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ABSTRACT

Atherosclerosis, a chronic inflammatory disease of the vascular system, presents significant challenges to
developing effective molecular diagnostics and novel therapies. A systems biology approach integrating data from
large-scale measurements (e.g. transcriptomics, proteomics and genomics) is successfully contributing to
deciphering regulatory networks underlying the response of many different cellular systemsto perturbations. In this
study we have used novel systems biology tools to analyze the pathogenic process of macrophage foam cell
formation when exposed to oxidized low density lipoprotein (oxLDL). Our network-driven integrative analysis not
only identified the pathogenic network behind atherogenic process but also found the multi layer relationship behind
macrophage foam cell formation.
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INTRODUCTION

Systems biology provides a framework for assemhiiuglels of biological systems from systematic mesments.
Since the field was first introduced a decade agosiderable progress has been made in technoltmiggobal
cell measurement and in computational analysekeset data to map and model cell function [1]. A &egcept in
systems biology is that of emergent properties it features of biologic systems that can bestbstified by
examining the system as a whole. A particularlyant@nt goal of systems biology is to construct reks sets of
genes or proteins or metabolites that act in caricer common biologic process [2].

Recently, the employment of microarray technologs hrapidly produced vast catalogs of gene expnessio
activities. The immense data highlights the needafgystematic tool to identify and analyze thearhihg gene
regulatory networks. Several computational methodgshe inference of transcriptional regulatorywetks from
experimental microarray data have been publishpd [3

Macrophages play a key role in the development therasclerosis. In atherosclerosis, the accumulatb
apolipoprotein B-lipoproteins in the matrix benedtie endothelial cell layer of blood vessels leadsthe
recruitment of monocytes, the cells of the immugstem that give rise to macrophages and dendréits.c
Macrophages derived from these recruited monocgteticipate in a maladaptive, nonresolving inflanona
response that expands the subendothelial layetadtiee accumulation of cells, lipid, and matrix.[#e uptake of
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oxidized low density lipoprotein (oxLDL) by macrogdes leads to foam cell formation and fatty strealtéch
represent early sites of potential atheroma dewveéop. In addition, the transcriptome experimentsntb an
increased inflammatory response under conditiorimtif acute and chronic oxLDL exposure. Overalldbmbined
functional, proteomic, and transcriptomic experitseshow that macrophages respond to oxLDL by deuedpan
oxidative stress resistance that increases andiztsbwith chronic exposure. Furthermore this potitve response
and the increased foam cell survival that it suggpamplifies their proatherogenic role by promotagontinued
inflammatory state [5].

The above study only provided the microarray datéhe scientific community. This study aims to domst the
functional network and prior the signaling prograimgolved in pathogenesis of oxLDL exposed macrgeisa
Moreover this study intended to compare the simolaresemblance gene expression events associ#teativer
expression states based on comparative transciiptomlysis.

EXPERIMENTAL SECTION

Microarray Data collection

In this analysis Microarray data was collected fribvm paper published by James P. Conway and Midtiatgdr et
al. [5]. The genes with significant fold changelifi74 oxLDL treated versus J774 untreated werentddr this
study.

Comparativetranscriptomic analysis of gene expression signatures

The up and down regulated signature was submittethé comparative transcriptomic analysis. MARQikable at
http://marq.dacya.ucm.es offers an easy-to-use iategjrated environment to mine GEO, in order toniidg
conditions that induce similar or opposite generesgion patterns to a given experimental conditiotthis study, a
high positive score indicates that the databaseasige shares a significant proportion of over-egped and under-
expressed genes with the query signature. The seasecalculated for the up and down-regulated geseyy a
weighted Kolmogorov—Smirnov-like statistig]|

Protein I nteraction network construction

Network analysis of gene products which were up @main regulated were searched against the STRIN&dse
version 9 [http://string-db.org] for protein-prateinteractions, using a STRING confidence scoretset 0.4 -
medium confidence [7].

I dentification of mMiRNAsresponsiblefor co-regulated gene expression

A possible involvement of miRNAs in the deregulatiand miRNAs responsible for co-regulated pattefngene
expression can be computationally predicted. MIRVEERATOR [http://mips.helmholtz-
muenchen.de/proj/gene2mir/], a web tool which aaniify significant subsets of genes from the gigeme list
which are the targets of a single or several miRNgs The top 2 miRNA from the results were considefed
analysis.

Gene Ontology analysis

To assign biological meaning to the group of gewi#h changed expression, the subset of genes whigththe
above criteria was analyzed with the Gene Ontol¢@¥] classification system, using DAVID software
http://david.abcc.ncifcrf.gov. Over-representatisingenes with altered expression within specific G&egories
was determined and clustered with high stringencghoosing the ‘GOTERM_BP_5’, KEGG pathway opti¢@f
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RESULTS

Figure 1. Protein-protein interaction (PPI) network of upregulated genes
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Table 1. Biological processes of upregulated genes - geneontology analysis (DAVID)

Category Term Count| % | P-Value | Benjamini
GOTERM_BP_5| hydrogen peroxide catabolic proc 4.9 2.4E2 1.0E0
GOTERM_BP_5| regulation of apoptos 12.2| 24R2 9.7E-1
GOTERM_BP_! | regulation of programmed cell de 2.5E-2 9.1E-1
GOTERM_BP_5| regulation of secretic 7.3 2.7E2 8.4E-1
GOTERM_BP_5| cellular response to react oxygen specieq 4.9 3.6E2 8.7E-1
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Table 2. Biological processes of down regulated genes - geneontology analysis (DAVID)

Categor' Termr Coun % P-Value | Benjamin
GOTERM_BP_5| positive regulation of immune response10 16.1| 8.0E-11 2.7E-8
GOTERM_BP_5| regulation of defense response 7 11.3| 3.4E-7 5.6E-5
GOTERM_BP_5| activation of immune response 6 9.7 3.6E-6 4.0E-4
GOTERM_BP_5| positive regulation of defense response 5 8.1 1.7E-5 1.5E-3
GOTERM_BP_5| B cell mediated immunity 5 8.1 2.9E-5 2.0E-3

Table 3. KEGG map of upregulated genes

Category Term Count| % P-Value | Benjamini
KEGG_PATHWAY | Glutathione metabolism 4 9.8 1.4E-3 6.8E-2
KEGG_PATHWAY | Metabolism of xenobiotics by cytochrome P450 4 9.8 2.8E-3 6.7E-2
KEGG_PATHWAY | Drug metabolism 4 9.8 | 4.0E-3 6.5E-2
KEGG_PATHWAY | Cytokine-cytokine receptor interaction 5 12.2| 2.0E-2 2.2E-1
KEGG_PATHWAY | Intestinal immune network for IgA production| 3 7.3 2.3E-2 2.1E-1

Table4. KEGG map of down-regulated genes

n | % | P-Value | Benjamin
1.0 4.6E-6 1.3E-4
1.0| 8.3E-5 1.2E-3
1.0| 1.0E-4 9.3E-4
0.7 5.5E-4 3.8E-3
1.z | 7.7E4 4.3E-3

Categor Term C
KEGG_PATHWAY | Cytosolic DNA-sensing pathway
KEGG_PATHWAY | Toll-like receptor signalling pathway
KEGG_PATHWAY | Systemic lupus erythematosus
KEGG_PATHWAY | Prion diseases
KEGG_PATHWAY | Cytokine-cytokine receptor interacti
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Table 5. Comparative transcriptomic signatures of oxL DL exposed macr ophages

S. No Experiment Score
1. MyD88 deficient macrophage response to zymosamozggn <=> control [agent] 1.43
2. Mechanical stress effect on fibroblasts from vasitetal tissues [MG-430A]. stimulated <=> contrstrgss] 1.35
3. Lung response to carcinogens that test positiv@aayear rodent bioassays . positive lung carcinoge> control [other] 1.3
4. Palmitate effect on myoblast cell linpalmitate <=> control [agent] 1.28
5. Megakaryocytes at successive stages of maturaiaiays in culture <=> 3 days in culture [developtrstage] 1.25
6. Obliterative bronchiolitis and tracheal allografintransplanted <=> allograft [protocol] 1.21
7. Myocardial infarction time course24 hour <=> 1 week [time] 1.81
8. Lung response to carcinogens that test positive/dayear rodent bioassays . 1,5-NaphthalenediarwneFeed control [agent] 1.17
9. Signal transduction adaptor MyD88 deficient lungp@nse to Chlamydia pneumoniae infectiomock <=> C. pneumoniae [infection)]]  1.16

10 Hexamethylene diisocyanate effect on lungs: timgs®6 h <=> 0 h [ratio] [time] 1.13
Table 6. Predicted miRNA down-regulated in oxL DL exposed macr ophages
mMiRNA MiRNA Seed Length of - Complementarity P-
Name Seed Model Complergrfentarity Complementary Base-Pairing P Value Y
) Motif_5' AUCACUGU_3'
mmfz'g“R' ACAGUG | 6mer 1 6 T 2.40E-04
3'_--GUGACA_5miRNA Seed
) Motif_5' AUCACUGU_3'
m’gi’érglR' ACAGUG | 6mer 2 6 T 2.40E-04
3' -GUGACA 5miRNA Seed

DISCUSSION

In atherosclerosis, monocytes hone to focal aresthefarterial subendothelium in response to ma&iained
apolipoprotein B-lipoproteins. Monocyte-derived maahages then participate in a maladaptive, nookrigg
inflammatory response that leads to subendothekphnsion with additional cells, lipid, and matixfew lesions
undergo necrotic disruption, triggering acute thibpotic vascular disease, including myocardial infarg stroke,
and sudden cardiac death. In addition, pro-atheiodipids delivered to cells by lipoproteins, pamiarly modified
lipoproteins, may have potent effects. An exampleludes apoptosis induced by oxysterols and oxidize
phospholipids delivered through the uptake of aigdy modified forms of lipoproteins [4].

Macrophages are dynamic cells integrating signedsnftheir microenvironment to develop specific fliocal
responses. Although, microarray-based transcrigtiprofiling has established transcriptional repemgming as an
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important mechanism for signal integration and figliction of macrophages, current knowledge onstceptional
regulation of human macrophages is far from coreplet

In the gene ontology point of view, results ill@é the up and down regulated process associategathogenesis
of macrophages under oxLDL associated condition.

The highest hits of DAVID bioprocess level 5 indes, Hydrogen peroxide catabolic process, regulatf
apoptosis, regulation of programmed cell deathyledgpn of secretion and cellular response to treamxygen
species are the most common terms associated pvitbgulated genes of oxLDL exposed macrophages. résult
indicates that, apoptosis is one of the major ewassociated with oxLDL exposure. A previous stindjcates that,
a key cellular event in the conversion of benigrutnerable atherosclerotic plaques is endoplasaticulum (ER)
stress-induced macrophage apoptosis [10].

The gene ontology terms of down regulated genesvishtbat, positive regulation of immune response;eB-
mediated immunity, lymphocyte mediated immunityytacimmunity response etc., this indicates thatrtbemal
function of macrophage in the immunity network gadxtsvn regulated during the oxLDL exposure.

The KEGG pathway analysis have shown that, cytoddNA sensing pathway and toll like receptor sigmal
pathway are associated with up regulated geneglatathione metabolism related genes are down agenll This
indicates the oxidative stress related pathway Ipaminent role during oxLDL exposure.

In the comparative transcriptomic analysis, we guesignature database derived from GEO to findegrents

that induce similar or opposite gene expressiotepat of our experiment. The results found thatPDg§ deficient

macrophage response to zymosan, mechanical stfessan fibroblasts from various fetal tissue, guresponse to
carcinogens that test positive in two-year rodeoassays, palmitate effect on myoblast cell lineyobardial

infarction time course analysis were become théhitsp

Based on the similar expression features, the splains that, similarity of our experiment withy®I88 deficient
macrophage response to zymosan indicates, NFAVaticm regulated IL-2, IL-10 and IL-12 p70 produacti by
zymosan is the major outcome of the signature [11].

Comparative signature of oxLDL exposed macrophagés signature of palmitate effect on myoblast deie
indicates that, palmitate reduced expression cétbioxylic acid cycle and oxidative phosphorylatioitochondrial
genes and reduced oxygen consumption. These effexts reversed by overexpression of PGC-lalphdeta;
indicating PGC-1 dependence. Palmitate effects mdgaired p38 MAPK, as demonstrated by palmitateioed
increase in p38 MAPK phosphorylation [12].

Myocardial infarction time course analysis indicatine involvement of apoptosis or programmed celitl.
Apoptosis is characterized by shrinkage of the aedl the nucleus. The nuclear chromatin is condkimée sharply
delineated masses, and eventually breaks up. Theéhee detaches from the surrounding tissue. Tdgcates that
oxLDL induced macrophage apoptosis also one ofptteeninent event with apoptosis related gene exmness
signature.

All the above important hits shown that oxLDL inédc macrophages shows similar cell stress relates ge
expression programme. This will help us to compleedrug associated gene signature in future.

Network-level analysis has revealed detailed irtsigh metabolic regulation in type 2 diabetes ansulin

resistance. Previous study has proposed that iretferging systems-level view of molecular biolodiseases
should be viewed as a function of network pertudmatather than as isolated local changes. Moleautéworks
may be classified in two categories: metabolic weks and protein interaction networks [13].

This study explores, TNF and IL-6 nodes have mttenton due to its higher connectivity among tiperegulated
genes network. It has been increasingly appahattdardiovascular disease (CVD) is associated aviplersistent
systemic inflammatory response. IL-6 and ThiFseem to have proinflammatory and proatherogeropepties.
TNF, a proinflammatory cytokine (17 kD) originalgssociated with killing of tumor cells, has a pailotole in
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regulating both pro- and anti-inflammatory mediatdfNFa has been regarded a "master regulator” of thekiry¢o
cascade that provides a rapid form of host defegeinst infection but is fatal in excess [14].

The upstream causal signaling analysis shown thdt, TLR, MAPK-PI3K pathways are highly activateliring
macrophage exposure. Previous study indicates lthdt, p38 MAPK plays an important role in the réaion of
lipopolysaccharide-induced iINOS and COX-2 exprasgiol774 macrophages [15].

The miRNA prediction method found that, miRNA-12&hshown to be down regulated. Previous studygates
that, over expression of miR-128 specifically iritglthe truncated isoform of NTRK3 and up-reguld@et in SH-
SY5Y neuroblastoma cells [16]. The down regulatafrmiRNA 216a indicates that, the expression @ fino-
apoptotic geneBim, a FoxO3a target, was inhibited by miR-192 and 2iBa/217 as well as TGF-while
inhibitors of these miRs reversed the effects oG Moreover, miR-192, miR-216a/217 and T@Rprevented
serum-depletion-induced MMC apoptosis [17]. Thissults indicates that, oxLDL induced apoptosis of
macrophages may be due to the mechanism of dowttatem of miRNA-128 and miR-216a.

The overall study provides a view on contributidmuultilevel regulation in macrophage foam cellrfation upon
oxLDL exposure. This study will led to find new drtargets for treating atherosclerosis in future.
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