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ABSTRACT

Networks are widely used in a variety of differéields and attract more and more researchers. Conitpu
detection, one of the research hotspots, can ifyestlient structure and relations among individudtom the
networks. Many different solutions have been pawvdal to detect communities. EM as a model on stail
inference methods has received more attention tsecad its simple and efficient structure. Unlikenpather
statistical inference methods, no extra informat®assumed except for the network itself and theber of groups
for the EM approach. However, practical usefulnekthe EM method is often limited by computatidnafficiency.
The EM method makes a pass through all of the @vaildata in every iteration. Thus, if the sizehaf networks is
large, every iteration can be computationally irdee. Therefore we put forward an incremental EMhoé-1IEM
for community detection. IEM uses the machinegyratbabilistic mixture models and the incremental Blgorithm
to generalize a feasible model fit the observedart without prior knowledge except the networkd #re number
of groups. Using only a subset rather than theremietworks allows for significant computationalpimvements
since many fewer data points need to be evaluateyeéry iteration. We also argue that one can $dlee subsets
intelligently by appealing to EM’s highly-apprectat likelihood judgment condition and increment dactVe
perform some experimental studies, on several d&gaso demonstrate that our IEM can detect comti@sni
correctly and prove to be efficient.
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INTRODUCTION

As a new emerging discipline, research on netwatlmcts researchers from a variety of differeekds. In fact,
studies that can qualitatively and quantitativétaracterize networks will help to unveil the gehéaavs regulating
different real systems modeled by networks, ancetbee will be relevant in a number of discipliriéslogy, social
sciences, et al).Community structure is one ofctiueial structural characteristics of networksyréfere, accurately
analyzing their community structure representsrg weevant topic [1-6].

Communities are groups of nodes with a high leegroup inter-connection [1]. They can be seeneative
isolated subgroups with few contacts with the refsthe network. Community detection can identifyliesat
structure and relations among individuals fromribevork. Researchers put forward many differentiogs, which
are mainly used to detect the groups with denseexiions within groups but sparser connections éetwhem. To
detect more latent structures in reality netwovksious models on statistical inference have beepgsed recently,
which are on sound theoretical principles and Haatter performances identifying structures, andehHaecome the
state-of-the-art models [7-10]. The models ‘aintasdefine a generative process to fit the obsenetwvork, and
transfer the community detecting problem to Bayesiderence or Maximum Likelihood methods [11-1Fhe
drawback, shared with many other methods, is thractsire detection usually implies computationapensive
exploration of the solutions maximizing the posierprobability of the likelihood. More recently, maximum
likelihood method that considers model clusterimgmaissing information and deals with it using agrative
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Expectation Maximization (EM) method has been idtreed by Newman and Leiche [2]. The EM method is a
simple algorithm that is capable of detecting aaddrdange of structural signatures in networks, uidicig
conventional community structure, bipartite of dsartative structure, fuzzy or overlapping clasatfons, and
many mixed or hybrid structural forms that have be¢n considered explicitly in the past.

Due to the simple structure of the EM method, tHeas been a growing body of work on the analysithefEM
algorithm [3-5]. Many improvements have been puwfrd to better the EM method since then. Howewer,
common weakness in these studies, as we will disitudetail in related work, is that the EM methaidl be low
efficient when the networks are large-scaled. Ict,fthe EM method may make sense when the netwandks
small-scaled or medium-scaled. On the contrary,enoften than not, real-world networks are largdezstalUnder
such scenarios, if an algorithm like iterative EMthod evaluates all samples at each step, it ngytsein high
complicity and low efficiency. Therefore, we argiat a more appropriate approach is to improveEtiemethod
in order to reduce samples at each step. Conséguemst propose an incremental EM algorithm on thengle
subset that is converge to optimal solutions udimg proposed formulations. We prove the correctreass
convergence of our algorithm and show that thisitlgm has low time complexity when the data of hieéworks is
large-scaled.

The rest of the paper is organized as follows:ént®n 2 we discuss related work and the EM methddrmally
introduced in Section 3. Next, we describe in S#cti our generalization of incremental EM methodahmunity
detection. In Section 5, we provide experimentatigts. Finally in Section 6, we give the conclusamd future
directions.

RELATED WORKS

Community structure has been extensively studiedanious research areas such as social networksisalWeb
community analysis, computer vision, et al. In matwanalysis, an important research topic is tatife cohesive
subgroups of individuals within a network where esiie subgroups are defined as “community detéttion
Recently there exists a growing body of literatonecommunity detection. Many approaches, suchigaezbased,
degree-based, and matrix-perturbation-based, hewe proposed to extract cohesive subgroups fromonlet The
approach of community detection can be charactrase heuristic measure methods and  statistiateince
methods according to the basis of object functideuristic measure methods such as modularity masitioin [6]
and extreme optimization [7] use a heuristic mawicneasure community structure and lack of rigertheoretical
basis. Statistical inference methods such as plapéetition model [8] and the EM method [2] canntify the
structure of structural equivalence and regularivedgence, and classify the vertices of the netwanking the
observed networks fit by a generative processisBtal inference methods have perfect theoretieais which is
different from heuristic measure methods, and hageome the state-of-the-art methods. Statistickdrémce
methods have the advantage that, depending ortdtistisal model used, they can be very generaatieig both
structural equivalent and regular equivalent séndividuals. Consequently, more literatures hagerbproposed on
statistical inference methods. The EM approach asodel on statistical inference methods has redeimere
attention because of its simple and efficient stmec Unlike many other statistical inference me#hono extra
information is assumed except for the network fitaeld the number of groups for the EM approach.t@sh to
traditional community detection methods, the EMrapph is capable of detecting disassortative siracis well as
overlapping classifications.

There are some recent studies on the EM methoddommunity detection. The EM approach to community
detection is first introduced by Newman et al [k will denote it by the acronym NL-EM from now oFhey use
the machinery of probabilistic mixture models ahd EM algorithm to generalize a feasible modetihii observed
network without prior knowledge except the netwoddd the number of groups. They also give a nunatber
examples demonstrating how the method can be vsgttketd light on the properties of real-world netgoin their
model, their parameter definition implies that thessification must be such that each class hkesst one member
with non-zero out-degree. The constraint forces BMl-to classify a simple bi-partite graph. Basedtoa idea,

Ramasco et al. [3] generalize an extension of NL-HMwvhich they extend the paramet@r.The examples show
both numerically and analytically that the new gatized EM method is able to recover the proceasldd to the
generation of content-based networks. Muggan d#thlise NL-EM to yield a stability analysis theogping that
guantifies the extent to which each node influeritseseighbor group membership. All these studiesyever, have

a common weak point-the EM method is usually loviciemt and high complexity when the networks are
large-scaled. That is, when the EM method is usatktect communities in the networks, it evalualesamples in
every iteration which may result in low convergemate and bad clustering effect. In contrast, in proposed
method, we study an incremental EM method on tinepsa subset instead of whole samples which progaemi
efficient.

2513



QiuLi-gingetal J. Chem. Pharm. Res,, 2014, 6(6):2512-2520

NL- EM METHOD

NL-EM is capable of detecting networks structurdying on following basic assumptions: (1) The attua
connectivity of the networks is related to a prionknown grouping of the individuals; (2) The pmse or absence
of a link is independent from the other links of tietworks.

We begin with a quick summary of NL-EM as appliad graphs. Given a grapﬁ;‘ of N nodes and an

adjacency matrixAj , NL-EM method searches for a partition of the rod#o K groups such that a certain
log-likelihood function for the graph is maximizedenceforth we will refer to the groups into whibh.-EM

divides the nodes, as classes. There are threagblesias follows in NL-EI\/I7:Tr ,the probability that a randomly
selected node is in group ; " ,the probability that an edge leaving grodip connects to a certain node

] ;CIlr the probability that node! is assigned to group’ .The parametersm and " satisfy the
normalization conditions:

zﬂr =1, ZN:gn =1

r=l i=1 (1)

r(A,g|7.6)

P
Assuming that the parameterd and 6 are given, the probability of realizing the given graph

under a node classificati(%, such that 9 is the group that nod(jz has been assigned to, can be written as:
Pr(A.glm&)=T]m, {n egyj} :

J

2)
Pr(A,g|7.6)

instead:

is the likelihood to be maximized, but it turngt ¢@ be more convenient to consider its logarithm

L(7'[,6’)=Z{In7rg +A Inﬁg”j}.
i : (3)

Treating a prior unknown group assignmegit of the nodes as statistical missing informatiome considers the
averaged log-likelihood constructed as:

L(r6)=>q, {m;z +> ' Ang }
ir j
The final results are
_1

77; - N ZQr |

6 _ Zi Aj qr

T - ., -

2. ka ©

Where k' is the total degree of nodia. The still unknown probabilities™ are then determined a posterior by
noting that:

(4)

(%)

Pr(A,g =r|.6)
Pr(A|.6)

q, =Pr(g =r|Am.6)=
(7)
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From which one obtains:

7[1,9"

q‘ =t

AR A (®)

Equation (5), (6), and (8) form a set of self cefit equations forﬂr ,6’” and G that any extreme of the
expected log-likelihood must satisfy.

Thus, given a grath , the EM algorithm consists of picking a numbeclafsses K into which the nodes are to
be classified and searching for solutions of Equme(b), (6), and (8). These equations are deriyeldwman et al.

. . A L
[2]. They also show that when applied to diverspetyof networks the resulting? and G yield useful
information about the internal structure of thewmk. Note that only a minimal amount of a priarfdrmation is

supplied: the number of classd§ and the networks.

INCREMENTAL EM METHOD

Despite the EM method’s wide-spread popularity,cical usefulness of the EM method is often limiteg
computational inefficiency. The EM method makesiasithrough all of the available data in everyatien. Thus, if
the size of the networks is large, every iterattan be computationally intensive. We introduceramémental EM
algorithm for fast computation based on random sabpling which is denoted by the acronym IEM froowron.
Using only a subset rather than the entire netwatksvs for significant computational improvemestsce many
fewer data points need to be evaluated in evergtite. We also argue that one can select the wibgelligently
by appealing to EM’s highly-appreciated likelihgodgment condition and increment factor.

Given a grath of N nodes, we first selecM (M ON) nodes as the initial sample subset, and then e w

train the initial subset by using NL-EM method. éxftthe training, we will addd (d 0 N=My nodes from the
remaining samples to the initial subsets, and twenwill train the new formed subsets. The similerative
operation is repeated until the subset is identeahe entire samples. The quantities in our thebus fall into

three classes: (1) How to define parameMr? In other words, how many nodes should be firsiseh as the
initial subsets? (2) How to define paramel@’? That is to say, how many nodes should be compitrdefter last

training? (3)When will d nodes be added to the subset? Namely what camslisbould be satisfied when the
subset changes? We will give some reasonable aotutis followed

The definition of parameter M

ParameterM  means the number of nodes in the initial subsk. fiitial subset selection is an important part of
IEM which has a great influence on the results. @oal is to select some nodes as the initial sulvhéth is most
representative of the entire data, and therefaedhected subset can well describe the globalresat

There is a popular view in network analysis that ithportant nodes are most representative of thiezeretworks.
Consequently we will select the important nodeshefwhole networks. Centrality analysis providesvegrs with
measures that define the importance of nodes. Téerenany classical and commonly methods used [@jes
degree centrality, closeness centrality, and beiness centrality. These centrality measures cafpiterenportance
of nodes in different perspectives. With large-scaktworks, the computation of centrality measwas be
expensive except for degree centrality. We deflheto be the number of the nodes an? to be the number of
edges between nodes. Then we can get time compleril space complexity about the centrality measure
Closeness centrality, for instance, involves thegatation of all the pairwise shortest paths, withe complexity

of O") and space complexity oP(™) with the Floyd-Warshall algorithm [10] oP(nlog n+ N jme

complexity with Johnson’s algorithm [11]. The bebmeess centrality requireg)(nr@ computational time
following [12]. For large-scale networks, efficiestmputation of centrality measures is critical aaqguires further
research.

We propose a new method of measuring the centnaliigh is a compromise between complexity and iefficy.
Now we study degree centrality which is the simplasasures. For degree centrality, the importafice rmde is
determined by the number of nodes adjacent tchie. [Arger the degree of one node, the more impiati@amode is.

The degree centrality of nod¥ is defined as:
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CD (V) = q /(n_l) (9)

where di is defined as the number of nodes adjacentoand N is defined as the number of nodes in the
network.

However, the measure is not comprehensive enowghsome important nodes (i.e., bridge contactmect with
merely two edges) don't have high degree centrddiised on the idea, we argue that the importahoaenode is
determined by its connection model as well asaits in the networks. Accordingly we consider twottas, namely
the connection model of the node and its role énrtétwork. The connection model of one node cattelseribed by
its degree centrality, and the role of one nodebmadescribed by its cohesion centrality.

Definition1: The connectivity of nodé’ is defined as the number of the edges betw¥emnd the nodes directly
connected withV .

The connectivity of a node measures how closeti ihe nodes which are directly connected witlaiityl reflects
the local connection property of the node. Obvigusle span of connectivity is between 0 (G -D/2,

Definition 2: The cohesion centrality of nodé is defined as follows:

¢y =SNGV

2 (10)

Where Co (v) is the degree centrality of no¥e and G is the connectivity of nodé.

According to the relations between the nodes amdettiges in the network, the value E):F(V) satisfies the
conditions:

C.(v21 (11)

We find that the larger the connectivity of one epthe less important the node is. This is bec#useleletion of
the node with larger connectivity will make lesfeafion on the network. Thus according to equafidd), the more
importance one node is, the larger the cohesiotraldgy of the node is. Therefore, the cohesionticdity is the
positive evaluation index of the node.

To integrate the two factors (i.e., connection madene node and its role in networks), an impoc&afunction is
introduced to measure the importance of the nodierevthe importance consists of two parts-a degeedrality
and a cohesion centrality:

(V) =aC, (V) +(1-a) T (V) (12)

where 0 satisfies 0s <1,
In this importance function, the degree central%}D (v) measures the connection model of nofe and the

cohesion centralityCC (v) measures the role of nod¥. The parameteta is set by the user to control the level
of emphasis on each part of the total importancetfan.

Thus according to equation (12) we can select mapdnodes with high value as the initial subset.
The definition of parameter d
Parameterd means the number of nodes which will be complesenb the subset in every iteration. The

definition of parameterd is another crucial question in IEM. The parameteould make the subset fit the real
model as much as possible. Here we propose theepbo€ incremental factor to describe parame@erbased on
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information entropy.

According to information theory, the entropy measuthe uncertainty of the system. The larger thmpwn is, the
more uncertain the system is. If the density funttralues of every node in the subset are appraglynaqual, the
uncertainty of the distribution for the entire degdargest (i.e., the subset has maximum entrapghversely, if the
density function values of every node are very amgtnic, the subset has minimal uncertainty. Theegfove
introduce the concept of density entropy to measmemental factor.

Definition 3: Given nodes seP =06 % % which has N nodes, the density function value of every node

s FO6) =12, N

, and o is the sample variance, then the density entreplefined as follows:

DenEn(d) = —iZ:: fs(j%ln fé)fj:r 13

where Sum is the normalized factor defined as follows:

N
Sum=)" (Y
i=1 (14)
The density entropy has two properties:
Property 10< DemEn(d) < In( M;
Property 2: DEMEMO)=I(N  ywhen and only when fGI=T0)==1(X)  therefore

I;rpo DenEr(d) =In( N =m§:1x( DenE))

From Property 2, wherP€NEM9) =IN(N ' the nodes in the subset are consistent withetakdistribution which is
ideal case. With the increase 6? the value of DenEr(9) decreases which will reach a minimum subsequently,

and then the value OPenEr(J) will become larger which will reach a maximurlH(N) when 0-0 and
F(g)= F6) == f(x)

The change of the sample variané% is similar to the density entropy, and we take iatcount the middle value

of DenEr(d) . Consequently, we propose incremental faoér as:

£ =DenEnd)/2=In(N)/2 (15)

According to equation (15), the parametgrcan be described as follows:
d=N/pg (16)
Once parametelcI is determined, the iterative process of IEM carcéeied out as follows: when the samples in

the subset fit the real networkg nodes are added to the subset, and then newgfittincess goes on. The
incremental process will end until the subset isadédo the entire data. In the process, the subsedually
approaches the entire data.

It is worth mentioning that the complement nodegvery iteration are selected from the entire notiesice the
number of nodes in subset turns out to be:

M=M+d=M+N/f (17)

The conditions when the subsets changes

(77,6)

From Section 3, we can see that the EM method igeaative procedure for Maximizind‘ which we
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Lo . th . : 6 . . T
describe in Equation (4). Assume that after e iteration the current estimate fof and is given by " "

and e”. Since the objective is maximizé'(r[’ 9), we wish to computer an updated estimat® and o such
that:

L(7,6)>L(7,,6,) (18)

Equation (18) means the iteration condition of EM method, namely if the update likelihood is natrenthan the
current likelihood then the iteration will end.

Inspired by Equation (18), we propose the iteratondition of IEM. We define L(77,6) as the maximum

L t+1)(77, 0) (t +1)"

th
likelihood after t iteration and as the maximum likelihood afte iteration. The iteration

condition can be defined as:
L+ (77,0) > Lt (77,0) (19)
Equivalently we want to maximize the difference:

D = Ly (77,6) - L (77, 6) (20)

Assume ¥ is a positive humber which is small enough, tHerP| > y, we argue that the current estimate is

. . . < St S
undesirable and the iteration should go on.[?f— y, then the subset it iteration is fit to the model of the real
data , and the new samples should be complememteatity out the next iteration. When the subsetisal to the
entire data, the terminate condition is consistemhe EM method.

The determining of &
How to determine the? in Equation (12) is a challenging issue. When gheund truth is available, standard

validation procedures can be used to select amaffd . However, in many cases there is no ground traththe
community detection performance depends on the'suseilbjective performance. In the respect, throtigh

parameterd | our IEM provide the user a mechanism to pushctiramunity detection results toward his or her
preferred outcomes. The problems of whether a éattr@ exists and how to automatically find the bedt

when there is no ground truth are beyond the sobplaeis paper. To simply the experiments, we wet & as05
in the following example applications.

EXAMPLE APPLICATIONS
In this section, we use several synthetic datasettudy the performance of our IEM from differespacts. In
section 5.1 we will first verify the correctness M, and then we will compare our IEM with baselin
algorithm-EM in section 5.2.

First Example Application

We start with the first synthetic dataset, whichaistatic network, to illustrate some good propsertf our IEM.
This dataset is first studied by White and Smyth[@3d is shown in Figure 1(a). The network contdiBsnodes
which roughly form 3 communities-C1, C2, and C3-mhedges tend to occur between nodes in the same
community.

We first apply our algorithm to the network withricaus community numberd” and the resultingQ values are

plotted in Figurel (b).Q values can be interpreted as modularity valuexhviié a measure of the deviation
between the observed edge-cluster probabilitiesrdrad one would predict under an independence moistman

etc. [14] show that IargeQ values are correlated with better graph clustering=igure 1(b) we also show the

modularity vaIuesQ that are reported by White and Smyth. As can lea $®m Figurel (b), bothQ and Q

show distinct peaks whedl = 3, which corresponds to the correct community num@err IEM algorithm gets
higher modularity values which indicate that IEMhadassify the network better.
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Next, after our IEM algorithm correctly partitiorthe nodes into three communities, we illustrate $odt
community membership by studying two communitiesa@@ C3. In Figure 1(b) we use triangle shape poesent
the nodes in C2, and circle shape to represenhddes in C3. But we use different gray levels wWidate their
community membership-we use white color to illugrthe level that a node belongs to C2 and darbr ¢ol show
the level that a node belongs to C3. As can be, sgbite the nodes which are white or black haveywdear
community memberships, the nodes which are on tadary between C2 and C3, have rather fuzzy meshiger
The shallower the nodes are, the more likely thgesdelong to C2, Centrally, the deeper the nodestlze more
likely the nodes belong to C3.In other words, oEMI algorithm is capable of assigning meaningfult sof
membership to a node to indicate to which levelnbée belongs to a certain community.

0.6

-
O 1 0.5 —= Modularity O
N
=1
[ | ’§ 0.4
o
[ G0
’ C2¢ . &
2oz
) g
2
A X @ ° 0.1
A v
/X ZX 1 3 3 4 5 6

Communi ty number

(b)

Figurel. First example application: (a) applications of IEM method, (b) Modularity value Q and Modularity value Q under
different community numbers

@

Second Example Application

We secondly apply our IEM algorithm to a small netkv‘Karate club” network [14]. The network contail34
nodes which roughly form 2 communities-C1 and C2e fietwork is of particular interest because thb sblit in
two during the course of Zachary's observationsaasesult of an internal dispute and Zachary reabrtie
membership of the two factions after the split.

Figure 2 shows the result of our IEM algorithm whtbe number of clusters is set to 2. We use diffegray levels
to indicate their community membership as firstragke application. In Figure 2 we use circle shape @ectangle
shape to represent the nodes in C1 and C2 resplgcBut we use different gray levels to indicdteit community
membership-we use white color to illustrate theeldlaat a node belongs to C1 and dark color to sthewevel that
a node belongs to C2. As can be seen, node 9, 201dre on the boundary between C1 and C2, wtawk hather
fuzzy membership.

13

4
Figure2. Second example application: applications of |IEM method

Next, after our IEM algorithm correctly partitioriee nodes into two communities, we compare our ith
baseline algorithm NL-EM. The compared result isvei as Table 1. As we can see from Table 1, uddesame
computing environment the time of IEM need only M.4second, which is much less than it of NL-EM; the
iterations of IEM is only 35, which is greatly lesisan it of NL-EM. From the table we have the follog
observations. On the dataset, among the two ahgosit(NL-EM and IEM), IEM outperforms NL-EM. In othe
words, our IEM can reach the neighborhood fastan thL-EM, and is high efficient because of fastwvengence
rate.

Table 1.The comparison between NL-EM and |1EM

Dataset Parameter NL-EN IEM
Karate club Time(s) 0.782 | 0471
Iterations 87 35
Likelihood Estimate| -6.321 | -6.435
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CONCLUSION

Community detection is a challenging research mnoblvith broad applications. In this paper we hagscdbed an
incremental EM method-IEM for community detectitiBM uses the machinery of probabilistic mixture ratsdand
the incremental EM algorithm to generalize a felasimodel fit the observed network without prior kwiedge

except the networks and the number of groups. Téthad is more efficient than previous NL-EM, makurgg of a
new incremental approach which is more close toofitamal solutions. We use only a subset rathen tha entire
networks allows for significant computational impeonents since many fewer data points need to beated in

every iteration. We also argue that one can s#ecsubsets intelligently by appealing to EM’s yghppreciated
likelihood-judgment condition and increment factdfe have demonstrated the method with applicatiorsome
simple examples, including computer-generated &adtworld networks. The method’s strength is iticefncy

which leads to high convergence rate and goodesingt effect.

As part of future work, we plan to extend our fravoek in two directions. First, our current modelypapplied on
static networks where no temporal analysis is dgedvolution study. We are using our model in dyi@anetworks
to detect communities. Second, so far we only ammsd the link information. In many applicationse tcontent
information is also very important. We are inveatigg how to incorporate content information intor enodel.
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