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ABSTRACT

Maytenus emarginata is a Ethno medicinal plant #melleaves of this plant it is extensively usedhleytribal’s of
south Indian Nallamala forest region, the aim of extension study of Project work is to evaluate &wolecular
modeling & docking studies on active compounds aftbhus emarginata. As we already evaluated thalTot
Phenolic Content, Total Flavanoid Content, Deteration of Total Antioxidant Activity, Determinatiaf Reducing
Antioxidant Power (FRAP), Nitric Oxide Radical Seaging Activity, Hydroxyl Radical Scavenging Atyivi
Superoxide Radical Scavenging Activity, and Evaduadf a-glucosidase inhibition Activity. In our previousigy,
we also evaluate the gastro protective activity aaeffect on antioxidant enzymes of Maytenus gimata.

Key words: Maytenus emarginatajutodock 4.0, Molecular Modeling, hHH2R, Gastro feaive.

INTRODUCTION

In recent years, life sciences have undergone ameimse transformation, where technological advanotsmia

genomics, proteomics, and other high-throughputriggies produce floods of data that need to bedt@nalyzed,
and interpreted in various ways. Biology and medidiave thereby turned into information sciencesreew areas
of comparative biology have emerged. Bioinformatgs relatively new discipline integrating lifeiescces with
computational sciences by attracting scientistsnfeo wide range of areas, including physics, chewigtiology,

medicine, mathematics, statistics, and computaltisciances. Bioinformatics is crucial by providitapls to enable
utilization of these gold mines of data in orderbietter understand the roles of proteins and gandsto obtain
ideas for new experiments. This has made bioinfiosiancreasingly important in analysis of largedscdata in
life sciences.

Bioinformatics and genome science (BGS) are raedgtimew disciplines, gaining importance acrosshimenedical
research, healthcare and agriculture sectors dutheto importance in helping to improve the timebs and
accuracy of disease diagnosis, prognosis and tezafras well as enhancing crop yield [1,2,3]

Evaluating a Protein structure for SBDD:

Once a target has been identified, it is necedsaoptain accurate structural information. There tharee primary
methods for structure determination that are uskEfuldrug design: X-ray crystallography, NMR, andniplogy

modeling. The evaluation of structures from eachhoe will be discussed. Crystal structures arentiest common
source of structural information for drug designce structures determined to high resolution mavmailable, and
the method is useful for proteins that range ie §iam a few amino acids to 998 KD [4]

A distinct approach in drug design comprises the afsbioactive small-molecule libraries. The unigeiemical

diversity available in these libraries represehis $pace occupied by ligands known to interact aitBpecific
target. This type of information is used in ligdpalsed drug design (LBDD) methods [5] SBDD and LBDD
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approaches have been applied as valuable drugveisctools both in academia and industry [6] owiogheir
versatility and synergistic character. The inteigratof these approaches has been successfully getbim a
number of investigations of structural, chemical &iological data [7].

Covalent Bonds in Molecular Docking

Covalent drugs have demonstrated to be opporttematives in several therapeutic areas such asraiabetes,
and infectious, cardio-vascular, gastro-intestiasd neurologic diseases. Recent reports have daithat
approximately one-third of the currently marketedyme modulators are covalent inhibitors [8]

Despite the recent resurgence of covalent drugseauiar modeling methods devised to address thblgmo of
covalent docking are not as developed as thoseatedi to noncovalent docking [9].

Modeling covalent bonds in molecular docking hasrbtargeted by widely used molecular docking pnograuch
as DOCK, AutoDock and Gold. Each of these programploys a particular approach to manage covalerkidg.
Another program—DOCKovalent—is an adaptation of IXO&6 aimed to perform large-scale, covalent virtua
screening [10].

Computer Aided Drug design:

Computer-aided drug design makes use of the staldtnowledge of either the target (structure-bggrdknown
ligands with bioactivity (ligand-based) to facititgathe determination of promising candidate drigsious virtual
screening techniques are now being used by bothmat@utical companies and academic research gtoupduce
the cost and time required for the discovery obtept drug [11]

Proteins as drug targets

At the molecular level, the main targets for drags proteins (mainly enzymes, receptors and trahgpoteins)
and nucleic acids (DNA and RNA). In recent yeaxsyah drug identification research has been widelyduicted.
For example, Hughest al [12] summarized the key preclinical stages ofdhey discovery process and Enzymes
are the macromolecule responsible for the catabyfsisochemical reactions is an manifestly targaew a disease
state is associated with production of a biolodycattive species. Enzymes are a classic targethierapeutic
intervention and number of well-studied examplesstex Traditional medicinal chemistry enzyme tasgieiclude
kinases, phospho diesterases, proteases and ptamgshaAddition to this, Histone methyl transfesasde
methylases, acetyl transferases and de acetylasesheen recently ascribed an important role as alasses of
biological targets for drug discovery [13] An enzymas Targets for Drug Design is a collection ofstific
discussions related to enzyme inhibitors that shimsvmany facets of the drug discovery process filoenbasic
sciences through clinical applications.

Computational Methodology:

Hardware Components:

In present work all the calculations were carried with high frequency computational analysis sashmolecular
modeling, energy minimizations, design and optitnira of lead molecules, protein ligand interactstndies by
molecular docking etc., a Hi-end server (Pentium3l¥ MHzs, AMD Athlon 64 bit, Dual processor with@B
RAM) manufactured by HCL Corporation, Pondichefngdia was used.

Software Components:

Most of the software’s used were either Windowd.ioux plat form based which were well accepted eaférred
in various publications at high rated researchrjals. Academic license was obtained for the coriamlesoftware
used in the present study by requesting the coadesappliers. The software used in the presedysuas briefly
detailed below.

PyMOL:

It is an open-source, user-sponsored, moleculaalimation system, and widely known as visualizatsoftware,
which is well suited to produce high quality 3D iges of small molecules and biological macromolexgléch as
proteins. According to the author, almost a quasfeall published images of 3D protein structuneshie scientific
literature were made using PyMOL.

AUTODOCK-Tool:

AutoDock is a suite of automated docking tools glesd to predict how small molecules, such as satiestror drug
candidates, bind to a receptor of known 3D strectAutoDock actually consists of two main progradstoDock
performs the docking of the ligand to a set of gdéscribing the target protein; AutoGrid pre-chltes these grids.
In addition to using them for docking, the atomftirgty grids can be visualised. This can help, &s@ample, to
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guide organic synthetic chemists design betterdsmdAutoTors in the Autodock tool kit (ADT) softreaprogram
(http://autodock.scripps.edu/resources/adt) wasl tsedefine the torsion degrees of freedom durhmg docking
process.

Design and selection of Ligand molecules:

From the available drug molecule which is showindrderaction with that of target protein, the $olaf or skeleton
molecular structure of ligand molecule was firsh arawn by using Hyperchem 7.5. Over thus desigeed
molecule (parent) different modifications were pemied by taking into the consideration of the dassb of
substituent’s and spacers (linkers) containingleection of current drugs at Molinspiraiton serv&hen a series of
lead molecules were thus designed as per molesulbsstitutions and designated the name and numbeeras
instruction manual of Chem Office Ultra 7.0.v [TH}ese designed lead molecules were then analyzddlifmwing
Lipinski's Rule of five. The Lipinski's Rule of¥e states that in general orally active drug shbalsl

+ Not more than 5 hydrogen bond donors (OH and NHigsp
+ Not more than 10 hydrogen bond acceptors (notatdndO)
+ A molecular weight under 500g/mol

+ A partition coefficient log P less than 5.

Among all the designed leads, the molecules of hagiking which follow Lipinski’s rule were selectaad further
analysed for binding with the protein model usigking tools.

Lipinski rule of parameters:

Lipinski's rule of five also known as the Pfizentde of five or simply the Rule of five (RO5) israle of thumb to
evaluate drug likeness or determine if a chemiocainmound with a certain pharmacological or biolobies
properties that would make it a orally active dmuignumans. The rule was formulated by ChristopheLipinski in
1997, based on the observation that most orally imdrered drugs are relatively small and
moderately lipophilic molecules [15].

a) LogP (octanol/water partition coefficient)

LogP is calculated by the methodology developed/blinspiraiton as a sum of fragment-based contidng and
correction factors. This Method is very robust &dble to process practically all organic and nmwganometallic
molecules.

b) Octanol-water partition coefficient logP

LogP is used in QSAR studies and rational druggeas a measure of molecular hydrophobicity. HyHdodoicity
affects drug absorption, bioavailability, hydroplobtrug-receptor interactions, metabolism of molesuas well as
their toxicity. LogP has become also a key paramptstudies of the environmental fate of chemicals

Method for logP prediction developed at Molinspivai [16] is based on group contributions. Theseehaeen
obtained by fitting calculated logP with experim@nobgP for a training set more than twelve thodsamnostly
drug-like molecules. In this way, hydrophobicitglves for 35 small simple "basic" fragments havenbebtained,
as well as values for 185 larger fragments, charaitg intramolecular hydrogen bonding contribatto logP and
charge interactions. Molinspiraiton methodologylfmyP calculation is very robust and is able tocpss practically
all organic and most organo-metallic molecules (Big

For 50.5% of molecules logP is predicted with erdd.25, for 80.2% with error < 0.5 and for 96.5%hwerror <
1.0. Only for 3.5% of structures logP is predicteith error > 1.0. The statistical parameters dstébove rank
Molinspiraiton miLogP as one of the best methodailable for logP prediction. MiLogP is used dueit®
robustness and good prediction quality in the papdINC database for virtual screen.

The designed compounds have given LogP within $irfitr the drug like compound characterization. Whis

parameter we have screened the about 50 moleeufes)g only 13 molecules has shown within rangeagf p in
the means of miLogP values.
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Fig 1 LogP graph has been constructed between pretiéd logP and experimental logP for standardizatiorf Molinspiration algorithms
for calculated drug molecules

c¢) Molecular Polar Surface Area TPSA:

It is calculated based on the methodology publigheHrtl et al.as a sum of fragment contributions. O and N atoms
centered polar fragments are considered. PSA hais sleown to be a very good descriptor characteridinug
absorption, including intestinal absorption andabmilability. It is a very useful parameter faegiction of drug
transport properties. Polar surface area is defased sum of surfaces of polar atoms (usually axyg#rogen and
attached hydrogen atoms) in a molecule. This paemies been shown to correlate very well with hinenan
intestinal absorption, Caco-2 monolayer permegbiihd blood-brain barrier penetration.

The calculation of PSA in a classical way, howeigrather time consuming, because of the necesijgnerate a
reasonable 3D molecular geometry and determinestiface itself. Additionally, calculations requispecialized
software to generate the 3D molecular structurestardetermine the surface. In today's era of diexgelopment
shaped by high-throughput screening and combirstohiemistry, fast bioavailability screening oftual libraries
consisting of hundreds of thousands, even millasolecules is required. That is the reason whgunmolecular
property prediction toolkit so called topologicallar surface area - TPSA is implemented. Bridfig procedure is
based on the summation of tabulated surface camioiis of polar fragments (atoms regarding alsarthe
environment). These fragment contributions weresmieined by least squares fitting to the single oomér 3D
PSA for 34,810 drugs from the World Drug Index. dlmgical polar surface area provides results o€fically the
same quality as the classical 3D PSA, the calariatihowever, are two to three orders of magnitaster.

d) Molecular Volume

Method for calculation of molecule volume developg¢d/olinspiration is based on group contributiofisese have
been obtained by fitting sum of fragment contribng to "real" 3D volume for a training set of abdwelve
thousand, mostly drug-like molecules. 3D molecgleometries for a training set were fully optimizgdthe semi
empirical AM1 method. Molecular volume determineansport characteristics of molecules, such asstinid
absorption or blood-brain barrier penetration. \iaduis therefore often used in QSAR studies to mat®ecular
properties and biological activity. Various methaday be used to calculate molecular volume, indgdnethods
requiring generation of 3D molecular geometriesfragment contribution methods such as Mc Gowamumel
approximation. Method for calculation of moleculelume developed at Molinspiration is based on pgrou
contributions. These have been obtained by fitsag of fragment contributions to "real” 3D volunee & training
set of about twelve thousand, mostly drug-like rooles. 3D molecular geometries for a training setewfully
optimized by the semi empirical AM1 method. Calteth volume is expressed in cubic Angstroms’)(A
Molinspiration methodology for calculation of moldar volume is very robust and is able to processtgally all
organic and most organo-metallic molecules.

ADME Boxes:

As we all know thatADME is an abbreviation in pharmacokinetics and phaohogy for "absorption, distribution,
metabolism, and excretion or elimination. Here, tleav functionality builds on Pharma Algorithms’ raoular
property prediction technology based on dynamicallfined molecular fragmentation, adding mechanisti
modeling of absorption processes such as differies of permeability and different rates for ripldt ionic forms
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of a compound. The predictive models have been @mphted as automated software applications with a
straightforward graphical user interface desigredneet the needs of medicinal chemists who redotezactive
functionality as well as computational chemists wieed to perform virtual screening and high-thrqugtproperty
filtering of virtual libraries. ADME Works can besad for predicting chemical and biological proprtiof
compounds based on molecular structures (physicaichg topological, geometrical, and electronicpeuies) and
data on the property of interest [17].

Absorption module contains a mechanistic predictive model of hunma@sitinal permeability. The predictions take
into account the transcellular and paracellulateswf permeability and different rates for difieréonized forms
of a compound. The module can be used to predidiolfowing absorption-related properties.

Protein Binding module predicts plasma protein bound fraction and theilibgum binding constant to blood
serum albumin of a compound in blood. The protémling properties are predicted from automaticalljculated
physicochemical properties such as lipophilicionization constants, and hydrogen bonding capacity.

Volume of Distribution module contains a predictive model which generates atifatine estimate of the apparent
volume of distribution of a compound. Physicochahiparameters, charge state, lipophilicity and bgedn
bonding capacity are automatically calculated asdduas inputs to the predictive model of the voluofie
distribution.

The Absolv module algorithm has been updated to increase the agcofgaredictions. The user interface has also
been enhanced: contributions of each atom to themily selected Abraham parameter are color-majpeal the
structure, with intensity of the color indicatirtietdegree of contribution of each atom or subsiredo the selected
parameter.

Homology modeling

Homology modeling, also known as comparative modetif protein, refers to constructing an atomic-
resolution model of the "target" protein from itmiao acid sequence and an experimental three-diowals
structure of a homologous protein (the "templat@e 3D homology model of the target protein seqaewas
predicted using crystal structural coordinateseaiptlates on the basis of sequence alignment. églssvf homology
modeling and refinement were carried out through DEDLER 9v1 using base line commands specified by
software supplier [18] The method described bekwsied in the present study to predict the 3D nsoafgbroteins.

Preparation of input files for MODELLER:

There are three kinds of input files required tofgren homology modeling using MODELLER. They are BD
atom files with co-ordinates for the templates, dlignment file with alignment of the template;ustiures with the
target sequence, and finally .PY file (a MODELLEshunand file that instructs MODELLER what to do).

Atom file:
Each atom file is named asdde.Pdld where code is a short protein code, preferabdyRIDB code. The atom file
contains the only protein co-ordinates without heetgoms while modelin g target protein.

Alignment file
One of the formats for the alignment file is rethte the PIR data base format which is the prefiefoemat for
homology modeling by MODELLER.

Script file (Steering file)

The script file contains commands for MODELLER. $denscripts file to produce one model of sequerce.
number of intermediary files were created as thmg@mm proceeds. After 5 minutes on an SGI indige, ftnal
protein model is written to file protein.B9999011@y file was also created with information abdw tun.

Flowchart of homology modeling by Modeller

This section describes a flow chart of homology elod) by MODELLER, as implemented in the 'modetrift
file also be used for variety of modeling tasks anly for comparative modeling. Input: scripefi{steering file;
alignment file, PDB file(s) for template(s). Outtpu

Jdog long file

ini initial conformation for optimization
.rsr restraints file

.sch  VTEM schedule file
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.B99977?? PDB atom file(s) for the model(s) oftrget sequence .V9999???? Violation profilesHermodel(s)
The main MODELLER routines used in each step arergin parentheses.

Read and check the alignment between the targaeseq and the template structures

(READ_ALIGNMENT and CHECK_ALIGNMENT).

Calculate restraints on the target from its alignihweith the templates

Generate molecular topology for the target sequEBE&SNERATE_TOPOLOGY). Disulfides in the target are
assigned here rom equivalent disulfides in the tatap PATCH_DISULFIDES). Any user defined patchesalso

done here (as defined in Top routine 'special aEtth

a. Homology modelling by the Modeller Top routine 'netid

Include # include the predefined top routines
set OUTPUT _control=11111 # uncommentrtmpce a large log file
set ahfile = 'xxx.ali’ # alignmdilename
set knowns - \xxxx' # codes of the templates
set sequence =" XXXXXXXXXXXX' # code of the target
set atOm_files_directory = './:../atom_files' tedtories for input atom files
set starting_model" 1 # index of the first model
set Ending_model = 2 # index of the last model
(determines how many models to calculate)
call routine - 'model’' # do homology modeling

b. Calculate coordinates for atom that have equivaioms in the templates as an average over alllaéesp
(TRANSFER_XYZ) (alternatively, read the initial catinates from a file).

c. Build the remaining unknown coordinates using inétrcoordinates from the charm topology library
(BUILD_MODEL).

d. Write the initial model to a file with extensiomi (WRITE_MODEL).

e. Generate sterochemical, homology derived, and apeci restraints
(MAKE_RESTRAINTS) (alternatively, skip this and asse the
restraints file already exists)

f.  Write all restraints to file with extension. rst RMTE_RESTRAINTS).

Stereochemical RESTRALINT_TYPE = 'bond angle dinddraroper’

mainchain dihedrals RESTRAILNT-TYPE = 'phi-psi bimat'
mainchain dihedral RESTRAINT-TYPE = "omega dihedral
sidechain dihedral 01 RESTRAINT-TVPE ='chil-diheldra
sidechain dihedral 02 RESTRAINT-TYPE ='chi2_dihdtra
sidechain dihedral 03 RESTRAINT-TYPE ="' chi3_dirad
sidechain dihedral 04 RESTRAINT-TYPE = 'chi4_diteddr
main chain CA-CA distance RESTRAINT-TYPE = 'distahc
mainchain N-O distance RESTRAINT-TYPE = 'distance’
Sidechain-main chain RESTRAIN-TYPE = 'distance'
sidechain-side chain RESTRAINT TYPE = 'distance'

block distance restraints RESTRAINT_TYPE = 'dis&nc

user defined CALL ROUTINE = 'special_ restraints'

Non-bonded pairs distance RESTRAINT-TYPE = 'sphexalculated on the fly

1.Calculate model(s) that satisfy the restraints el & possible, for each model:

a.Generate the optimization schedule for the varitdoiget function method (VTFM)

b.Read the initial model (usually from the .ini fiilem 2.d) (READ_MODEL).

c.Randomize the initial structure by adding a randoamber between DEVIATION angstroms to all atomic
positions (RANDOMIZE_XYZ).

d.optimize the model

Partially optimize the model by VTFM; Repeat thdldaing steps as many times specified by optimaati
schedule:
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Read all restraints by rd-restraints (READ-RESTRASY

Select only the restraints that operate on the aithiat are close enough in sequence, as specifidftelzurrent step
of VTFM (PICK_RESTRAINTS).

Optimize the model by conjugate gradients, usinlg oarrently selected restraints (OPTIMIZE). Refifre model
by simulated annealing with molecular dynamicspifselected:

» Do a short conjugate gradient optimization (OPTIR)Z

* Increase temperature in several steps and do ntatetynamics optimization at each temperature (ORZE).

» Decrease temperature in several steps and do nexelunamics optimization at each temperature (ORZE)

» Do a short conjugate gradient optimization (OPTIE)Z

e Calculate the remaining restraints violations amdexhem out (ENERGY).

* Write out the final model to a file with extensioB99999???? Where???? Indicates the model number
(WRITE_MODELS). Also write out the violation prodil Also write superposed templates and model, edected

by FINAL_MALIGN3D = 1.

Evaluation of the built 3-D protein model:

A protein 3D model derived from homology modelieghnique may have some sources of errors. Itp®itant,
therefore, to have an assessment of structureliyjaad to be able to identify regions that maydenodifications
especially at protein folding and turns. The aifmdel evaluation is to determine whether the thmibdel is
acceptable and suitable to use for molecular aisadysh as docking and dynamics.

PROCHECK

The PROCHECK suite of programs provides a detaileeck on the stereochemistry of a protein structiree
PROCHECK, a well-known protein structure checkimggram was carried out to check stereochemicalitgjuaf
homology modeled structures [19]. The stereo chalnpiarameter checks implemented in PROCHECK arisater
from high-resolution protein structures, againsichitthe structure is compared on a residue-by-veskhsis. The
criteria are Ramachandran plot, peptide bond pignaC-alpha tetrahedral distortion, non bondecerattions,
hydrogen bond energies, and closeness off side difaédral angles to ideal values. PROCHECK can bésable
to validate the energy minimized structures.

Preparation of files for AUTODOCK:

The advanced molecular docking program AutoDock{2Q2 which uses a powerful Lamarckian genetic algorithm
(LGA) (Morris, et al.,, 1999)method for conformational search and docking, wpplied for the automated
molecular docking simulations. Briefly, The atomsimlvation parameters were assigned using the ADD&lity

of Autodock 4.2. The grid calculation was performesing Autogrid4 program, in which a box dimensidr22.5 A
and grid spacing of 0.375 A parameters were seé Jénerated box size allows each member of thedtest
compound to rotate freely in order to find the aonfation with the best binding free energy. LGAuged as a
global optimizer and energy minimization for doakisimulation. The LGA described the relationshipagen the
antagonists and receptors by the translation, @tiem, and conformation of the antagonists. Tisesealled ‘state
variables’ were the ligands’ genotype, and theamiwlecular energies were the antagonists’ phenotyphe
environmental adaptation of the phenotype was sevénanscribed into its genotype and became hkxitahits.
Each docking cycle or generation, consisted ofmegi of fithess evaluation, crossover, mutation, seldction. A
Solis and Wets local search [2dps carried out to the energy minimization on arsgecified proportion of the
population. The docked structures of the liganédsewgenerated after a reasonable number of ewvahsati The
whole docking scheme could be stated as follows.

First, the receptor molecules were checked forrgoyalrogen and assigned for partial atomic chargesPDBQS
file was created, and the atomic salvation parammetere also assigned for the macromolecules. eis all of
the torsion angles of the antagonists that wouldXpgored during molecular docking stage were defi€herefore,
it allowed the conformation search for ligands dgrmolecular docking process.

Second, the 3D grid was created by Auto Grid atpori[21] to evaluate the binding energies between the
antagonists and receptors. In this stage, the iHatagonist’s receptor was embedded in the 3Dagd probe
atom was placed at each grid point. The affinitgd @lectrostatic potential grid were calculated\faries type of
atoms in the ligands. The energetic configuratidra particular ligand was found by trilinear ingefation of
affinity values and electrostatic interaction o #ight grid points around each atom of the ligand.
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Third, a series of the docking parameters wereoret The atom types, generations and run numbersGa
algorithm were properly assigned according to thgquirement of the Amber force field. The number of
generations, energy evolutions, and docking rungwet to 370,000, 1,500,000, and 20, respectiv€he kind of
atomic charges were assigned as Kollman-all-atarhHtH2R receptor and Gasteiger-Marsili for ligafi2i2].

Protein — Lead molecules binding studies using Auf@ock Tool

AutoDock 4.2 has been developed to provide a pureetbr predicting the interaction of small moleesilwith
macromolecular targets which can easily separatepoands with micromolar and nanomolar binding camist
from those with millimolar binding constants andncaften rank molecules with finer differences irfirafy.
AutoDock can be used to screen a variety of possibimpounds, searching for new compounds with fpeci
binding properties or testing a range of modificas of an existing compound [23].

RESULTS AND DISCUSSION

Selection of template to model hHH2R

For building model of hLHH2R requires the best teatgd, this was obtained through PSI-BLAST searchePDB
database revealed 3D crystal structures of thenkeovhodopsin molecules [24] with BLOSUM 62 matrix
application. This matrix represents sequencesnoh@ acid substitutions observed in a large nundferelated
receptors, including some quite similar and sonitedlifferent protein sequences. The observedtiutisns were
all lumped together to provide average frequenoiesubstitutions without regard to the degree ofedjence
between sequences.

The X-ray structures of bovine rhodopsin [25, 28] were the only crystal structures on any GPCRt include
the 7 transmembrane domain. The obtained BLASTi¢Bascal Alignment Search Tool) results have shown
1HZX, 1JFP and 1F88 as best templates with sarsesbitre of 65.1 but 2BGK-26.0 and 2IMS 26.6 wittslits
score (Fig.7.8). Crystal structures of rhodofdditzX, 1JEP and 1F88 were taken as best templatgsofoology
modeling of hHH2R as reported by Kristiansegtnal, 2004. The sequence analysis of templates and?RHias
carried out with clustalW principles [28], criticahalysis was done throughout the length of receggquence. All
the templates have similar amino acids with 20%tithe The hypothesis that most family A receptshare, a
similar folding of their 7TM domain was observedtime crystal structures of rhodopsin has been tegdoy
sequence comparison of receptors revealing corgsdivgerprint residues and by molecular modelingexfeptor
micro domains.

Details of the molecular mechanism of structuraraes will possibly be revealed by solving the cdtme of the
photo-reaction intermediates of bovine rhodopsi84D crystal or by solving structures of GPCRs ctarpvith
hetero-trimeric G-proteins.

It is known fact that most of GPCR proteins canmetcrystallized under specific conditions. Furthere, many
pharmacologically important targets are membranembagroteins, such as G-protein-coupled recept8RORS),
ion channels, or transporter proteins, for whigheRperimental determination of the 3D structurgus to technical
difficulties, either still impossible or can onlg bbealized with immense experimental effort and lexity.

Homology model for hHH2R was developed through MQDER 9v1 software with suitable crystallographic
structures 1F88, 1HZX, 1JFP as best templates.nidaeller was run with default parameters with tlgoathms
for optimization. Generated model was visualizgdPlymol. Molecular visualization investigationsraelone for
the generated model. The homology model has 7 ddibns and one smdllsheet determined. hHH2R model is
energy minimized with GROMOS 96 force field forther analysis as per Kis$ al procedures [29].The homology
model is shown in Fig 2 with cartoon representatiop view, electrostatic molecular surface withaige
distribution on receptor and position of receptoiipid bilayer. All seven transmembranes and srhath sheets
also represented with cylinders and coils. Thiidates positions of helices in three dimensiopake co-ordinate
system to determine position of small sub unitétices regions within receptor.
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Fig2. Homology model of hHHH2R is showing seven tremembranes and each transmembrane shown in diffemecolor

5.15 Structural validation

5.15.1 Validation by PROCHECK

The modeled structure as verified by PROCHECK, diasn 92.4% in favorable regions, 6.2% in allowedions,
0.7% generously allowed regions and 0.7% disalloregibns Plot statistics were shown in table 1 Adog to all
these statistics homology model hHH2R is a verydgomdel, which can be used for docking process ndtivly
designed lead molecules based on famotidine drugaules scaffolds.

Table 1 Ramachandran plot statistics for best modedf hHH2r protein structure (PROCHECK)

Ramachandran plot statistics

Residues in most favoured regions 254 92.40M%
Residues in additional allowed regions 17 6.20%
Residues in generously allowed regions . 0.709
Residues in disallowed regions 2 0.70%

Number of non-glycine and non proline residueg 275 100.00%

Number of end-residues (excl. Gly and Pro) p.
Number of Glycine residues (shown as traingle) 14
Number of proline residues 8
Total number of residues 299
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Ramachandran Plot
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Fig3. Ramachandran plot for h(HH2R showing most ofhe residues falling in coreregion. 3D graphical neresentation of Ramachandran
plot by VMD, green peek indicates the presence oflices in receptor

Refinement of 3D model of H2 Receptor

The modeled Human H2 Receptor energy minimizedguSiromacs force fields. Later the energy minimmafl he
Human H2 Receptor model structure was submittethatecular dynamics simulations using the GROMOS 96
force field. This procedure had the goal of puttbmth enzymes in the same physiologic conditionsfdicther
superposition and also of providing a way for add#l validation and refinement of the structureHefman H2
Receptor and after refinement it showing a enefg¢.d571 K.cal.

Docking Analysis on H2 Receptor with phytochemicals

The interactions of Human H2 Receptor with diff@érerhibitors, determined from their crystal struets, have
served as a starting point for tests of variouskihgctechniques. The first of such docking studiesieman H2

Receptor was performed by the Kuntz laboratory. wiezovered that haloperidol could be an inhibivérthis

enzyme. However, subsequent crystal structure mi@tation revealed a different orientation for hadgol than

the one predicted. Docking methods and algorithrasewested using the known structural data andrawpatal

characteristics by Monte Carlo docking or by congmar with de novo constructed inhibitors by a fragbased
method in which the inhibitors were constructedrefyt from individual functional groups chosen frapredefined
library. A method of continual energy minimizationplemented in the program SCULP was a new paradaym
modeling proteins in interactive computer graphysteams. This physically realistic attempt made jmbssthe

modeling of very large changes and aided the utalating of how different energy terms interact tabdize a

given conformation. Other recent studies examinmagdigcal free energy as a target function in dogkamd design,
showing the advantages of this approach over studieng the calculation of interaction energy.

The energy minimized H2 receptor docked willaytenus emarginat@ytochemicals using Autodock 4.0. The
Phytochemical oMaytenus emarginatEmarginatine A, B, E, F, G, alpha amyrin, Cynobalmes and Quercetin
has more are less forms hydrogen bond interactigtis Asp98, Aspl86 and Thrl9&sidue has made strong
hydrogen bonds with all the inhibitors with lesarhl.180A bond length. Asp98 also interacting in all casétd w
distance of 1.75 A Carboxyl group of Asp98 is interacting with mmated all the inhibitors. It is confirmed that
protonated amino group plays a vital role in therfation of hydrogen bond at a distance of 1.75 IA these
interactions, Emarginatine are bigger in their $zdock with hHH2R. But, Cynocolchicines formsteoeg H-bond
with Asp98 residues of H2 receptor and its releabinding free enrgy 06.6 K.cal/molat RMSD 0.02 and Ki 40
UM. Whereas, the alpha amyrin forms strong H-boritth Visp98 and asp186 amino acid residues and they a
showing a lowest docked energy -Gf.7K.cal/Mol. But the beauty of Quercetin molecular conformatio the
cavity is exactly matching with molecular surfagedat showing Lowest Docking energy ef0.30K.cal/mol,
RMSD 0.04 and Ki 0.023uM and no other inhibitorewmg as much as best interaction as Quercetinitaimals
been tightly packed with 3 important residues asp38, Asp186 and Thr12 Human H2 Receptor
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Fig4. Modeled protein of hHH2R protein with molecubir surface representation colored in brown. B. Pragin surface slab at 35 frame
visualization with histamine cavity in protein. C.Histamine stabilization in cavity of modeled proten of h(HH2R

Fig5. Gridbox generated by the mean of X, Y and Zaordinates from Asp186, Thr190 and Asp98. Residuesd famotidine is shown in
stick model and protein as in cartoon representatio

Fig6. Docking study of alpha amyrin Fig7. Docking study of Cynocdiines
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Fig8.Docking space from top view represented Fg Docking study of Quercetin with hH2R
by mesh and hHH2R protein in cartoon

Fig10. Docking study of Quercetin with hH2R Fig11. Docking study of Quercetin withhH2R

Table2: Docking energies oMaytenus emarginata phytochemical constituents with hHH2R (HumanHistamine Receptor)

Lowest Binding | Inhibition Amino acids involved in
S.No. Protein Phyto chemicals| Clustér| RMSD" Energy” Constant' H bond formation
(Kcal/mol) (Ki)
1. Cyno colchicine 05 0.02 -5.6 40puM Asp98
2. H2 Receptor| alpha amyrin 45 0.45 -7.7 9.45 uM Asp98 and Asp186
3. Quercetin 32 0.04 -10.3 0.023 pM  Asp98, Asp186 HmI90

Indicative of the total number of binding modesdurced
bHeavy atoms root-mean-square deviation with retsjpethe experimental structure.
“The change in binding free energy is related toihébition constant using the equatiohG = RT in Ki, where R is the gas constant 1.987 ca
K-1 mol-1, and T is the absolute temperature assubmée 298.15 K.
dEstimated inhibition constant at 298.15 K.

CONCLUSION

In our in silico analysis, we have modeled the haurstamine receptor 2 protein structure by ushegmodeler
9v1. Molecular Docking studies were done by usimg Auto dock 4.0, The interactions of Human H2 Ré&me
with different inhibitors, determined from theirystal structures, The docking energy minimizatsbmdies were
conducted on hHH2R with the phyto chemicals of Maws emarginata in which we have found the beafity o
Quercetin molecular conformation in the cavity Xaely matching with molecular surface and it shogvLowest
Docking energy of -10.30 K.cal/mol, RMSD 0.04 anddx023uM and no other inhibitors showing as musiest
interaction as Quercetin.
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