Available online <u>www.jocpr.com</u>

Journal of Chemical and Pharmaceutical Research, 2012, 4(4):2005-2011

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Complexation of Th(III), Sm(III), Nd(III) and Pr(III) metal ions and 2hydroxy-4-substituted phenyl-6-substituted phenyl pyrimidines at 0.1 M ionic strength pH metrically

Sumer D. Thakur¹, Vaishali J. Thakur² and Jitesh R. Chaudhari³

¹Department of Chemistry, R. D. I. K.& N. K. D. College, Badnera, Amravati (M.S.) ²Anuradha College of Pharmacy, Chikhali, Buldhana(M.S.) ³Y.C. Arts & Sci. College, Mangrur Pir, Washim(M.S.)

ABSTRACT

The complex formation between Th(III), Sm(III), Nd(III) and Pr(III) Metal Ions And 2-Hydroxy-4-(4'-Aminophenyl)-6-(2'-Hydroxy-5'-Bromophenyl)Pyrimidine[H4AHBP](L₁) and 2- Hydroxy -4-(4'-Chlorophenyl)-6-(2'-Hydroxy-5'-Bromophenyl)Pyrimidine[H4CHBP](L₂) have been studied at 0.1 M Ionic Strength(30 ± 0.1) ⁰C in 70 % Dioxane-water mixture by Bjerrum method as adopted by Calvin and Wilson. It is observed that Th(III), Sm(III), Nd(III) and Pr(III) Metal ions form 1:1 and 1:2 complexes with ligands (L₁ & L₂). The data obtained were used to

estimate and compare the values of proton-ligand stability constant (pK) and metal-ligand stability constants (log k). From estimated data (pK and log k), the effects of substituents were studied.

Key words: 2- Hydroxy -4-Substituted Phenyl-6-Substituted Phenyl Pyrimidines, Dioxane-water mixture, Stability Constants.

INTRODUCTION

Pyrimidine derivatives have found to posses various biological and antibacterial and antifungal properties. Pyrimidine derivatives are known to shows antitumor, anti-inflammatory, anti malarial, anti diabetic, insecticidal and antimicrobial activities.

In a view of analytical applications of pyrimidines, it is interest to know the physiochemical properties such as stability of the complexes with lanthanide metal ions. The lanthanide compounds have remarkable importance in everyday life [1,2]. More explicitly in the previous decades their use in various organic technical processes led to a rapid growth especially in the field of complexes. In recent years the luminescence properties of rare earth metal complexes with different β -diketones have been widely studied due to their use in fabrication of polymer light emitting diodes to enable low cost, full color, flat panel display.

Considerable research work has been done in the past, on the study of complexes[3,4]. The studies in metal-ligand complexes in solution of a number of metal ions with carboxylic acids, oximes, phenols etc. would be interesting which throw light on the mode of storage and transport of metal ions in biological kingdom. With the view to understand the bi-inorganic chemistry of metal ions, Banerjee et al[5] have synthesised a number of mixed-ligand

alkaline earth metal complexes. Bjerrum's[6] dissertation has taken the initiative to develop the field. Metal complexation not only bring the reacting molecules together to give activated complex[7] but also polarised electrons from the ligands towards the metal. The relation between stability and basicity of the ligands is indicated by the formation constant and free energy change value. Bulkier group increases the basicity of ligands as well as stability. The stability of complexes is determined by the nature of central metal atom and ligands. The stability of complexes is influenced by the most important characteristics like degree of oxidation, radius and electronic structure. Irving and Williams[8] had studied the order of stability of metal complexes of transition metal ions by comparing the ionic radius and second ionisation potential of metal ions, as it is valid for most nitrogen and oxygen donor ligands. Narwade et al[9] have investigated metal-ligand stability constants of some lanthanides with some substituted sulphonic acids. Many workers[10-14] have reported their results on metal-ligand stability constants. Bodkhe et al[15] have reported the metal-ligand stability constants of some β -diketones. Tekade et al[16] investigated stability constants of some substituted pyrazolines, isoxalline and diketone. Shekhon[17] potentiometrically determined proton-ligand stability constants in various aqueous organic mixtures. Prasad[18]studied the stability of same metal complexes of β -diketones. Deosarkar [19] have studied stability constants of Al(III), Cr(III) and Fe(III) metal ion complexes with substituted sulphonic acid. Pund[20] have investigated interaction between La(III) and Nd(III) metal ions and 1-(4-hydroxy-6-methylpyrimidine)-3-substituted thiacarbamide of 0.1 M ionic strength pH metrically. Recently Speciation of binary complexes of Ca(II), Mg(II) and Zn(II) with L-glutamic acid in DMSO-water Mixtures has been studied[21].

The present paper describe the interactions between Th(III), Sm(III), Nd(III) and Pr(III) Metal Ions And 2-Hydroxy-4-(4'-Aminophenyl)-6-(4'-Hydroxy-5'-Bromophenyl)Pyrimidine[H4AHBP](L₁) and 2- Hydroxy -4-(2'-Chlorophenyl)-6-(2'-Hydroxy-5'-Bromophenyl)Pyrimidine[M2CHBP](L₂) have been studied at 0.1 M Ionic Strength in 70 % Dioxane-water mixture at (30 ± 0.1) by Bjerrum pH metric method as adopted by Calvin and Wilson.

EXPERIMENTAL SECTION

The ligands [H4AHBP] L_1 & [H4CHBP] L_2 were synthesized in the laboratory by known literature method. The purity of these compounds exceeds 99.5% and structures were confirmed by NMR, IR and melting points. The stock solutions of the ligand was prepared by dissolving required amount of ligand in a minimum volume of dioxane subsequently diluted to final volume. Metal ion solution was prepared by dissolving metal nitrate (Sigma - Aldrich) and standardized by EDTA titration method as discussed in literature . Carbonate free sodium hydroxide solution was prepared by dissolving the Analar pellets in deionised water and solution was standardized . The stock solution of percholric acid was prepared and used after standardization .

Measurements

All measurements were carried out at $(30 \pm 0.1)^{\circ}$ C. Systronic microprocessor based pH meter with magnetic stirrer and combined glass and calomel electrode assembly used for pH measurements. The sensitivity of pH meter is 0.01 units. The instrument could read pH in the range 0.00 to 14.00 in the steps of 0.005. The pH meter was switched on half an hour before starting the titration for initial warm up of the instrument. It was calibrated before each titration with an aqueous standard buffer solution of pH 7.00 and 9.20 at (30 ± 0.1) °C prepared from a 'Qualigens' buffer tablets. The hydrogen ion concentration was measured with combined glass electrode.

Procedure

The experimental procedure involved the titrations of

- i. Free acid HClO₄ (0.01 mol.dm⁻³)
- ii. Free acid HClO₄ (0.01 mol.dm⁻³) and ligand ($20 \times 10^4 \text{ mol.dm}^{-3}$)

iii. Free acid HClO₄ (0.01 mole dm⁻³) and ligand (20 x 10^{-4} mol.dm⁻³) and metal ion (4 x 10^{-4} mol.dm⁻³) against standard carbonate free sodium hydroxide (0.142 mol.dm⁻³) solution using Calvin-Bjerrum and Calvin-Wilson pH titration techniques. The ionic strength of all the solutions were maintained constant by adding appropriate amount of NaClO₄ solution. All titrations were carried out in 70 percentages of Dioxane-water mixtures and reading were recorded for each 0.1 ml addition. The curves of pH against volume of NaOH solution were plotted (fig 1,2). The Proton-Ligand constants were calculated from pH values obtained from the titration curves using the Irvin-Rossotti method and MATLAB computer program (Table 1).

RESULTS AND DISCUSSION

The extent of deviation may be the dissociation of -OH group. 2-mercapto-4-substitued phenyl-6-substituted phenyl pyrimidine may be considered as a monobasic acid having one replaceable H^+ ion from phenolic -OH group and can be represented as

HL \longrightarrow H⁺ + L⁻

The titration data were used to construct the curves [acid curve (A), acid + ligand curve (A+L) and acid + ligand + metal ion curve (A+L+M)] between volume of NaOH against pH.

The proton-ligand formation number nA were calculated by Irving and Rossotti expression (Table1)

$$\overline{\mathbf{m}}_{A} = \gamma \cdot \frac{(E_{0} + N) (V_{2} - V_{1})}{(V_{0} + V_{1}) T_{I}^{0}} \dots \dots (1)$$

where γ denotes the number of dissociable protons, N is the concentration of sodium hydroxide (0.1333 mol.dm³), (V_2-V_1) is the measure of displacement of the ligand curve relative to acid curve, where V_2 and V_1 are the volume of alkali added to reach the same pH reading to get accurate values of (V_2-V_1) : the titration curves were drawn on an enlarged scale: E° and T_L° are the resultant concentration of perchloric acid and concentration of Ligand, respectively. V_0 is the initial volume of reaction mixture (50 cm³). Proton-Ligand stability constant pk values of Ligand were calculated by algebraic method point wise calculation and also, esti mated from formation curves (fig 3, 4) n_A Vs pH (Half integral method) by noting pH at which $n_A = 0.5$ [Bjerrum 1957] (Table 2).

Metal-Ligand stability constants (log k) were determined by the half integral method by plotting n Vs pL. The experimental n values determined using expression -

$$\overline{\mathbf{n}} = \frac{(E_0 + N) (V_3 - V_2)}{(V_0 + V_2) T_m^0} \qquad \dots \dots (1)$$

Where N, E_0 , V_0 and V_2 have same significance as in equation (1), V_3 is the volume of NaOH added in the metal ion titration to attain the given pH reading and T°_{M} (4 x 10⁻⁴ mol dm⁻³) is the concentration of metal ion in reaction mixture. The stability constants for various binary complexes have been calculated (Table 3).

Proton-Ligand stability constant (pK):-

It is observed from titration curve in (fig. 1, 2) that the ligand curves starts deviating from free acid (HClO₄) curves at pH > 2.5. The extent of deviation s may be the dissociation of –OH group completely. The results reveal that (Table 2), the pK Value of ligand- 2 is slightly greater than pK Value of Ligand- 1.

Metal-Ligand stability constant(Log K) :-

It is observed that (Table 3) sufficiently large difference between log K_1 log K_2 Values indicates the stepwise formation of complex between metal ion and ligand except Sm(III) for ligand-1. It showed that less difference between log K_1 log K_2 values indicates Sm(III) – Ligand-1 complexes are occurring simultaneously.

The values of log K_1 log K_2 for Th(III)-Ligand1 & Ligand 2 complexes are higher than Sm(III), Nd(III) & Pr(III)-Ligand-1 & Ligand 2 complexes, indicate that Th(III) forms more stable complex with ligand 1 & 2 than Sm(III), Nd(III) & Pr(III) metal ions.

The higher value of ratio(Log K_1 / Log K_2) for Pr(III) & Nd(III)- Ligand- 2 complex indicates the more stable stepwise complex formation as compare to Th(III) & Sm(III) – Ligand 2 complexes.

[H4CHBP]L₂

pН	V ₁	V_2	V_2-V_1	n _A
3.0	1.72	1.76	0.04	0.9445
3.5	1.75	1.86	0.11	0.8478
4.0	1.78	1.92	0.14	0.8063
4.5	1.79	1.94	0.15	0.7925
5.0	1.80	1.98	0.18	0.7511
5.5	1.80	2.00	0.20	0.7234
6.0	1.80	2.02	0.22	0.6957
6.5	1.80	2.03	0.23	0.6819
7.0	1.80	2.04	0.24	0.6681
7.5	1.80	2.05	0.25	0.6542
8.0	1.80	2.06	0.26	0.6403
8.5	1.80	2.08	0.28	0.6127
9.0	1.80	2.09	0.29	0.5988
9.5	1.80	2.10	0.30	0.5851
10.0	1.80	2.12	0.32	0.5573
10.5	1.80	2.14	0.34	0.5298
11.0	1.80	2.16	0.36	0.5020
11.5	1.82	2.23	0.41	0.4331
12.0	1.82	2.32	0.47	0.3505
12.5	1.90	2.46	0.56	0.2269
pН	V ₁	V_2	V ₂ - V ₁	nA
рН 3.0	V ₁ 1.72	V ₂ 1.74	V ₂ - V ₁ 0.02	n _A 0.9722
pH 3.0 3.5	V ₁ 1.72 1.75	V ₂ 1.74 1.81	V ₂ - V ₁ 0.02 0.05	n _A 0.9722 0.9307
pH 3.0 3.5 4.0	V ₁ 1.72 1.75 1.78	V ₂ 1.74 1.81 1.84	V ₂ -V ₁ 0.02 0.05 0.06	n _A 0.9722 0.9307 0.9169
pH 3.0 3.5 4.0 4.5	V ₁ 1.72 1.75 1.78 1.79	V ₂ 1.74 1.81 1.84 1.87	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933
pH 3.0 3.5 4.0 4.5 5.0	V ₁ 1.72 1.75 1.78 1.79 1.80	V ₂ 1.74 1.81 1.84 1.87 1.88	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932
pH 3.0 3.5 4.0 4.5 5.0 5.5	V1 1.72 1.75 1.78 1.79 1.80 1.80	V ₂ 1.74 1.81 1.84 1.87 1.88 1.90	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ 0.10\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ 0.10\\ 0.11\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ 0.10\\ 0.11\\ 0.12\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92 1.94	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ 0.10\\ 0.11\\ 0.12\\ 0.14 \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478 0.8340
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0	V ₁ 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.90 1.91 1.92 1.94 1.94	$\begin{array}{c} \textbf{V_{2-V_1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ 0.10\\ 0.11\\ 0.12\\ 0.14\\ 0.14\\ \end{array}$	n _Λ 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478 0.8340 0.8063
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5	V ₁ 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92 1.94 1.94 1.96	V2-V1 0.02 0.05 0.06 0.08 0.10 0.11 0.12 0.14 0.16	n _A 0.9722 0.9307 0.9169 0.8933 0.8942 0.8616 0.8616 0.8478 0.8478 0.8340 0.8063 0.7787
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92 1.94 1.94 1.96 1.97	$\begin{array}{c} \mathbf{V_{2}\text{-}V_{1}} \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.11 \\ 0.10 \\ 0.11 \\ 0.12 \\ 0.14 \\ 0.14 \\ 0.16 \\ 0.17 \end{array}$	nA 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8340 0.8363 0.7787 0.7648
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92 1.94 1.94 1.96 1.97 1.99	V2-V1 0.02 0.05 0.06 0.08 0.10 0.11 0.12 0.14 0.16 0.17 0.19	nA 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478 0.8063 0.7787 0.7648 0.7372
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92 1.94 1.94 1.96 1.97 1.99 2.01	$\begin{array}{c} \mathbf{V_{2}\text{-}V_{1}} \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.11 \\ 0.12 \\ 0.14 \\ 0.14 \\ 0.16 \\ 0.17 \\ 0.19 \\ 0.21 \\ \end{array}$	nA 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478 0.8063 0.7787 0.7648 0.7372 0.7096
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	$\begin{array}{c} \mathbf{V}_2 \\ 1.74 \\ 1.81 \\ 1.84 \\ 1.87 \\ 1.88 \\ 1.90 \\ 1.90 \\ 1.91 \\ 1.92 \\ 1.94 \\ 1.94 \\ 1.94 \\ 1.96 \\ 1.97 \\ 1.99 \\ 2.01 \\ 2.05 \end{array}$	$\begin{array}{c} \mathbf{V_{2}\text{-}V_{1}} \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.11 \\ 0.12 \\ 0.14 \\ 0.14 \\ 0.16 \\ 0.17 \\ 0.19 \\ 0.21 \\ 0.25 \end{array}$	nA 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478 0.83403 0.76787 0.7648 0.7372 0.7096 0.6542
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	$\begin{array}{c} \mathbf{V}_2 \\ 1.74 \\ 1.81 \\ 1.84 \\ 1.87 \\ 1.88 \\ 1.90 \\ 1.90 \\ 1.91 \\ 1.92 \\ 1.94 \\ 1.96 \\ 1.97 \\ 1.99 \\ 2.01 \\ 2.05 \\ 2.10 \end{array}$	$\begin{array}{c} \mathbf{V_{2}\text{-}V_{1}} \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.10 \\ 0.11 \\ 0.12 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.16 \\ 0.17 \\ 0.19 \\ 0.21 \\ 0.25 \\ 0.30 \\ \end{array}$	$\begin{array}{c} \mathbf{n_A} \\ 0.9722 \\ 0.9307 \\ 0.9169 \\ 0.8933 \\ 0.8932 \\ 0.8616 \\ 0.8616 \\ 0.8478 \\ 0.8478 \\ 0.8478 \\ 0.8478 \\ 0.8478 \\ 0.8063 \\ 0.7787 \\ 0.7648 \\ 0.7372 \\ 0.7648 \\ 0.7372 \\ 0.7096 \\ 0.6542 \\ 0.5850 \end{array}$
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5	V1 1.72 1.75 1.78 1.79 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.90 1.91 1.92 1.94 1.94 1.96 1.97 1.99 2.01 2.05 2.10 2.17	$\begin{array}{c} \mathbf{V_{2}\text{-}V_{1}} \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.10 \\ 0.11 \\ 0.12 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.17 \\ 0.19 \\ 0.21 \\ 0.25 \\ 0.30 \\ 0.35 \\ \end{array}$	nA 0.9722 0.9307 0.9169 0.8933 0.8616 0.8616 0.8478 0.8478 0.8478 0.8478 0.7787 0.7648 0.7372 0.7096 0.6542 0.5850 0.5161
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.5 12.0	V1 1.72 1.75 1.78 1.79 1.80	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.91 1.92 1.94 1.94 1.94 1.96 1.97 1.99 2.01 2.05 2.10 2.17 2.27	$\begin{array}{c} \mathbf{V_{2}\text{-}V_{1}} \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.08 \\ 0.08 \\ 0.10 \\ 0.11 \\ 0.12 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.16 \\ 0.17 \\ 0.19 \\ 0.21 \\ 0.25 \\ 0.35 \\ 0.42 \end{array}$	nA 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8616 0.8478 0.8478 0.8478 0.8478 0.8461 0.8616 0.8616 0.8617 0.7648 0.7787 0.7648 0.7372 0.7096 0.5161 0.4196
pH 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.5 12.0	V1 1.72 1.75 1.78 1.79 1.80 1.82	V2 1.74 1.81 1.84 1.87 1.88 1.90 1.91 1.92 1.94 1.94 1.94 1.96 1.97 1.99 2.01 2.05 2.10 2.17 2.27	$\begin{array}{c} \mathbf{V_{2}}\text{-}\mathbf{V_{1}}\\ 0.02\\ 0.05\\ 0.06\\ 0.08\\ 0.08\\ 0.10\\ 0.11\\ 0.10\\ 0.11\\ 0.12\\ 0.14\\ 0.14\\ 0.14\\ 0.16\\ 0.17\\ 0.19\\ 0.21\\ 0.25\\ 0.30\\ 0.35\\ 0.42\\ \end{array}$	n _A 0.9722 0.9307 0.9169 0.8933 0.8932 0.8616 0.8617 0.8618 0.8478 0.8478 0.8463 0.7787 0.7648 0.7372 0.7096 0.5850 0.5161 0.4196

Table 1 : Proton-Ligand formation number (n_A) at (30 ± 0.1) ⁰C and at ionic strength μ = 0.1 mol.dm⁻³ NaClO₄ in 70% Dioxane-Water mixure. [H4AHBP]L₁

Table 2: Proton-Ligand Stability constants (pK
--

Sn No	Evictory	рК		
5r. No	System	Half Integral method	Point wise calculation method	
1	[H4AHBP] L1	110034	11.1024	
2	[H4CHBP] L ₂	11.5279	11.6227	

Table 3: Metal-Ligand Stability constants (Log K).

System	Log K ₁	Log K ₂	Log K1-Log K2	Log K ₁ /Log K ₂
Th(III)- L ₁	8.2447	3.9558	4.2889	2.0842
Sm(III)- L1	6.2447	4.3558	1.8889	1.4336
Nd(III)- L ₁	7.7447	3.9273	3.8174	1.9720
Pr(III)- L ₁	7.3327	3.8538	3.4789	1.9027
Th(III)- L ₂	9.2958	4.7121	4.5837	1.9727
Sm(III)- L ₂	8.1336	3.9638	4.1698	2.0579
Nd(III)- L ₂	8.2441	3.8538	4.3903	2.1392
Pr(III)- L ₂	8.7958	3.7538	5.0420	2.3431

Fig 1 &2 : pH against volume of NaOH at $\mu = 0.1M$ at (30 \pm 0.1) 0C

CONCLUSION

From the titration curve, it is observed that the departure between (Acid + Ligand) curve & (Acid +Ligand +Metal) Curve for all system of ligand-1 started from pH=2.5 to 3.0 and of ligand to started from pH=3.25 to 3.50, this indicate the commencement of complex formation. Also change in color from yellow to brown in pH range from 3.0 to 9.0 during the titration showed the complex formation between Metal & Ligand.

Acknowledgement

The financial support is sanctioned by the University Grants Commission (UGC), New Delhi as Minor Research Project for carrying out this research work is great fully acknowledged. The authors are also thankful to the Principal, RDIK & KD College, Badnera for providing facilities throughout the research work.

REFERENCES

[1] C.S. Reiners, Chem. Uns. Zei, 2001, 2, 110

[2] R.Anwander, Top Organometalic Chem. Springer Verlag, Berlin, Hersdelberg, New York, 1999.

[3] A. E. Martell and M. Calvin : *Chemistry of metal chelate compounds*, Prentie Hall, Inc. Englad, Cliffs, N. J. **1962.**

[4] F.H.C. Rossotti and H. Rossotti : The determination of stability constants, McGraw Hill Book Co.

[5] A. K. Banerjee and T.V.R. Rao, J. Indian Chem. Soc. 1968, 63, 480.

[6] J. Bjerrum : Metal amine formation in aqueous solutions, P. Hasse and Sons, Copenhagen 1941.

[7] A. T. Florence and D. Attwood : *Physical principle's of pharmacy*, Macmillan.London 1981.

[8] H. Irving and R.J.P. William : J. Chem. Soc. 1953, 3192.

[9] M. L. Narwade, M.M. Chincholkar and S. W. Sathe : J Indian Chem Soc., 1985, 62, 194.

[10] S D Thakur, D T Mahajan, M L Narwade and P S Bodkhe, *Acta Ciencia Indica*, **2008**, Vol.XXXIV, C, No. 1,005.

[11] C. Natrajan and P. Thormaraj, Indian J. Chem., 1991, 30A, 722.

[12] V.B. Tayade, Synthesis, Studies of hererocyclic compounds containing O, N and S heteroatoms, Ph.D Thesis, Amravati University, Amravati 1998.

[13] P.D. Sawalakhe, Studies in metal-ligand complxes with some substituted 1,3- diones and 3,5-diaryl pyrazole and pyrazoline, Ph.D. Thesis, Amravati University, Amravati **1992**.

[14] S D Thakur, K P Munot, P B Raghuwanshi and D T Tayade, *Acta Ciencia Indica*, **2009**, Vol.XXXV C, No. 3,425.

[15] P. S. Bodkhe, K. N. Patil, M. L. Narwade and A.G. Doshi : Asian J. Chem. 2003 Vol 15, No. 3 & 4, 1739 - 1743.

[16] P. V. Tekade, K. N. Patil, M. L.Narwade : Acta Ciencia Indica. 2005, Vol. XXXIC, No. 4, 287.

[17] B S Sekhon, Juhi Srivastava and S Kaur: Indian J Chem., 2008, Vol 85, pp1082.

[18] R N Prasad, K M Sharma and Anjali Agrawal: J Ind Chem Soc, 2008 85,36.

[19] S D Deosarkar, H G Jahagirdar and M L Narwade, Acta Ciencia Indica, 2009, Vol.XXXV C, No. 2,277.

[20] D.A.Pund ,Bhagawatkar, D T Tayade and R B Rathod : J Ind Chem Soc. 2010 3(2),246.

[21] B. Ananda Kumar, S. Raju, K. Bharath Kumar Naik, B. B. V. Sailaja and G. Nageswara Rao, *Der Pharma Chemica*, **2011**, 3 (5):155-167 .