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ABSTRACT 
 
Networks are widely used in a variety of different fields and attract more and more researchers. Community 
detection, one of the research hotspots, can identify salient structure and relations among individuals from the 
networks. Many different solutions have been put forward to detect communities. EM as a model on statistical 
inference methods has received more attention because of its simple and efficient structure. Unlike many other 
statistical inference methods, no extra information is assumed except for the network itself and the number of groups 
for the EM approach. However, practical usefulness of the EM method is often limited by computational inefficiency. 
The EM method makes a pass through all of the available data in every iteration. Thus, if the size of the networks is 
large, every iteration can be computationally intensive. Therefore we put forward an incremental EM method-IEM 
for community detection. IEM uses the machinery of probabilistic mixture models and the incremental EM algorithm 
to generalize a feasible model fit the observed network without prior knowledge except the networks and the number 
of groups. Using only a subset rather than the entire networks allows for significant computational improvements 
since many fewer data points need to be evaluated in every iteration. We also argue that one can select the subsets 
intelligently by appealing to EM’s highly-appreciated likelihood judgment condition and increment factor. We 
perform some experimental studies, on several datasets, to demonstrate that our IEM can detect communities 
correctly and prove to be efficient. 
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INTRODUCTION 
 

As a new emerging discipline, research on networks attracts researchers from a variety of different fields. In fact, 
studies that can qualitatively and quantitatively characterize networks will help to unveil the general laws regulating 
different real systems modeled by networks, and therefore will be relevant in a number of disciplines (biology, social 
sciences, et al).Community structure is one of the crucial structural characteristics of networks; therefore, accurately 
analyzing their community structure represents a very relevant topic [1-6]. 
 
Communities are groups of nodes with a high level of group inter-connection [1]. They can be seen as relative 
isolated subgroups with few contacts with the rest of the network. Community detection can identify salient 
structure and relations among individuals from the network. Researchers put forward many different methods, which 
are mainly used to detect the groups with dense connections within groups but sparser connections between them. To 
detect more latent structures in reality networks, various models on statistical inference have been proposed recently, 
which are on sound theoretical principles and have better performances identifying structures, and have become the 
state-of-the-art models [7-10]. The models ‘aim is to define a generative process to fit the observed network, and 
transfer the community detecting problem to Bayesian inference or Maximum Likelihood methods [11-14]. The 
drawback, shared with many other methods, is that structure detection usually implies computational expensive 
exploration of the solutions maximizing the posterior probability of the likelihood. More recently, a maximum 
likelihood method that considers model clustering as missing information and deals with it using an iterative 
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Expectation Maximization (EM) method has been introduced by Newman and Leiche [2]. The EM method is a 
simple algorithm that is capable of detecting a broad range of structural signatures in networks, including 
conventional community structure, bipartite of disassortative structure, fuzzy or overlapping classifications, and 
many mixed or hybrid structural forms that have not been considered explicitly in the past.  
 
Due to the simple structure of the EM method, there has been a growing body of work on the analysis of the EM 
algorithm [3-5]. Many improvements have been put forward to better the EM method since then. However, a 
common weakness in these studies, as we will discuss in detail in related work, is that the EM method will be low 
efficient when the networks are large-scaled. In fact, the EM method may make sense when the networks are 
small-scaled or medium-scaled. On the contrary, more often than not, real-world networks are large-scaled. Under 
such scenarios, if an algorithm like iterative EM method evaluates all samples at each step, it may results in high 
complicity and low efficiency. Therefore, we argue that a more appropriate approach is to improve the EM method 
in order to reduce samples at each step. Consequently, we propose an incremental EM algorithm on the sample 
subset that is converge to optimal solutions using the proposed formulations. We prove the correctness and 
convergence of our algorithm and show that this algorithm has low time complexity when the data of the networks is 
large-scaled. 
 
The rest of the paper is organized as follows: in Section 2 we discuss related work and the EM method is formally 
introduced in Section 3. Next, we describe in Section 4 our generalization of incremental EM method of community 
detection. In Section 5, we provide experimental studies. Finally in Section 6, we give the conclusion and future 
directions. 
 
RELATED WORKS 
Community structure has been extensively studied in various research areas such as social network analysis, Web 
community analysis, computer vision, et al. In network analysis, an important research topic is to identify cohesive 
subgroups of individuals within a network where cohesive subgroups are defined as “community detection”. 
Recently there exists a growing body of literature on community detection. Many approaches, such as clique-based, 
degree-based, and matrix-perturbation-based, have been proposed to extract cohesive subgroups from network. The 
approach of community detection can be characterized as heuristic measure methods and   statistical inference 
methods according to the basis of object function. Heuristic measure methods such as modularity maximization [6] 
and extreme optimization [7] use a heuristic metric to measure community structure and lack of rigorous theoretical 
basis. Statistical inference methods such as planted partition model [8] and the EM method [2] can identify the 
structure of structural equivalence and regular equivalence, and classify the vertices of the networks using the 
observed networks fit by a generative process. Statistical inference methods have perfect theoretical basis which is 
different from heuristic measure methods, and have become the state-of-the-art methods. Statistical inference 
methods have the advantage that, depending on the statistical model used, they can be very general detecting both 
structural equivalent and regular equivalent set of individuals. Consequently, more literatures have been proposed on 
statistical inference methods. The EM approach as a model on statistical inference methods has received more 
attention because of its simple and efficient structure. Unlike many other statistical inference methods, no extra 
information is assumed except for the network itself and the number of groups for the EM approach. Contrast to 
traditional community detection methods, the EM approach is capable of detecting disassortative structure as well as 
overlapping classifications.  
 
There are some recent studies on the EM method for community detection. The EM approach to community 
detection is first introduced by Newman et al [2]. We will denote it by the acronym NL-EM from now on. They use 
the machinery of probabilistic mixture models and the EM algorithm to generalize a feasible model fit the observed 
network without prior knowledge except the networks and the number of groups. They also give a number of 
examples demonstrating how the method can be used to shed light on the properties of real-world networks. In their 
model, their parameter definition implies that the classification must be such that each class has at least one member 
with non-zero out-degree. The constraint forces NL-EM to classify a simple bi-partite graph. Based on the idea, 

Ramasco et al. [3] generalize an extension of NL-EM, in which they extend the parameter θ .The examples show 
both numerically and analytically that the new generalized EM method is able to recover the process that led to the 
generation of content-based networks. Muggan et al. [4] use NL-EM to yield a stability analysis the grouping that 
quantifies the extent to which each node influences its neighbor group membership. All these studies, however, have 
a common weak point-the EM method is usually low efficient and high complexity when the networks are 
large-scaled. That is, when the EM method is used to detect communities in the networks, it evaluates all samples in 
every iteration which may result in low convergence rate and bad clustering effect. In contrast, in our proposed 
method, we study an incremental EM method on the sample subset instead of whole samples which prove higher 
efficient.  
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NL- EM METHOD 
NL-EM is capable of detecting networks structure relying on following basic assumptions: (1) The actual 
connectivity of the networks is related to a priori unknown grouping of the individuals; (2) The presence or absence 
of a link is independent from the other links of the networks. 
 

We begin with a quick summary of NL-EM as applied to graphs. Given a graph G  of N  nodes and an 

adjacency matrix ijA
, NL-EM method searches for a partition of the nodes into K  groups such that a certain 

log-likelihood function for the graph is maximized. Henceforth we will refer to the groups into which NL-EM 

divides the nodes, as classes. There are three variables as follows in NL-EM: rπ
,the probability that a randomly 

selected node is in group r ; rjθ
,the probability that an edge leaving group r  connects to a certain node 

j  ; irq
,the probability that node i  is assigned to group r .The parameters rπ

 and rjθ
 satisfy the 

normalization conditions: 
 

1 1

1, 1
K N

r ri
r i

π θ
= =

= =∑ ∑
                                                                       (1) 

 

Assuming that the parameters π  and θ  are given, the probability 
Pr( , , )A g π θ

 of realizing the given graph 

under a node classificationg , such that ig
 is the group that node i  has been assigned to, can be written as: 

 

,
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A
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i j

A g π θ π θ
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Pr( , , )A g π θ
 is the likelihood to be maximized, but it turns out to be more convenient to consider its logarithm 

instead:  
 

,( , ) ln ln .
i ig ij g j

i j

L Aπ θ π θ
 

= + 
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∑ ∑
                                                              (3) 

 

Treating a prior unknown group assignment ig
 of the nodes as statistical missing information, one considers the 

averaged log-likelihood constructed as: 

 

( , ) ln ln .ir r ij rj
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The final results are 
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Where ik
 is the total degree of node i . The still unknown probabilities irq

 are then determined a posterior by 
noting that: 
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From which one obtains: 
 

.
ij

ij

A

r rjj
ir A

s rjs j

q
π θ

π θ
=

∏
∑ ∏                                                                            (8) 

Equation (5), (6), and (8) form a set of self consistent equations for rπ
, rjθ

 and irq
 that any extreme of the 

expected log-likelihood must satisfy. 
 

Thus, given a graph G , the EM algorithm consists of picking a number of classes K  into which the nodes are to 
be classified and searching for solutions of Equation (5), (6), and (8). These equations are derived by Newman et al. 

[2]. They also show that when applied to diverse type of networks the resulting,rj
θ

 and irq
 yield useful 

information about the internal structure of the network. Note that only a minimal amount of a priori information is 

supplied: the number of classes K  and the networks. 
 
INCREMENTAL EM METHOD 
Despite the EM method’s wide-spread popularity, practical usefulness of the EM method is often limited by 
computational inefficiency. The EM method makes a pass through all of the available data in every iteration. Thus, if 
the size of the networks is large, every iteration can be computationally intensive. We introduce an incremental EM 
algorithm for fast computation based on random sub-sampling which is denoted by the acronym IEM from now on. 
Using only a subset rather than the entire networks allows for significant computational improvements since many 
fewer data points need to be evaluated in every iteration. We also argue that one can select the subsets intelligently 
by appealing to EM’s highly-appreciated likelihood judgment condition and increment factor. 
 

Given a graph G  of N  nodes, we first select M ( M N⊂ ) nodes as the initial sample subset, and then we will 

train the initial subset by using NL-EM method. After the training, we will add d ( d N M⊂ − ) nodes from the 
remaining samples to the initial subsets, and then we will train the new formed subsets. The similar iterative 
operation is repeated until the subset is identical to the entire samples. The quantities in our theory thus fall into 

three classes: (1) How to define parameter M ? In other words, how many nodes should be first chosen as the 

initial subsets? (2) How to define parameter d ? That is to say, how many nodes should be complemented after last 

training? (3)When will d  nodes be added to the subset? Namely what conditions should be satisfied when the 
subset changes? We will give some reasonable solutions as followed 
 
The definition of parameter M   

Parameter M  means the number of nodes in the initial subset. The initial subset selection is an important part of 
IEM which has a great influence on the results. Our goal is to select some nodes as the initial subset which is most 
representative of the entire data, and therefore the selected subset can well describe the global features.  
 
There is a popular view in network analysis that the important nodes are most representative of the entire networks. 
Consequently we will select the important nodes of the whole networks. Centrality analysis provides answers with 
measures that define the importance of nodes. There are many classical and commonly methods used ones [9]: 
degree centrality, closeness centrality, and betweenness centrality. These centrality measures capture the importance 
of nodes in different perspectives. With large-scale networks, the computation of centrality measures can be 
expensive except for degree centrality.  We define n  to be the number of the nodes and  m  to be the number of 
edges between nodes. Then we can get time complexity and space complexity about the centrality measures. 
Closeness centrality, for instance, involves the computation of all the pairwise shortest paths, with time complexity 

of 
2( )O n  and space complexity of 

3( )O n  with the Floyd-Warshall algorithm [10] or 
2( log )O n n nm+  time 

complexity with Johnson’s algorithm [11]. The betweenness centrality requires ( )O nm  computational time 
following [12]. For large-scale networks, efficient computation of centrality measures is critical and requires further 
research.  
 
We propose a new method of measuring the centrality which is a compromise between complexity and efficiency. 
Now we study degree centrality which is the simplest measures. For degree centrality, the importance of a node is 
determined by the number of nodes adjacent to it. The larger the degree of one node, the more important the node is. 
The degree centrality of node v  is defined as: 
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( ) / ( 1)D iC v d n= −
                                                                         (9) 

 

where id
 is defined as the number of nodes adjacent to v , and n  is defined as the number of nodes in the 

network. 
 
However, the measure is not comprehensive enough, i.e., some important nodes (i.e., bridge contacts connect with 
merely two edges) don’t have high degree centrality. Based on the idea, we argue that the importance of one node is 
determined by its connection model as well as its role in the networks. Accordingly we consider two factors, namely 
the connection model of the node and its role in the network. The connection model of one node can be described by 
its degree centrality, and the role of one node can be described by its cohesion centrality. 
 
Definition1: The connectivity of node v  is defined as the number of the edges between v  and the nodes directly 
connected with v . 
 
The connectivity of a node measures how close it is to the nodes which are directly connected with it, and reflects 

the local connection property of the node. Obviously, the span of connectivity is between 0 and ( )( ( ) 1) / 2D DC v C v − . 
 
Definition 2: The cohesion centrality of node v  is defined as follows: 
 

( )( ( ) 1)
( )

2
D D

c
i

C v C v
C v

c

−=
                                                                     (10) 

 

Where 
( )DC v

 is the degree centrality of nodev , and ic
 is the connectivity of nodev .  

 

According to the relations between the nodes and the edges in the network, the value of 
( )cC v

 satisfies the 
conditions: 
 

( ) 1cC v ≥
                                                                                 (11) 

 
We find that the larger the connectivity of one node, the less important the node is. This is because the deletion of 
the node with larger connectivity will make less affection on the network. Thus according to equation (10), the more 
importance one node is, the larger the cohesion centrality of the node is. Therefore, the cohesion centrality is the 
positive evaluation index of the node. 
 
To integrate the two factors (i.e., connection model of one node and its role in networks), an importance function is 
introduced to measure the importance of the node, where the importance consists of two parts-a degree centrality 
and a cohesion centrality: 
 

( ) ( ) (1 ) ( )D cI v C v C vα α= ⋅ + − ⋅                                                                 (12) 
 

where α  satisfies 0 1α≤ ≤ . 

In this importance function, the degree centrality 
( )DC v

 measures the connection model of node v , and the 

cohesion centrality 
( )cC v

 measures the role of node v . The parameter α  is set by the user to control the level 
of emphasis on each part of the total importance function. 
 
 Thus according to equation (12) we can select important nodes with high value as the initial subset. 
 

The definition of parameter d  

Parameter d  means the number of nodes which will be complemented to the subset in every iteration. The 

definition of parameter d  is another crucial question in IEM. The parameter should make the subset fit the real 

model as much as possible. Here we propose the concept of incremental factor to describe parameter d  based on 
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information entropy.   
 
According to information theory, the entropy measures the uncertainty of the system. The larger the entropy is, the 
more uncertain the system is. If the density function values of every node in the subset are approximately equal, the 
uncertainty of the distribution for the entire data is largest (i.e., the subset has maximum entropy). Conversely, if the 
density function values of every node are very asymmetric, the subset has minimal uncertainty. Therefore, we 
introduce the concept of density entropy to measure incremental factor.  
 

Definition 3: Given nodes set 1 2{ , , , }ND x x x= L  which has N  nodes, the density function value of every node 

is 
( )if x

, 1,2, ,i N= L , and δ  is the sample variance, then the density entropy is defined as follows: 
 

1

( ) ( )
( ) ln

N
i i

i

f x f x
DenEn

Sum Sum
δ

=

= −∑
                                                                 (13) 

 

where Sum is the normalized factor defined as follows: 
 

1

( )
N

i
i

Sum f x
=

=∑
                                                                              (14) 

 
The density entropy has two properties: 
 

Property 1:0 ( ) ln( )DemEn Nδ≤ ≤ ; 

Property 2: ( ) ln( )DemEn Nδ =  when and only when 1 2( ) ( ) ( )Nf x f x f x= = =L , therefore 

0
lim ( ) ln( ) max( ( ))DenEn N DenEn
δ δ

δ δ
→

= =
. 

From Property 2, when ( ) ln( )DenEn Nδ = , the nodes in the subset are consistent with the real distribution which is 

ideal case. With the increase of δ , the value of ( )DenEnδ  decreases which will reach a minimum subsequently, 

and then the value of ( )DenEnδ  will become larger which will reach a maximum ln( )N  when 0δ →  and 

1 2( ) ( ) ( )Nf x f x f x= = =L
. 

 

The change of the sample variance δ  is similar to the density entropy, and we take into account the middle value 

of ( )DenEnδ . Consequently, we propose incremental factor β  as: 
 

( ) / 2 ln( ) / 2DenEn Nβ δ= =                                                                   (15) 
 

According to equation (15), the parameter d can be described as follows: 
 

/d N β=                                                                                 (16) 

Once parameter d  is determined, the iterative process of IEM can be carried out as follows: when the samples in 

the subset fit the real networks, d  nodes are added to the subset, and then new fitting process goes on. The 
incremental process will end until the subset is equal to the entire data. In the process, the subset gradually 
approaches the entire data. 
 
It is worth mentioning that the complement nodes in every iteration are selected from the entire nodes. Hence the 
number of nodes in subset turns out to be: 
 

/M M d M N β= + = +                                                                   (17) 
 
The conditions when the subsets changes  

From Section 3, we can see that the EM method is an iterative procedure for Maximizing ( , )L π θ  which we 
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describe in Equation (4). Assume that after the 
thn  iteration the current estimate for π  and θ  is given by nπ

 

and nθ
. Since the objective is maximize ( , )L π θ , we wish to computer an updated estimate  π  and θ  such 

that: 
 

( , ) ( , )n nL Lπ θ π θ>
                                                                       (18) 

 
Equation (18) means the iteration condition of the EM method, namely if the update likelihood is not more than the 
current likelihood then the iteration will end.   

Inspired by Equation (18), we propose the iteration condition of IEM. We define  ( , )tL π θ  as the maximum 

likelihood after 
tht  iteration and ( 1)( , )tL π θ+  as the maximum likelihood after ( 1)tht +  iteration. The iteration 

condition can be defined as: 
 

( 1)( , ) ( , )t tL Lπ θ π θ+ >                                                                     (19) 
 
Equivalently we want to maximize the difference: 
 

( 1)( , ) ( , )t tD L Lπ θ π θ+= −                                                                  (20) 

Assume γ  is a positive number which is small enough, then if D γ> , we argue that the current estimate is 

undesirable and the iteration should go on. If D γ≤ , then the subset in 
tht  iteration is fit to the model of the real 

data , and the new samples should be complemented to carry out the next iteration. When the subset is equal to the 
entire data, the terminate condition is consistent to the EM method. 
 
The determining of α  
How to determine the α  in Equation (12) is a challenging issue. When the ground truth is available, standard 
validation procedures can be used to select an optimalα . However, in many cases there is no ground truth and the 
community detection performance depends on the user’s subjective performance. In the respect, through the 
parameter α , our IEM provide the user a mechanism to push the community detection results toward his or her 
preferred outcomes. The problems of whether a “correct” α  exists and how to automatically find the best α  
when there is no ground truth are beyond the scope of this paper. To simply the experiments, we will set α  as 0.5 
in the following example applications. 
 
EXAMPLE APPLICATIONS 
In this section, we use several synthetic dataset to study the performance of our IEM from different aspects. In 
section 5.1 we will first verify the correctness of IEM, and then we will compare our IEM with baseline 
algorithm-EM in section 5.2. 
 
First Example Application 
We start with the first synthetic dataset, which is a static network, to illustrate some good properties of our IEM. 
This dataset is first studied by White and Smyth[13] and is shown in Figure 1(a). The network contains 15 nodes 
which roughly form 3 communities-C1, C2, and C3-where edges tend to occur between nodes in the same 
community. 

We first apply our algorithm to the network with various community numbers m  and the resulting Q  values are 

plotted in Figure1 (b). Q  values can be interpreted as modularity values which is a measure of the deviation 
between the observed edge-cluster probabilities and what one would predict under an independence model. Newman 

etc. [14] show that larger Q  values are correlated with better graph clustering. In Figure 1(b) we also show the 

modularity values 
'Q  that are reported by White and Smyth. As can be seen from Figure1 (b), both Q  and 

'Q  

show distinct peaks when 3m= , which corresponds to the correct community number. Our IEM algorithm gets 
higher modularity values which indicate that IEM can classify the network better. 
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Next, after our IEM algorithm correctly partitions the nodes into three communities, we illustrate the soft 
community membership by studying two communities-C2 and C3. In Figure 1(b) we use triangle shape to represent 
the nodes in C2, and circle shape to represent the nodes in C3. But we use different gray levels to indicate their 
community membership-we use white color to illustrate the level that a node belongs to C2 and dark color to show 
the level that a node belongs to C3. As can be seen, while the nodes which are white or black have very clear 
community memberships, the nodes which are on the boundary between C2 and C3, have rather fuzzy membership. 
The shallower the nodes are, the more likely the nodes belong to C2, Centrally, the deeper the nodes are, the more 
likely the nodes belong to C3.In other words, our IEM algorithm is capable of assigning meaningful soft 
membership to a node to indicate to which level the node belongs to a certain community. 
 

       
(a)                                    (b) 

Figure1. First example application: (a) applications of IEM method, (b) Modularity value 
Q

 and Modularity value 
'Q
 under 

different community numbers 
 
Second Example Application 
We secondly apply our IEM algorithm to a small network-“Karate club” network [14]. The network contains 34 
nodes which roughly form 2 communities-C1 and C2. The network is of particular interest because the club split in 
two during the course of Zachary’s observations as a result of an internal dispute and Zachary recorded the 
membership of the two factions after the split. 
 
Figure 2 shows the result of our IEM algorithm which the number of clusters is set to 2. We use different gray levels 
to indicate their community membership as first example application. In Figure 2 we use circle shape and rectangle 
shape to represent the nodes in C1 and C2 respectively. But we use different gray levels to indicate their community 
membership-we use white color to illustrate the level that a node belongs to C1 and dark color to show the level that 
a node belongs to C2. As can be seen, node 9, 3, 14, 20 are on the boundary between C1 and C2, which have rather 
fuzzy membership. 

 
Figure2. Second example application: applications of IEM method 

 
Next, after our IEM algorithm correctly partitions the nodes into two communities, we compare our IEM with 
baseline algorithm NL-EM. The compared result is shown as Table 1. As we can see from Table 1, under the same 
computing environment the time of IEM need only 0.471 second, which is much less than it of NL-EM; the 
iterations of IEM is only 35, which is greatly less than it of NL-EM. From the table we have the following 
observations. On the dataset, among the two algorithms (NL-EM and IEM), IEM outperforms NL-EM. In other 
words, our IEM can reach the neighborhood faster than NL-EM, and is high efficient because of fast convergence 
rate.  
 

Table 1.The comparison between NL-EM and IEM 
 

Dataset Parameter NL-EM IEM 
Karate club Time(s) 

Iterations 
Likelihood Estimate 

0.782 
87 

-6.321 

0.471 
35 

-6.435 
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CONCLUSION 
 

Community detection is a challenging research problem with broad applications. In this paper we have described an 
incremental EM method-IEM for community detection. IEM uses the machinery of probabilistic mixture models and 
the incremental EM algorithm to generalize a feasible model fit the observed network without prior knowledge 
except the networks and the number of groups. The method is more efficient than previous NL-EM, making use of a 
new incremental approach which is more close to the optimal solutions. We use only a subset rather than the entire 
networks allows for significant computational improvements since many fewer data points need to be evaluated in 
every iteration. We also argue that one can select the subsets intelligently by appealing to EM’s highly-appreciated 
likelihood-judgment condition and increment factor. We have demonstrated the method with applications to some 
simple examples, including computer-generated and real-world networks. The method’s strength is its efficiency 
which leads to high convergence rate and good clustering effect. 
 
As part of future work, we plan to extend our framework in two directions. First, our current model only applied on 
static networks where no temporal analysis is used for evolution study. We are using our model in dynamic networks 
to detect communities. Second, so far we only considered the link information. In many applications, the content 
information is also very important. We are investigating how to incorporate content information into our model. 
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