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ABSTRACT 
A quantitative structure–activity relationship (QSAR) study was performed to develop models 
those relate the structures of 41 anti-cancer drugs compounds to their n-octanol–water partition 
coefficients (log Po/w). Among the different constitutional, topological, geometrical, 
electrostatic and quantum-chemical descriptors that were considered as inputs to the model. The 
models were constructed using 33 molecules as training set, and predictive ability tested using 
11 compounds. Modeling of log Po/w of these compounds as a function of the theoretically 
derived descriptors was established by multiple linear regression (MLR). The usefulness of the 
quantum chemical descriptors, calculated at the level of the HF theories using 6-31G* basis set 
for QSAR study of anti-cancer  drugs was examined. A multi-parametric equation containing 
maximumeight descriptors at HF/6-31G* method with good statistical qualities (R2train=0.893, 
Ftrain=24.93, Q2

LOO=0.816,R2
adj=0.857,Q2

LGO=0.730) was obtained by Multiple Linear Regression 
using stepwise method.The accuracy of the proposed MLR model was illustrated using the 
following evaluation techniques: cross-validation, validation through an external test set, and Y-
randomisation. The predictive ability of the model was found to be satisfactory and could be 
used for designing a similar group of compounds. 
 
Keywords: n-Octanol–water partition coefficients, Quantitative structure–activity relationship 
(QSAR), Multiple linear regression (MLR), Hartreefock (HF). 
______________________________________________________________________________ 
 

INTRODUCTION 
  
Doxorubicin is widely used anthracyclines anti-cancer agent. Its clinical use is hampered by the 
common side-effects observed with the use of the majority of anticancer agents: bone marrow 
suppression, alopecia, nausea, and vomiting. Doxorubicin-induced bone marrow suppressioncan 
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now be reduced by the use of hematopoietic growth factors[1].The n-octanol/water partition 
coefficient is the ratio of the concentration of a chemical in n-octanol to that in water in a two-
phase system at equilibrium. The logarithm of this coefficient, log Po/w, has been shown to be 
one of the key parameters in quantitative structureactivity/property relationship (QSAR/QSPR) 
studies. The octanol–water partitioncoefficient is a measure of the hydrophobicity 
andhydrophilicity of a substance. Hydrophobic “bonding” is actuallynot bond formation at all, 
but rather the tendency of hydrophobic molecules or hydrophobic parts of moleculesto avoid 
water because they are not readily accommodatedin the highly ordered hydrogen bonded 
structure of water[2]. Hydrophobic interaction is favored thermodynamically because of 
increased entropy of the water molecules thataccompanies the association of non-polar 
molecules, which squeeze out water. There are some reports about the applications of MLR [3–
6] and artificial neural network [7–10] modeling to predict the n-octanol/water partition 
coefficient of anti-cancer drugs. In our previous papers, we reported on the application of QSAR 
techniques in the development of a new, simplified approach to prediction of compounds 
properties [11–17]. Experimental determination of log Po/w is often complex and time-
consuming and can be done only for already synthesized compounds. For this reason, a number 
of computational methods for the prediction of this parameter have been proposed. In this work a 
QSAR study is performed, to develop models that relate the structures of a heterogeneous group 
of 41 drug compounds to their n-octanol–water partition coefficients. However, using in vivo 
methods to measure the logarithmic values of partition coefficient drug concentration ratios (log 
P) in humans is not possible, and to do so in animal models is expensive and time consuming. 
Finally, the accuracy of the proposed model was illustrated using the following: leave one out, 
bootstrapping and external test set, cross-validations and Y-randomisation techniques. 
 
2. Data and methods 
The QSAR model for the estimation of the log Po/wof various anti-cancer drugs is established in 
the following six steps: the molecular structure input and generation of the files containing the 
chemical structures is stored in a computer readable format; quantum mechanics geometry is 
optimized with a abinito method; structural descriptors are computed; structural descriptors are 
selected; and the structure–log Po/w model is generated by the MLR, and statistical analysis. 
 
2.1. Data 
All logPo/w data for all 41 compounds was taken from the literature.The data set was split into a 
training set  (33compounds) and a prediction set (8 compounds). The log Po/w of these 
compounds are deposited in Journal log as supporting material (see Tables 2). Chemical structure 
of drugs that illustrated in this study is shown in Table 2. 
 
2.2. Molecular descriptor generation 
All of the molecules were drawn into the Hyper Chem. The Gaussian 03 and Dragon packages 
were used for calculating the molecular descriptors(Table 1). Some of the descriptors are 
obtained directly from the chemical structure, e. g. constitutional, geometrical, and topological 
descriptors. Other chemical and physicochemical properties were determined by the chemical 
structure (lipophilicity, hydrophilicity descriptors, electronic descriptors, energies of interaction). 
In this work, we used Gaussian 03 for ab initio calculations.DFT method at 6-31G* were applied 
for optimization of anti-cancer drugs and calculation of many of the descriptors. software hyper 
Chem and some of the descriptors such as partition coefficient, surface area, hydration energy, 
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and refractivity were calculated through it. The rest of the descriptors were obtained of Gaussian 
calculations. 
 
A large number of descriptors were calculated by Gaussian packageand Hyperchem software. 
One way to avoid data redundancy is to exclude descriptors that are highly intercorrelated with 
each other before performing statistical analysis. The molecular structures were saved by the 
HIN extension and entered on the DRAGON software for the calculation of the 18 different 
types of theoretical descriptors for each molecule. They included (a) 0D-constitutional (atom and 
group counts); (b) 1D-functional groups, 1D-atom centered fragments; (c) 2D-topological, 
2DBCUTs, 2D-walk and path counts, 2D-autocorrelations, 2D-connectivity indices, 2D-
information indices, 2D-topological charge indices, and 2D-eigenvalue-based indices; and (d) 
3D-Randic molecular profiles from the geometry matrix, 3D-geometrical, 3D-WHIM, and 3D-
GETAWAY descriptors. A stepwise technique was employed that only one parameter at a time 
was added to a model and always in the order of most significant to least significant in terms of 
F-test values. Statistical parameters were calculated subsequently for each step in the process, so 
the significance of the added parameter could be verified. The goodness of the correlation is 
tested by the regression coefficient (R2), the F-test and the standard error of the estimate (SEE). 
The test and the level of significance, as well as the confidence limits of the regression 
coefficient, are also reported. The squared correlation coefficient, R2, is a measure of the fit of 
the regression model. Correspondingly, it represents the part of the variation in the observed 
(experimental) data that is explained by the model. 
 

Table1. The calculated descriptors used in this study 
 

Descriptors Symbol Abbreviation Descriptors Symbol Abbreviation 

Quantum 
chemical 

descriptors 

Molecular Dipole 
Moment 

MDP 

Quantum 
chemical 

descriptors 

difference between 
LUMO and HOMO 

E GAP 

Molecular Polarizability MP 
Hardness 
[ η=1/2 (HOMO+LUMO)] 

Η 

Natural Population 
Analysis 

NPA Softness ( S=1/ η ) S 

Electrostatic Potentialc EP 
Electro negativity 
[χ= -1/2 (HOMO–LUMO)] 

Χ 

Highest Occupied 
Molecular Orbital 

HOMO El Electro philicity (ω=χ2/2 η ) Ω 

Lowest Unoccupied 
Molecular Orbital 

LUMO MullikenlChargeg MC 

Chemical 
properties 

Partition Coefficient Log P 
Chemical 
properties 

Molecule surface area SA 
Mass M Hydration Energy HE 
Molecule volume V Refractivity REF 

 
2.3 Genetic algorithm for descriptor selection 
Genetic algorithm variable selection is a technique that helps identify a subset of the measured 
variables that are, for a given problem, the most useful for a precise and accurate regression 
model. The selection of relevant descriptors, which relate the log Po/w to the molecular 
structure, is an important step to construct predictive models. The genetic algorithm was applied 
to the input set of 53 molecular descriptors for each chemical of the studied data sets and the 
related response, in order to extract the best set of molecular descriptors, which are, in 
combination, the most relevant variables in modeling the response of the training set chemicals.
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Table 2.Chemical structures and the corresponding observed and predicted LogPo/w values by the MLR method. 
 

N R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 exp Pread Ref 
1 OCH3 H H O OH H COCH2OH H H NH2 OHndo H 1.27 1.39 17 
2 OCH3 H H O OH H COCH3 H H NH2 OH H 1.83 1.79 17 
3 H H H O OH H COCH3 H H OH OH H 0.9 1.3 17 
4 OCH3 H H O OH H COCH2OCH3 H H NH2 OH H 1.37 0.18 18 
5a OCH3 H H O OH H COCH3 H H N(CH3)2 OH H 1.405 1.49 18 
6 OCH3 H H O OH H COCH2OH H H NH2 OCH3 H 0.94 0.96 18 
7 OCH3 H H O OH H COCH2OH H H NH2 H H 1.83 1.41 17 
8 OCH3 H H O OH H COCH2OH H H NH2 H H 0.68 1.69 19 
9 OCH3 H H O OH H COCH3 H H OH OH H 1.34 1.41 18 
10 OCH3 H H O OH H COCH2OH H H N(CH3)2 OH H 1.56 1.65 18 
11 OC6H5 H H O OH H COCH3 H H NH2 OH H 2.02 1.77 19 
12 OCH3 H H O OH H CHCH3OH H H NH2 OH H 0.62 0.49 19 
13a OCH3 H H O OH H COCH2OH H H OH OH H 1.75 1.61 20 
14 OCH3 H H NH OH H COCH3 H H NH2 OH H 0.8 1.20 22 
15 OCH3 H H O OH H COCH2OH H H NH(CH(CN)(CH2OCH3)) OH H 0.92 0.60 21 
16 OCH3 H H O OH H COCH2OH H H 

HN O

 

OH H 0.42 0.27 23 

17 OCH3 H H O OH H COCH2F H H NH2 OH H 0.72 0.83 23 
18 OCH3 H H O OH H C(NOH)(CH3) H H NH2 OH H 0.479 0.58 22 
19a OCH3 H H O OH H COCH2OH H H 

ON

N

 

  0.286 0.95 23 

20 H H H O OH H COCH2Br H F OH OH H 2.5007 2.50 19 
21a OH H H O OH COOCH3 CH2CH3 H H N(CH3)2 OH H 2.234 1.37 18 
22a OCH3 H H O OH H C(NNHCOC6H5)(CH3) H H NH2 OH H 1.13 1.20 17 
23 OCH3 H H O OH H COCH2OCO(CH2)3CH3 H H NHCOCF3 OH H 2.2 2.1 17 

R 7

OH

O
H

O
H 3CR 12

R 11

R 10

R 9

R 4

O R 5

OH

R6

R 8

R 2

R 3

R 1
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24a OH H H O OH H COCH3 H H NH2 OH H 0.74 1.02 23 
25 OH OCH3 H O H H CH3 H OCH3 OH OCH3 H 0.871 0.81 19 
26 H H H O OH H COCH3 H F OH OH H 0.917 0.95 19 
27 H H H O OH H COCH3 H F OCOCH3 OCOCH3 H 1.675 1.65 22 
28a OH H OH O OH COOCH3 CH2CH3 H H NH2 OH H 1.916 1.78 22 
29 OH H H O OH COOCH3 CH2CH3 H H NH2 OH H 0.78 0.95 22 
30 OCH3 H H O OH H COCH3 H OH NH2 OH H 1.27 1.08 17 
31 OCH3 H H O OH H COCH3 H H NH2 H H 0.87 0.92 18 
32 H H H O OH H COCH2OH F H NH2 OH H 1.34 1.43 22 
33 OCH3 H H O OH H COOCO(CH2)2NH2 H F OH OH H 1.89 2.16 17 
34 OCH3 H H O OH H COCH2OH H H NH2 OH(exo) H 1.85 1.71 17 
35 OCH3 H H O OH H COCH2OH H H NHCOCF3 OH H 1.92 1.68 17 
36 OCH3 H H O OH H COCH3 H H OH NH2 H 1.112 1.28 24 
37 OCH3 H H O OH H COCH3 H H N(CH3)2 OH H 1.23 1.63 24 
38 OCH3 H H O OH H COCH2OH H Cl NH2 OH H 1.45 1.07 24 
39a H H H O OH H COCH2OH H H NH2 OH H 0.9 1.08  24  
40 OCH3 H H O OH H COCH3 H H NH2 F H 1.53 1.59 24 
41 OCH3 H H O OH H COCH3 H Br NH2 OH H 0.87 0.91 24 

a test set  
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Genetic algorithm (GA), included in the PLS Toolbox version 2.0, was used for variables 
selection (based on the training set). Using GA-based MLR variable selection procedures, the 
dependent variables, i.e., the log Po/w, were used to find subsets of molecular descriptors that 
provide a good relationship to the log Po/w. Given an X-matrix of descriptors data and a log 
Po/w of values to be predicted, one can choose a random subset of variables from X and, through 
the use of cross-validation and MLR regression method, determine the root-mean-square error 
ofcross-validation (RMSECV) obtained when using only that subset of variables in a regression 
model. Genetic algorithms use this approach iteratively to locate the variable subset (or subsets) 
which gives the lowest RMSECV. The first step of the GA is to generate a large number (e.g., 
32, 64, 128) of random selections of the variables and calculate the RMSECV for each of the 
given subsets.Each subset of variables is called an individual (or chromosome) and the yes/no 
flags indicating which variables are used by that individual is the gene for that individual. The 
pool of all tested individuals is the population. The RMSECV values, described as the fitness of 
the individual, indicate how predictive each individual’s selection of variables is for the log 
Po/w[21]. 
 

RESULTS AND DISCUSSION 
 
The diversity of the training set and the test set was analyzed using the principal component 
analysis (PCA) method. The PCA was performed with the calculated structure descriptors for the 
whole data set to detect the homogeneities in the data set, and also to show the spatial location of 
the samples to assist the separation of the data into the training and test sets. The PCA results 
showed that three principal components (PC1and PC2) described 24.39% of the overall 
variables, as follows: PC1 = 16.79% and PC2 =7.6.%. Since almost all the variables can be 
accounted for by the first three PCs, their score plot is a reliable representation of the spatial 
distribution of the points for the data set.  The multi-collinearity between the above seven 
descriptors were detected by calculating their variation inflation factors (VIF), which can be 
calculated as follows: 
 
VIF=            (1) 

 

where r is the correlation coefficient of the multiple regression between the variables in the 
model. If VIF equals to 1, then no inter-correlation exists for each variable; if VIF falls into the 
range of 1–5, the related model is acceptable; and if VIF is larger than 10, the related model is 
unstable and a recheck is necessary [30]. The  corresponding VIF values of the seven descriptors 
are shown in Table 2. As can be seen from this table, most of the variables had VIF values of less 
than 5, indicating  hat the obtained model has statistic significance. To examine the relative 
importance as well as the contribution of each descriptor in the model, the value of the mean 
effect (MF) was calculated for each descriptor. This calculation was performed with the equation 
below: 
 

MFj=                 (2) 
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Where MFjrepresents the mean effect for the considered descriptor j, βj is the coefficient of the 
descriptor j, dijstands for the value of the target descriptors for each molecule and, eventually, m 
is the descriptors number for the model. The MF value indicates the relative importance of a 
descriptor, compared with the other descriptors in the model. Its sign indicates the variation 
direction in the values of the activities as a result of the increase (or reduction) of the descriptor 
values. The mean effect values are shown in Table 3. 
 

Table 3.The linear model based on the eight  parameters selected by the GA-MLR method 
 

 Descriptor      Chemical meaning MFa VIFb 
Constant Intercept 0 0 
EP26 Electrostatic potential 26 1.260265 1.148737 
NPA13 Natural population analysis 13 -0.15876 1.182888 
SAPAC22 Surface area approx atomic charg22 0.00414 1.105926 
PW3 Path/walk3-randic shape index -0.07902 1.284402 
Mor16m 3D-MoRSE-signal16/weighted by atomic masses 0.005628 1.321815 
Mor18m 3D-MoRSE-signal18/weighted by atomic masses 0.002912 1.105745 
Mor24m 3D-MoRSE-signal24/weighted by atomic masses -0.00102 1.226363 
G2u 1st component symmetry directional WHIM index/unweighted -0.03414 1.099806 
aMean effect 
bVariation inflation factors   
 
All descriptors were calculated for the neutral species. The log Po/w is assumed to be highly 
dependent upon the EP26, NPA13, SAPAC22,PW3 ,Mor16m,Mor18m,Mor24m and G2u. In the 
present study, the QSAR model was generated using a training set of 33 molecules (Table 2). 
The test set of 8 molecules (Table 2) with regularly distributed log Po/w values was used to 
assess the predictive ability of the QSARmodels produced in the regression. 
 
3.1.   MLR analysis 
The software package used for conducting MLR analysis was Spss 16. Multiple linear regression 
(MLR) analysis has been carried out to derive the best QSAR model. The MLR technique was 
performed on the molecules of the trainingset shown in Table 2.A small number of molecular 
descriptors (EP26,NPA13,SAPAC22,PW3 ,Mor16m,Mor18m ,Mor24m and G2u) proposed were 
used to establish a QSAR model. Additional validation was performed on an external data set 
consisting of 8 drug compounds.  
 
Multiple linear regression analysis provided a useful equation that can be used to predict the log 
Po/w of drug based upon these parameters. The best equation obtained for the Lipophilicity of 
the drug compounds is 
 

LogP=150.269(±37.396)-12.787(±2.570)EP26+3.882(±0.762)NPA13-0.097 
(±0.025)SAPAC22+30.446(±9.409)PW31.056(±0.236)Mor16m+0.445(±0.168)Mor18m-1.418 

(±0.258)Mor24m +34.976(±7.513)G2u 
 

N=41   N train=33     N test=8   R2
train=0.893   F train=24.934    R2test=0.541 

 
Ftest=-0.045   R2

adj= 0.857                 Q2LOO=0.816             Q2LGO=0.730 
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In this equation, N is the number of compounds, R2 is the squared correlation coefficient, Q2
LOO, 

Q2
LGO are the squared cross-validation coefficients for leave one out, bootstrapping and external 

test set respectively, F is the Fisher F statistic. The figures in parentheses are the standard 
deviations. The built model was used to predict the test set data and the prediction results are 
given in Table 1. As can be seen from Table 1, the calculated values for the LogP are in good 
agreement with those of the experimental values. The predicted values for LogP for the 
compounds in the training and test sets using equation 1 were plotted against the experimental 
LogP values in Figure 1. A plot of the residual for the predicted values of LogP for both the 
training and test sets against the experimental LogP values are shown in Figure 2. 

 

                                                                                     Experimental LogP 
 

Figure 1.The predicted versus the experimental LogP by MLR. 

 
Experimental(LogPo/w) 

 
Figure 2.The residual versus the experimental LogP by GA-MLR 
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Also, in order to assess the robustness of the model, the Y-randomisation test was applied in this 
study [25–28]. The dependent variable vector (LogP) was randomly shuffled and The new 
QSAR models (after several repetitions) would be expected to have low R2 and Q2

LOO values 
(Table 4). If the opposite happens then an acceptable QSAR model cannot be obtained for the 
specific modeling method and data. 
 

Table 4.The R2
train and Q2

LOO values after several Y-randomisation tests 
 

No Q2 R2 
1 0.113284 0.472045 
2 0.048896 0.230775 
3 0.003785 0.234683 
4 0.012186 0.31958 
5 0.042953 0.180091 
6 0.042723 0.320828 
7 0.019219 0.21774 
8 0.083071 0.279033 
9 0.005137 0.320529 
10 0.059051 0.166103 

 
The MLR analysis was employed to derive the QSAR models for different Nucleoside analogues. MLR 
and correlation analyses were carried out by the statistics software SPSS (Table 5). 
 
Table 5. The correlation coefficient existing between the variables used in different MLR and equations with 

HF/6-31G* method 
 

 EP26 NPA13 SAPAC22 PW3 Mor16m Mor18m Mor24m G2u 
EP26 1 0 0 0 0 0 0 0 
NPA13 0.054065 1 0 0 0 0 0 0 
SAPAC22 -0.2344 -0.12944 1 0 0 0 0 0 
PW3 0.012593 0.236561 -0.34562 1 0 0 0 0 
Mor16m -0.33313 -0.24288 -0.00361 -0.23044 1 0 0 0 
Mor18m 0.177918 0.081215 -0.13201 0.061633 -0.19956 1 0 0 
Mor24m 0.157028 0.378326 -0.18368 0.073222 -0.35014 0.252322 1 0 
G2u 0.047641 0.049852 -0.17016 0.322559 -0.04335 0.01788 -0.08377 1 

 
Figure 2 has showed that results were obtained from equation HF/6-31G* to the experimental 
values. 
 
3.3. Interpretation of descriptors 
The QSAR developed indicated that electrostatic properties (EP), natural population analysis 
(NPA), surface area approx atomic charge 22 (SAPAC), Path/walk3-randic shape index(PW3) 
3D-MoRSE-signal(16,18,24)/weighted by atomic masses (Mor16m,Mor18m, Mor24m), 
1stcomponent symmetry directional WHIM index/unweighted (G2u)drug n-octanol/water 
partition coefficients.Positive values in the regression coefficients indicate that the indicated 
descriptor contributes positively to the value of log Po/w, whereas negative values indicate that 
the greater the value of the descriptor the lower the value of logPo/w.In other words, increasing 
the EP26 and Mor24mwill decrease log Po/w and increasing the 
NPA13,SAPAC22,PW3,Mor16m,G2u and Mor18m increases extent of log Po/w of the anti-cancer 
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drugs. The standardized regression coefficient reveals the significance of an individual descriptor 
presentedin the regression model. 

 
Series 1: the values of log P were obtained by using prediction. 

Series 2: the values of log P were obtained by using Experimental methods 
Figure 3. The comparison between biological activity (log p) using  experimental and prediction 

 
The greater the absolute value of a coefficient, the greater the weight of the variable in the 
model. Mor16m is the forth descriptor, appearing in the model. It is one of the 3D-molecule 
representations of structuresbased on electron diffraction (3D-MoRSE) descriptors. The 3D-
MoRSE descriptors are derived from infrared spectral simulation using a generalised scattering 
function [31]. Thisdescriptor was proposed as signal (16, 24)/weighted by the atomicmasses 
which relates to the atomic masses of the molecule.The Mor(16,24)m displays a positive sign, 
which indicates that theLogPo/wis directly related to this descriptor.The next descriptor is the 
path/walk 3Randic shape index (PW3), which is one of the topological descriptors. The atomic 
path/walk indices are defined for each atom as the ratio between the atomic path count and the 
atomic walk count of the same length. Whereas the number of paths in a molecule is bounded 
and determined by the molecule’s diameter, the number of walks is unbounded. However, being 
interested only in quotients, the walk count is terminated when it exceeds the maximum allowed 
length of the corresponding path [31]. The molecular path/walk indices are defined as the 
average sum of atomic path/walk indices of equal length. As the path/walk count ratio is 
independent of molecular size, these descriptors can be considered as shape descriptors. As is 
apparent from Table 2, the PW3 mean effect has a negative sign which indicates that the 
LogPo/wis inversely related to this descriptor; therefore, increasing the PW3 of molecules leads to 
a decrease in its LogPo/w values. 
 

CONCLUSION 
 

In this article, a QSAR study of 41 anti-cancer drugs was performed based on the theoretical 
molecular descriptors calculated by the DRAGON and GAUSSIAN software and selected. The 
built model was assessed comprehensively (internal and external validation) and all the 
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validations indicated that the QSAR model built was robust and satisfactory, and that the 
selected descriptors could account for the structural features responsible for the anti-cancer drugs  
activity of the compounds. The QSAR model developed in this study can provide a useful tool to 
predict the activity of new compounds and also to design new compounds with high activity. 
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