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ABSTRACT 
 

In the paper, we study the composition operator Cϕ  from weighted Bergman space to q-Bloch space in politics, we 

obtain the sufficient and necessary condition for Cϕ  to be bounded or compacted operator from weighted 

Bergman space to q-Bloch space. 
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INTRODUCTION 
 

Let { : 1}D z C z= ∈ <  be the open unit disk in C , and use  

1 2{ ( , , , ) : 1,1 }n n
n kD D D D z z z z C z k n= × × × = = ∈ < ≤ ≤L L  

 

To denote the polydisk in nC and use nD∂ to denote the full topological boundary of nD . Let ( )nH D  denote the 

space of all holomorphic functions in nD . 
 

For 0 p< < +∞  and 1α > −  the weighted Bergman space ( )p nA Dα  consists of all functions ( )nf H D∈  

such that  

,
( ) ( )

n

pp

p
D

f f z dv zαα = < +∞∫  

where  

1 1( , , ) ( ) ( )n ndv z z dA z dA zα α α=L L = 2

1
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n
k n

k

z dA z dA z
α

α
=

+ −∏ L  

here 
2

( ) ( 1) (1 ) ( )dA z z dA zα α
α α= + −  

is a weighted area measure on nD  with ( )dA z  being normalized Lebesgue area measure on D . When 

1 p≤ < +∞ , ( )p nA Dα  is a Banach space with the norm 
, pα . If 0 1p< < , the space ( )p nA Dα  is a 

complete metric space with the following distance:
,

( , )
p

p
f g f g αρ = − . 



Qiuhe Huang                             J. Chem. Pharm. Res., 2014, 6(6):1973-1979         
______________________________________________________________________________ 

1974 

For 0q > , ( )nf H D∈  is said to belong to the q-Bloch space ( )q nB D  provided that  

2

1

sup (1 ) ( )
n

qn

k
z D k k

f
z z

z∈ =

∂− < +∞
∂∑  

It is well known that qB  is a Banach space under the norm: 

2

1

(0) sup (1 ) ( )q
n

qn

kB
z D k k

f
f f z z

z∈ =

∂= + − < +∞
∂∑  

 

When 11,q B B= =  is the classical Bloch space. Let 1( , , )nϕ ϕ ϕ= L  be a holomorphic self-map of nD . The 

composition operator Cϕ  is defined by C f fϕ ϕ= o , ( )nf H D∈ .Composition operators acting on Bergman 

space and Bloch space have been well understood (see [1-5]). Recently several authors have studied composition 
operator on different spaces of analytic functions. When Bloch spaces ere characterized in [6]. Tang and Hu [7] have 
got the characterization of bounded or compact composition operators between weighted Bergman space and 
q-Bloch space on the unit disk D . For the higher-dimensional case, zhang [8] characterized the boundedness or 
compactness of the composition type operator from Bergman space to µ -Bloch type space in the unit ball. The 

main purpose of this paper is to discuss the conditions for which Cϕ  is a bounded operator or compact operator 

from weighted Bergman to q-Bloch space on the polydiscs.  
 
Throughout the paper, C denotes a position constant, whose value may change from one occurrence to the next one. 
 
1. The boundedness of Cϕ . 

First, we give the following useful Lemmas. 
 
Lemma.2.1Let 0 p< < +∞  and 1 α− < < +∞ , then 

,

2
2

1

( )

(1 )

p

n
p

k
k

C f
f z

z

α
α+

=

≤
−∏

 

For all ( )p nf A Dα∈  and n
kz D∈ . 

 

Proof let ( , )z wβ  denote the Bergman metric on nD . For any nz D∈  and 0R >  , we use  

{ }( , ) ; ( , )nD z r w D z w Rβ= ∈ <  

 
For the Bergman metric ball at z with radius R . It is well known that for any fixed 0R > , we have  

2 2

1

( ( , )) (1 )
n

k
k

v D z R z α
α

+

=

−∏:  

 

Now, let any ( )p nf A Dα∈ , then ( )nf H D∈  and 
p

f  is the subharmonic. By the sub-mean-value property 

for
p

f , we have 
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,

2 2

1

(1 )

p

n

k
k

C f

z

α

α+

=

=
−∏

                       (2.1)  

The result follows from (2.1). 
 
Lemma.2.2 Suppose 0 p< < +∞  and 1 α− < < +∞ , then 

2 p

pf B
α+ +

∈  and 2

,

p

pB p
f C fα

α
+ + ≤  

for any ( )p nf A Dα∈ . 

 

Theorem2.1et 0 , ,p q< < +∞  1 α− < < +∞  and ϕ  be a holomorphic self-map of nD .Then 

: ( ) ( )p n q nC A D B Dϕ α →  is a bounded composition operator if and only if the following is satisfied: 
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Proof. Suppose that (2.2) holds. Suppose any positive constant M . Let  
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For any ( )p nf A Dα∈ , by Lemma 2.1 and Lemma 2.2 we have  
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Clearly,         
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holds. And we have  
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2

,

p

pB p
M f MC fα

α
+ +≤ ≤                                                       (2.4) 

 

By (2.3) and (2.4), we can obtain that Cϕ  is a bounded composition operator from ( )p nA Dα  to ( )q nB D . 

 

Conversely, suppose Cϕ  is a bounded composition operator from ( )p nA Dα  to ( )q nB D . Then we can easily 

obtain ( )q n
l B Dϕ ∈  and  
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∂∑  by taking ( ) lf z z= ( 1, , )l n= L  in ( )p nA Dα , 

respectively. In order to prove (2.2), for any nw D∈ , we take  
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Where ( )l lw zϕ= , then
, p

f Cα ≤ . Here, we may fix some l  ( 1, , )l n= L  without loss of generality. Thus 

we have 
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For any (0,1)δ ∈ , here we will discuss with the following two cases. 

 

Case Ⅰ, if ( )l zϕ δ> , by (2.5) we have  
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Case Ⅱ, if ( )l zϕ δ≤ , by ( )q n
l B Dϕ ∈  and 
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By (2.5), (2.6), (2.7) and l is random then (2.2) holds. 
 
This ends the proof of Theorem 2.1. 
 

2. The compactness of Cϕ  

Lemma.3.1Let 0 , ,p q< < +∞  1 α− < < +∞  and ϕ  be a holomorphic self-map of nD .Then Cϕ  is a 

compact operator from ( )p nA Dα  to ( )q nB D  if and on if for any bounded sequence { }
1j j

f
∞

=
 in ( )p nA Dα  

which converges to 0 uniformly on compact subset of nD , we have 0
qj B

C fϕ →  as j → ∞ . 

 
Proof. he result can be proved by using Montel theorem and the definition of the compact operator, the details are 
omitted here. 
 

Theorem3.1. Let 0 , ,p q< < +∞ 1 α− < < +∞  and ϕ  be a holomorphic self-map of nD .Then 

: ( ) ( )p n q nC A D B Dϕ α →  is a compact composition operator if and only if the following are all satisfied: 

 

[1] ( )q n
l B Dϕ ∈  for all { }1, ,l n∈ L                                            (3.1) 
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Proof. Suppose that (3.1) and (3.2) hold. Then for any 0ε > , there exists 0 1δ< <  such that 
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2
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If ( ( ), )ndist z Dϕ δ∂ ≥ , and we assume that { }jf  be any a sequence { }jf  in ( )p nA Dα  which converges to 

0 on compact subset of nD  satisfying
,j a p

f C≤ . Then { }jf  and 
j

k

f

z

∂ 
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 converges to 0 uniformly 

on { }2
: 1E w w δ= ≤ − . By condition (3.1), we have 
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We can prove easily ( )(0) 0jf ϕ →  ( )j → ∞ ,and by(3.4),(3.5)we have  

, ,
0 ( )j jB q B q

C f f jϕ ϕ= → → ∞o    . 

 

This means that Cϕ  is a compact operator from ( )p nA Dα  to ( )q nB D . 

 

Conversely, for any { }1, ,l n∈ L , by taking ( ) p
lf z z Aα= ∈ , we have  

( )( ) ( ) q
lC f z z Bϕ ϕ= ∈ , so condition (3.1) must hold. 

 

Assume that condition (3.2) fails. Then there exists constant 0 0ε >  and sequence { }j nz D⊂  satisfying 

( )j nz Dϕ → ∂  as j → ∞  ,   such that 
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For any nw D∈ , we take  
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Where ( )l lw zϕ=  then 
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Cϕ  is a compact operator from ( )p nA Dα  to ( )q nB D , we have  
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This contradicts with (3.7) and shows that (3.2) holds. The proof is completed. 
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