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ABSTRACT

In the paper, we study the composition operator C¢ from weighted Bergman space to g-Bloch space in politics, we

obtain the sufficient and necessary condition for C¢ to be bounded or compacted operator from weighted
Bergman space to g-Bloch space.
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INTRODUCTION

Let D={ZDC:|Z|<]} be the open unit diskin C, and use
D"=DxDxL xD={z=(z,z,L ,z)0C":|z|<ll<k<n}

To denote the polydisk inC" and use D" to denote the full topological boundary of D". Let H(D") denote the

space of all holomorphic functionsin D"

For 0< p<+oo and @ >-1 the weighted Bergman space A"(D") consists of all functions f OH(D")
such that

||f||§p = I|f(Z)|pdva(z) < +00
he!
where

i, (2L 7) =0 @)L A (2) = @+)'[] A-]af) AL dAGz)
here )
dA, (2) = (a +1) (1-|4")" dA2)
is a weighted area measure on D" with dA(Z) being normalized Lebesgue area measure on D . When

1< p<+o, A’(D") is a Banach space with the norm || ||ap. If0< p<1, the space A’(D") is a

complete metric space with the following distance: o( f, g) = || f- g||;p :
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Forq>0, f OH(D") issaidto belong to the g-Bloch space BY(D") provided that

apd 1|z f) [

f (2)| < 400
200" k=1

0,

Itiswell knownthat BY isaBanach space under the norm:

n q
1] = F @ +sp Y -2 [2-(2)
0
Z0D" k=1 Zk

< +oo

When =1B"'=B isthe classical Bloch space. Let ¢ =(¢,,L ,4,) beaholomorphic self-map of D". The
composition operator C, is defined byC,f = fog, fIH (D™) .Composition operators acting on Bergman

space and Bloch space have been well understood (see [1-5]). Recently several authors have studied composition
operator on different spaces of analytic functions. When Bloch spaces ere characterized in [6]. Tang and Hu [7] have
got the characterization of bounded or compact composition operators between weighted Bergman space and

g-Bloch space on the unit disk D . For the higher-dimensional case, zhang [8] characterized the boundedness or
compactness of the composition type operator from Bergman space to U -Bloch type space in the unit ball. The

main purpose of this paper is to discuss the conditions for which C{zj is a bounded operator or compact operator
from weighted Bergman to g-Bloch space on the polydiscs.

Throughout the paper, C denotes a position constant, whose value may change from one occurrence to the next one.

1. Theboundednessof C, .
First, we give the following useful Lemmas.

Lemma2.llet 0< p<+oo and—1<@a <+oo,then

Clif.,

t(@]=— TG

DaﬂMSp

Fordl fOAP(D") andz OD".

Proof let [3(z,w) denote the Bergman metricon D" . Forany z[0D" andR>0 ,weuse
D(zr) :{WD D"; B(z,w) < R}

For the Bergman metric ball at Zwith radius R . It iswell known that for any fixed R > 0, we have

v, (D(zR)): ﬂaﬂMW”

Now, let any f JAP(D"), then f OH(D") and |f|p is the subharmonic. By the sub-mean-value property

for|f|p,wehave
C
Vv, (D(z,R))

D — ¢ : j|f(w)|pdva(w)
D(1_|Zk| )2+0/ D"

1f(2)" < [ ] f (w)|" dv,, ()

z,R)
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__ S|l
=— . 2.2)
+a
[]e-Ia0
Theresult follows from (2.1).
Lemma.2.2 Suppose 0< p<+o0 and—1< @ < +oo, then
2+a+p
(0B * aa |12 <],
forany f OAP(D").
Theorem2.let 0< p,q<+c0, -1<@<+0 and @ be a holomorphic self-map of D" .Then

C,:A’(D") - BY(D") isabounded composition operator if and only if the following is satisfied:

n 1- 2\q a
S‘Jpz ( |Zk| ) 2+a+p| ¢I

zDan,|-1l—l| (1- |¢|( )| G

(2)

< 400 (2.2)

Proof. Suppose that (2.2) holds. Suppose any positive constant M . Let

n 1_ 2\q a
M=apS @-|z[) | 2 (5
Z1D" k,I=1

”(1 82

< 400

Forany f O AP(D"), by Lemma2.1 and Lemma 2.2 we have

o =| T (B(O)]+sup>

NEY)
azk (z)‘

Clearly,

C|f.,

[T (#(0)| < P 2.3)
H(l FXORE

holds. And we have

sprZ(l 12) a”zk“’)( )‘
sup e o
-spri (1_|Zk|) a¢' (z)% (¢(z»|‘](1 6P
’ “'Tj(l 6.2)") *
n (1_|Zk| )q a¢| of 2+¢;+P
s’ zk(z)iipz (¢(z))”(1 4.2

H(l 82
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n 1 q 2+a+p
sspy —! 'Zk“2+a+p|g¢'()s§Dpza—(¢(z»(1 6P

“Tj(l 8@ ° -
<M| ] <mC| ], | (24)

By (2.3) and (2.4), we can obtain that C, isabounded composition operator from AP(D") toB*(D").

Conversely, suppose C, is a bounded composition operator from AP(D") toB*(D"). Then we can easily
obtain @, DBq(D”) and

supZ(l |zk|) ¢' (z) <+o0 bytaking f(2)=z (I =1L ,n) in A’(D"),
Z0D" k
respectively. In order to prove (2.2), forany w1 D", we take
2+a
Lojwl”
fu(D=[|l——==
l_'l 1-w 14 )
WherewW = @,(2), then|| f ”a,p < C. Here, we may fix some | (I =1L ,n) without loss of generality. Thus
we have
cle,|=lcI 1‘WII ¢
o 2 W a¢|
>sup) (1-|z] ) (¢(Z)) (Z)
D" k=1
X 6 2 2|9, (z
Z0D" k= —
- (1 hh |
2n 2 1
( +0') cleta) Z(l |Zk|) ‘ & (Z) 2+a+p.|¢|(z)| (2.5)
Z0D" _
- T -l
For any 0 [1(0,1) , here we will discuss with the following two cases.
Case I, if|¢I (Z)| >0, by (2.5) we have
q n
% ” 1 s <H0 (26)
Z0D" k= =
- A-1¢, ) °
Case I1, if|¢ (2)|< I, by ¢ OB ¢' (Z) < +00 we can obtain
710" k=1
1
ﬁ(z) ” 2+a+p
Z0D" k= =
- A-[¢,2f) °
a¢| n(2+g+p)
210" k=1 3z, )‘ 1- 52 ST @
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By (2.5), (2.6), (2.7) and | israndom then (2.2) holds.

This ends the proof of Theorem 2.1.

2. Thecompactnessof C,

Lemma3.lLet 0< p,q<+c0, —-1<a<+co and ¢ be a holomorphic self-map of D" .Then C; isa

compact operator from AP(D") to BY(D") if and on if for any bounded sequence {fj}o_ol in A’(D")
]:

which converges to 0 uniformly on compact subset of D", we have HC¢ fJ I 0 a | - 0.

Proof. he result can be proved by using Montel theorem and the definition of the compact operator, the details are
omitted here.

Theorem3.1. Let 0< p,q<+co, —1<a@<+co and ¢ be a holomorphic self-map of D" .Then
C,:A)(D") — BY(D") isacompact composition operator if and only if the following are all satisfied:

[1] ¢,0B%(D") foral 10{LL ,n} (3.1)
n — 2 q
21 lim supz a-fz]) —— |a¢' (2)|=0 (3.2)
[6(2)|-00" pn G oI
n(l 1 ( )I) P

Proof. Suppose that (3.1) and (3.2) hold. Thenfor any & >0, thereexists 0< 0 <1 such that
2
QU o1 D L

2+a+p

fj(l—|¢.(z)|2> p

Sup
Z0D" k=1

<& (3.3)

Aslg, (2" >1-0.
Let {fj} be any a sequence {f} in A"(D") which converges to 0 on compact subset of D"

i
o of; _ I
sansfylnngjH&p <C. Then {fj} and E converges to O uniformly 0nE—{W.|V\4 Sl—é}, where

E isany acompact subset of D".

If dist(¢(2),0D") <0 then, from (3.3) and Lemma 2.2, we have

SéJDFn’Z(l IZkl) Zk¢)( )‘
Y 0-laf) (22 2 @502
:ﬁei (1_|Zk| ) |0¢| ( )‘| i (o( ))“—1'(1 |¢|(Z)| ) P

ﬁ(l bR
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+l7

ssupzn: Afal) |6¢| (2)

210" kI =1 zDDp|Zl: aV\JI (¢(Z)) ” (1 |¢I(Z)| ) p
| ﬂ(l |¢.()|) v
+a f
<531Dp2(1 6@ @@ <[] 5 (34)

If dist(¢(z),0D") = J, and we assume that { fj} be any a sequence { fj} in AY(D") which converges to
of.

0 on compact subset of D" satisfying Hfiuap <C. Then {fj} and {a—’ converges to 0 uniformly
’ 4

onE Z{W: |V\I12 Sl—é} . By condition (3.1), we have

w3 a-faf) (2 )‘
D" k=1 Zk
<sp3 a-faf) (3160 »‘afk' @
2 o,

<§_;JDPZ(1 &5 a7, D|3Hp/ 5 (9(2)

of. _
S||¢.||B,qsu|o‘(,,—'(¢(z» ~0(j~ @) @5

10" | OW

We can proveeasily‘ f; (¢(O))‘ - 0 (j - ) ,and by(3.4),(3.5)we have

HC¢ fiHB,q :H fiof

oo = O =)

Thismeansthat C, isacompact operator from A?(D") toBY(D").

Conversely, for any| D{L---,n} ,by taking f (z) =z O A", we have
(C,1)(2) =¢(z)TB", so condition (3.1) must hold.

Assume that condition (3.2) fails. Then there exists constant &, >0 and sequence {Zj} O D" saisfying
#(z') - D" asj — o , suchthat

n a-z[)* o,
n 5 2+a+p 0
[Ja-@d &

Sup
Z0D" k,I1=1

(29)=z¢, (3.6)
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For any W1 D", we take
Lo,
f
(2= ”[(1 Wz )

Where W =¢,(2) then H fiHa,p =1 and { fj} converges to 0 uniformly on compact subset of D". Because

C, isacompact operator from A?(D") toBY(D"), wehave

I fille, =15 o4, - 06 =) 37)
But from (3.6) we have
n ) q af
CHINEETONEEYD { L (4(2) {""" @
=sp3a-faf) 20 ] S—— ]
a-lp@p » " @D’
-2 D a3 1-faf) (220 []— s 002
P k1 (1—|¢|(Z)|2) p
1-|z[*)®
_2 (2p+a) 4 ( )|?Dpz -[z]) 2+w+p|a¢, (Z)‘

U 1-lg @) °

> 22 )y ), (39

This contradicts with (3.7) and shows that (3.2) holds. The proof is completed.
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