for the target sequence GENERATE_TOPOLOGY). Disulfides in the target are 
assigned here rom equivalent disulfides in the templates PATCH_DISULFIDES). Any user defined patches are also 
done here (as defined in Top routine 'special patches'). 
 
a. Homology modelling by the Modeller Top routine 'model'. 

Include                                                       # include the predefined top routines 
set OUTPUT_control = 1 1 1 1 1           # uncomment to produce a large log file 
set alnfile   ■ 'xxx.ali'                                # alignment filename 
set knowns     - \ x x x x '                                 # codes of the templates 
set sequence = ' xxxxxxxxxxxx'                     # code of the target 
set at0m_files_directory =  ' . / : . . /atom_fi1es'  # directories for input atom files 
set starting_model" 1                                # index of the first model 
set Ending_model   = 2                                 # index of the last model  
                                   (determines how many models to calculate) 
call routine - 'model'                                  # do homology modeling 

 
b. Calculate coordinates for atom that have equivalent atoms in the templates as an average over all templates 
(TRANSFER_XYZ) (alternatively, read the initial coordinates from a file). 
c. Build the remaining unknown coordinates using internal coordinates from the charm topology library 
(BUILD_MODEL). 
d. Write the initial model to a file with extension. ini (WRITE_MODEL). 
e. Generate sterochemical, homology derived, and special restraints 
(MAKE_RESTRAINTS) (alternatively, skip this and assume the 
restraints file already exists) 
f. Write all restraints to file with extension. rst (WRITE_RESTRAINTS). 
 
Stereochemical RESTRA1NT_TYPE = 'bond angle dihedral Improper' 
mainchain dihedrals RESTRA1NT-TYPE = 'phi-psi binormal' 
mainchain dihedral RESTRAINT-TYPE = "omega dihedral' 
sidechain dihedral 01 RESTRAINT-TVPE ='chi!-dihedral' 
sidechain dihedral 02 RESTRAINT-TYPE =’chi2_dihedral' 
sidechain dihedral 03 RESTRAINT-TYPE = ' chi3_dihedral 
sidechain dihedral 04 RESTRAINT-TYPE = 'chi4_dihedral' 
main chain CA-CA distance RESTRAINT-TYPE = 'distance' 
mainchain N-O distance RESTRAINT-TYPE = 'distance' 
Sidechain-main chain  RESTRAIN-TYPE = 'distance'  
sidechain-side chain  RESTRAINT TYPE = 'distance' 
block distance restraints RESTRAINT_TYPE = 'distance' 
user defined CALL ROUTINE = 'special_ restraints' 
 
Non-bonded pairs distance   RESTRAINT-TYPE = 'sphere’; calculated on the fly 
1. Calculate model(s) that satisfy the restraints as well as possible, for each model: 
a. Generate the optimization schedule for the variable target function method (VTFM) 
b. Read the initial model (usually from the .ini file from 2.d) (READ_MODEL). 
c. Randomize the initial structure by adding a random number between DEVIATION angstroms to all atomic 
positions (RANDOMIZE_XYZ). 
d. optimize the model 
 
Partially optimize the model by VTFM; Repeat the following steps as many times specified by optimization 
schedule: 
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Read all restraints by rd-restraints (READ-RESTRAINTS) 
 
Select only the restraints that operate on the atoms that are close enough in sequence, as specified by the current step 
of VTFM (PICK_RESTRAINTS). 
 
Optimize the model by conjugate gradients, using only currently selected restraints (OPTIMIZE). Refine the model 
by simulated annealing with molecular dynamics, if so selected: 
 
• Do a short conjugate gradient optimization (OPTIMIZE). 
• Increase temperature in several steps and do molecular dynamics optimization at each temperature (OPTIMIZE). 
• Decrease temperature in several steps and do molecular dynamics optimization at each temperature (OPTIMIZE) 
• Do a short conjugate gradient optimization (OPTIMIZE) 
• Calculate the remaining restraints violations and write them out (ENERGY). 
• Write out the final model to a file with extension .B99999???? Where????  Indicates the model number 
(WRITE_MODELS). Also write out the violation profile. Also write superposed templates and model, if so selected 
by FINAL_MALIGN3D = 1. 
 
Evaluation of the built 3-D protein model: 
A protein 3D model derived from homology modeling technique may have some sources of errors.  It is important, 
therefore, to have an assessment of structure’s quality and to be able to identify regions that may need modifications 
especially at protein folding and turns.  The aim of model evaluation is to determine whether the built model is 
acceptable and suitable to use for molecular analysis such as docking and dynamics.   
 
PROCHECK 
The PROCHECK suite of programs provides a detailed check on the stereochemistry of a protein structure.  The 
PROCHECK, a well-known protein structure checking program was carried out to check stereochemical quality of 
homology modeled structures [19]. The stereo chemical parameter checks implemented in PROCHECK are derived 
from high-resolution protein structures, against which the structure is compared on a residue-by-residue basis.  The 
criteria are Ramachandran plot, peptide bond planarity, C-alpha tetrahedral distortion, non bonded interactions, 
hydrogen bond energies, and closeness off side chain dihedral angles to ideal values. PROCHECK can also be able 
to validate the energy minimized structures. 
 
Preparation of files for AUTODOCK: 
The advanced molecular docking program AutoDock 4.2 [20] which uses a powerful Lamarckian genetic algorithm 
(LGA) (Morris, et al., 1999) method for conformational search and docking, was applied for the automated 
molecular docking simulations.  Briefly, The atomic solvation parameters were assigned using the ADDSOL utility 
of Autodock 4.2. The grid calculation was performed using Autogrid4 program, in which a box dimension of 22.5 Å 
and grid spacing of 0.375 Å parameters were set. The generated box size allows each member of the tested 
compound to rotate freely in order to find the conformation with the best binding free energy. LGA is used as a 
global optimizer and energy minimization for docking simulation. The LGA described the relationship between the 
antagonists and receptors by the translation, orientation, and conformation of the antagonists. These so-called ‘state 
variables’ were the ligands’ genotype, and the intramolecular energies were the antagonists’ phenotype.  The 
environmental adaptation of the phenotype was reverse transcribed into its genotype and became heritable traits.  
Each docking cycle or generation, consisted of regimen of fitness evaluation, crossover, mutation, and selection.  A 
Solis and Wets local search [21] was carried out to the energy minimization on a user-specified proportion of the 
population.  The docked structures of the ligands were generated after a reasonable number of evaluations.  The 
whole docking scheme could be stated as follows. 
 
First, the receptor molecules were checked for polar hydrogen and assigned for partial atomic charges, the PDBQS 
file was created, and the atomic salvation parameters were also assigned for the macromolecules.  Meanwhile, all of 
the torsion angles of the antagonists that would be explored during molecular docking stage were defied.  Therefore, 
it allowed the conformation search for ligands during molecular docking process. 
 
Second, the 3D grid was created by Auto Grid algorithm [21] to evaluate the binding energies between the 
antagonists and receptors.  In this stage, the hHH2R antagonist’s receptor was embedded in the 3D grid and probe 
atom was placed at each grid point.  The affinity and electrostatic potential grid were calculated for varies type of 
atoms in the ligands.  The energetic configuration of a particular ligand was found by trilinear interpolation of 
affinity values and electrostatic interaction of the eight grid points around each atom of the ligand.  
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Third, a series of the docking parameters were set on.  The atom types, generations and run numbers for LGA 
algorithm were properly assigned according to the requirement of the Amber force field.  The number of 
generations, energy evolutions, and docking runs were set to 370,000, 1,500,000, and 20, respectively.  The kind of 
atomic charges were assigned as Kollman-all-atom for hHH2R receptor and Gasteiger-Marsili for ligands [22]. 
 
Protein – Lead molecules binding studies using AutoDock Tool  
AutoDock 4.2 has been developed to provide a procedure for predicting the interaction of small molecules with 
macromolecular targets which can easily separate compounds with micromolar and nanomolar binding constants 
from those with millimolar binding constants and can often rank molecules with finer differences in affinity. 
AutoDock can be used to screen a variety of possible compounds, searching for new compounds with specific 
binding properties or testing a range of modifications of an existing compound [23].  
 

RESULTS AND DISCUSSION 
 

Selection of template to model hHH2R 
For building model of hHH2R requires the best templates, this was obtained through PSI-BLAST search of the PDB 
database revealed 3D crystal structures of the bovine rhodopsin molecules [24] with BLOSUM 62 matrix 
application.  This matrix represents sequences of amino acid substitutions observed in a large number of related 
receptors, including some quite similar and some quite different protein sequences.  The observed substitutions were 
all lumped together to provide average frequencies of substitutions without regard to the degree of divergence 
between sequences.   
 
The  X-ray structures of bovine rhodopsin [25, 26, 27] were the only crystal structures on any GPCR  that include 
the 7 transmembrane domain.  The obtained BLAST(Basic Local Alignment Search Tool) results have shown 
1HZX, 1JFP and 1F88 as best templates with same bits score of 65.1 but 2BGK-26.0 and 2IMS 26.6 with less bits 
score (Fig.7.8).   Crystal structures of rhodopsin 1HZX, 1JEP and 1F88 were taken as best templates for homology 
modeling of hHH2R as reported by Kristiansen et al., 2004. The sequence analysis of templates and hHH2R was 
carried out with clustalW principles [28], critical analysis was done throughout the length of receptor sequence. All 
the templates have similar amino acids with 20% identity. The hypothesis that most family A receptors share, a 
similar folding of their 7TM domain was observed in the crystal structures of rhodopsin has been reported by 
sequence comparison of receptors revealing conserved fingerprint residues and by molecular modeling of receptor 
micro domains. 
 
Details of the molecular mechanism of structural changes will possibly be revealed by solving the structure of the 
photo-reaction intermediates of bovine rhodopsin in 3-D crystal or by solving structures of GPCRs complex with 
hetero-trimeric G-proteins. 
 
 It is known fact that most of GPCR proteins cannot be crystallized under specific conditions. Furthermore, many 
pharmacologically important targets are membrane-bound proteins, such as G-protein-coupled receptors (GPCRs), 
ion channels, or transporter proteins, for which the experimental determination of the 3D structure is due to technical 
difficulties, either still impossible or can only be realized with immense experimental effort and complexity. 
 
Homology model for hHH2R was developed through MODELLER 9v1 software with suitable crystallographic 
structures 1F88, 1HZX, 1JFP as best templates. The modeller was run with default parameters with the algorithms 
for optimization.  Generated model was visualized by Pymol.  Molecular visualization investigations were done for 
the generated model.  The homology model has 7 TM regions and one small β sheet determined. hHH2R model is 
energy minimized with GROMOS 96 force field for further analysis as per Kiss et al procedures [29].The homology 
model is shown in Fig 2 with cartoon representation, top view, electrostatic molecular surface with charge 
distribution on receptor and position of receptor in lipid bilayer. All seven transmembranes and small beta sheets 
also represented with cylinders and coils.  This indicates positions of helices in three dimensional space co-ordinate 
system to determine position of small sub units in helices regions within receptor. 



Dhanasree Basipogu and Nizamuddin Basha Syed                          J. Chem. Pharm. Res., 2016, 8(3):900-912 
______________________________________________________________________________ 

908 

 
Fig2.  Homology model of hHH2R is showing seven transmembranes and each transmembrane shown in different color 

 
5.15 Structural validation 
5.15.1 Validation by PROCHECK 
The modeled structure as verified by PROCHECK, has given 92.4% in favorable regions, 6.2% in allowed regions, 
0.7% generously allowed regions and 0.7% disallowed regions Plot statistics were shown in table 1 According to all 
these statistics homology model hHH2R is a very good model, which can be used for docking process with newly 
designed lead molecules based on famotidine drug molecules scaffolds.  
 

Table 1 Ramachandran plot statistics for best model of hHH2r protein structure (PROCHECK) 
 

Ramachandran plot statistics 
Residues in most favoured regions 254 92.40% 
Residues in additional allowed regions 17 6.20% 
Residues in generously allowed regions 2 0.70% 
Residues in disallowed regions 2 0.70% 
Number of non-glycine and non proline residues 275 100.00% 
Number of end-residues (excl. Gly and Pro) 2   

  
  
  

Number of Glycine residues (shown as traingle) 14 
Number of proline residues 8 
Total number of residues 299 
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Fig3.  Ramachandran plot for hHH2R showing most of the residues falling in coreregion. 3D graphical representation of Ramachandran 

plot by VMD, green peek indicates the presence of helices in receptor 
 

Refinement of 3D model of H2 Receptor 
The modeled Human H2 Receptor energy minimized using Gromacs force fields. Later the energy minimization The 
Human H2 Receptor model structure was submitted to molecular dynamics simulations using the GROMOS 96 
force field. This procedure had the goal of putting both enzymes in the same physiologic conditions for further 
superposition and also of providing a way for additional validation and refinement of the structure of Human H2 
Receptor and after refinement it showing a energy of -1.4571 K.cal. 
 
Docking Analysis on H2 Receptor with phytochemicals 
The interactions of Human H2 Receptor with different inhibitors, determined from their crystal structures, have 
served as a starting point for tests of various docking techniques. The first of such docking studies of Human H2 
Receptor was performed by the Kuntz laboratory. who discovered that haloperidol could be an inhibitor of this 
enzyme. However, subsequent crystal structure determination revealed a different orientation for haloperidol than 
the one predicted. Docking methods and algorithms were tested using the known structural data and experimental 
characteristics by Monte Carlo docking or by comparison with de novo constructed inhibitors by a fragment-based 
method in which the inhibitors were constructed entirely from individual functional groups chosen from a predefined 
library. A method of continual energy minimization implemented in the program SCULP was a new paradigm for 
modeling proteins in interactive computer graphic systems. This physically realistic attempt made possible the 
modeling of very large changes and aided the understanding of how different energy terms interact to stabilize a 
given conformation. Other recent studies examined empirical free energy as a target function in docking and design, 
showing the advantages of this approach over studies using the calculation of interaction energy. 
 
The energy minimized H2 receptor docked with Maytenus emarginata pytochemicals using Autodock 4.0.  The 
Phytochemical of Maytenus emarginata Emarginatine A, B, E, F, G, alpha amyrin, Cynocolchicines and Quercetin 
has more are less forms hydrogen bond interactions with Asp98, Asp186 and Thr190 residue has made strong 
hydrogen bonds with all the inhibitors with less than 1.180Ao bond length. Asp98 also interacting in all cases with 
distance of 1.75 A0.  Carboxyl group of Asp98 is interacting with protonated all the inhibitors. It is confirmed that 
protonated amino group plays a vital role in the formation of hydrogen bond at a distance of 1.75 A0. In these 
interactions, Emarginatine are bigger in their size to dock with hHH2R. But, Cynocolchicines forms a strong H-bond 
with Asp98 residues of H2 receptor and its release a binding free enrgy of -5.6 K.cal/mol at RMSD 0.02 and Ki 40 
µM. Whereas, the alpha amyrin forms strong H-bond with Asp98 and asp186 amino acid residues and they are 
showing a lowest docked energy of -7.7K.cal/Mol. But the beauty of Quercetin molecular conformation in the 
cavity is exactly matching with molecular surface and it showing Lowest Docking energy of -10.30 K.cal/mol, 
RMSD 0.04 and Ki 0.023µM and no other inhibitors showing as much as best interaction as Quercetin and it has 
been tightly packed with 3 important residues are Asp98, Asp186 and Thr190 of Human H2 Receptor   
 



Dhanasree Basipogu and Nizamuddin Basha Syed                          J. Chem. Pharm. Res., 2016, 8(3):900-912 
______________________________________________________________________________ 

910 

.  
 

Fig4. Modeled protein of hHH2R protein with molecular surface representation colored in brown. B. Protein surface slab at 35 frame 
visualization with histamine cavity in protein. C. Histamine stabilization in cavity of modeled protein of hHH2R 

 

 
 

Fig5. Gridbox generated by the mean of X, Y and Z co-ordinates from Asp186, Thr190 and Asp98. Residues and famotidine is shown in 
stick model and protein as in cartoon representation 

 
 

 
 
 

Fig6. Docking study of alpha amyrin                                    Fig7. Docking study of Cynocolchicines 
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Fig8.Docking space from top view represented    Fig9.  Docking study of Quercetin with hH2R 
by mesh and hHH2R protein in cartoon 

 

 
 

Fig10. Docking study of Quercetin with hH2R                     Fig11. Docking study of Quercetin with hH2R 
 

Table2: Docking energies of Maytenus emarginata phytochemical constituents with hHH2R (Human Histamine Receptor) 

aIndicative of the total number of binding modes produced 
bHeavy atoms root-mean-square deviation with respect to the experimental structure. 

cThe change in binding free energy is related to the inhibition constant using the equation: ∆G =  RT in Ki, where R is the gas constant 1.987 cal 
K-1 mol-1, and T is the absolute temperature assumed to be 298.15 K. 

dEstimated inhibition constant at 298.15 K. 
 

CONCLUSION 
 

In our in silico analysis, we have modeled the human histamine receptor 2 protein structure by using the modeler 
9v1. Molecular Docking studies were done by using the Auto dock 4.0, The interactions of Human H2 Receptor 
with different inhibitors, determined from their crystal structures,  The docking energy minimization studies were 
conducted on hHH2R with the phyto chemicals of Maytenus emarginata in which we have found the beauty of 
Quercetin molecular conformation in the cavity is exactly matching with molecular surface and it showing Lowest 
Docking energy of -10.30 K.cal/mol, RMSD 0.04 and Ki 0.023µM and no other inhibitors showing as much as best 
interaction as Quercetin.  
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