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ABSTRACT

Cluster analysis and multiple linear regression s were employed to determine the distinct groumolecular
descriptors that largely account for the biologiaadtivity of known inhibitors against cyclooxygeagd€0X). In
157 out of 3227 molecular descriptors the nonsalec€OX inhibitors and COX-2 selective inhibitossr two
distinct clusters. Multiple linear regression ansily returned three equations accounting for thesplGf the
inhibitors against COX. For the plgof nonselective COX inhibitors against COX-1, thelecular descriptors
with the highest importance include GGI1, GGI10,1SMzm and Eta_alpha_A. For the gh®f nonselective COX
inhibitors against COX-2, molecular descriptors T3GI1, SpMax3_Bhv and GGI10 were key to the obderve
activity. The observed variation in pjC of COX-2selective inhibitors against COX-2 werdrilatited
toSpMax3_Bhp, SpMax_AEAdm, VE2_Be, SM5_L, Eta be®&Eig04 EAed, H _DzZ, SM4_L and VE3_Bp. The
results of the study can be used to understanddhere of COX inhibitors and to further facilitatee development
of COX-2 selective inhibitors.
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INTRODUCTION

Cyclooxygenase (COX) is a rate-limiting enzyme ttatalyzes the conversion of arachidonic acid,ssemtial fatty
acid present in cell membrane phospholipids andrdited by phospholipase, into prostaglandins (P&s)
prostanoids[1]. It is recognized that cyclooxygend€0OX) has 2 isoenzymes: COX-1 and COX-2. COX-1lis
constitutively expressed in the gastrointestinal) (tBact. COX-1 is the good COX because it makesessal
hormones for the protection of the lining of thersich and kidneys [1,2]. On the other hand, COXe2notes pain
and inflammation, hence it is considered the badX[BPD COX-2 expression is normally low but is indt by
inflammatory stimuli and cytokines. The anti-inflaratory actions of COX inhibitors are caused by tifgbition
of COX-2, whereas the unwanted side effects, saaaatrointestinal and renal toxicity, are caugethb inhibition
of COX-1 [4].Most non-steroidal anti-inflammatoryutjs (NSAIDs) provide relief from inflammation apain in
the human body by blocking COX-2. Unfortunatelygtralso block COX-1i.e. not selective forCOX-2.However,
the intense efforts resulting in the synthesis wfidreds of COX-2 selective inhibitors [5] have $ear hope for
further development of anti-inflammatory drugs weith harmful side effects [6].

Inhibitors of COX activity include: (1) conventionaon-selective non-steroidal anti-inflammatory gsu(ns-
NSAIDs); (2) selective COX-2 inhibitors (COXIBs)na (3) COX-1 inhibitors. NSAIDs are one of the most
commonly used classes of medication in the worlikse drugs function by inhibiting both COX-1 and>C@
relieving pain and inflammation but eliciting gastitestinal (GI) toxicity [7]. Subsequently, COXIB&.g.
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celecoxib, etoricoxib, lumiracoxib, rofecoxib andldecoxib) were developed to reduce the inciderfceedous
upper Gl adverse events associated with the admaitis of traditional NSAIDs [8]. However, the newkd
incidence of adverse effects demonstrated by tiectee COX-2 inhibitorsi(e. rofecoxib and lumiracoxib) has
been countered by an increased incidence of mymtandarction and stroke [9,10]. This prompted thithdrawal
of blockbuster drug Rofecoxib (sold commercially\dsxx) from the US market [11]. Thus, there is eed to
further understand the characteristic of COX irtoitsi in the hope of developing much safer pairevelis.

With the advent of modern technology, faster ansk leesource-consuming computational methods are now
available to study the detailed characteristica afompound. It has now become possible to extrateaular
descriptors based on the structures of compouratscin subsequently be used to evaluate moleculatwe-
activity or structure-property relationships, aslivas for similarity analysis and high throughpwreening of
molecule databases [12].A molecular descriptoihés final result of a logic and mathematical proceduvhich
transforms chemical information encoded within ebkwglic representation of a molecule into a usetuhhber or the
result of some standardized experiment [13]. Régente have demonstrated the utility and applicatiof
molecular descriptors in predicting the biologiaativity of a set of compounds [14, 15].

This study aims to distinguish non-selective COHKihitors from selective COX-2 inhibitors by clustemalysis of
DRAGON®-derived molecular descriptors, and to identify digtinct set of molecular descriptors that infloerihe
observed activity of the COX inhibitors by multigieear regression analysis. The data obtained fiosnwork can
be utilized in further development of COX-2 seleetinhibitors.

EXPERIMENTAL SECTION

A data set of 32 common nonselective COX inhibitangl 319 COX-2 selective inhibitors were obtainsshf
existing literature [5, 16].The two-dimensionalustiures of the inhibitors were drawn using the Ntar8ketch
software [17] running in Windows 7 OS. Each stroetwas geometrically optimized at semi-empiricalsthu
Method 1 (AM1) level using the HyperChem softwad8]] The resulting structures were used as input in
subsequent property calculations in the DRAG@kKbgram [19]. Like in our previous study [15], DRABI® was
used to generate thousands of molecular descripfices constitutional and ring descriptors, topadad
connectivity, and information indices; walk andipaind functional group counts, etc.) for each ok

Prior to cluster analysis, the descriptors withaadard deviation of zera.€. invariant throughout the set) were not
included in the analysis. The remaining moleculesatiptors were made to undergo hierarchical alustalysis
using IBM SPSS Statistics software [20].The data ti@n analyzed to determine a set of moleculasrigésrs for
which COX-2 selective inhibitors formed a distictister.

Multiple linear regression analysis was done tcedeine which among the molecular descriptors idieqtiin
cluster analysis significantly account for the a#idn in biological activity exhibited by COX inhtbrs. Three
equations were generated: (1) for the gl6f nonselective COX inhibitors against COX-1, (@} the plG, of
nonselective COX inhibitors against COX-2, and @) the plG, of COX-2 selective inhibitors against COX-2.
Bivariate correlation was also done to check for esrrelations between molecular descriptors.

RESULTS AND DISCUSSION

Of the 319 COX-2 selective inhibitors, 305 belomgrtine different families of compounds [5], nametiie

derivatives of pyrrole (Family A), imidazole (FamiB), cyclopentene (Family C), benzene (Family pyrazole
(Family E), spiroheptene (Family F), spiroheptadi¢hamily G), isoxazole (Family H), and thiopheRarily I).

The remaining 14 COX-2 inhibitors obtained from wctieal databases are diverse in structure and dbelohg to
any family in particular. A set of 35 common nomstive COX inhibitors, most of which are drugs ety

available in the market, were also included inghely. The 2D structures of this data set of irtbilsi were drawn
and geometrically optimized at AM1 level before gexiing their molecular descriptors.

A total of 4885 molecular descriptors, grouped iB®blocks, namely, constitutional indices (43)grdescriptors
(32), topological indices (75), walk and path ceu(®6), connectivity indices (37), information inds (48), 2D
matrix-based descriptors (550), 2D autocorrelatif2ty), Burden eigenvalues (96), P_VSA-like desoript(45),
ETA indices (23), edge adjacency indices (324) nggtacal descriptors (38), 3D matrix-based desorg{90), 3D
autocorrelations (80), RDF descriptors (210), 3DR&& descriptors (224), WHIM descriptors (114), GETAY
descriptors (4), Randic molecular profiles (41pdtional group counts (154), atom-centered fragm€lits), atom-
type E-state indices (170), CATS 2D (150), 2D afmeirs (1596), 3D atom pairs (36), molecular praper{36),
and drug indices (27), were successfully computetabtained.
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The goal of cluster analysis is to identify theuatigroups, with the objects within a group sim{lar related) to one
another and different (or unrelated to) the obj@ttsther groups [21]. Among the various techniguesrarchical

clustering is one of the most straightforward mdthaf forming clusters [21]. From an initial 488%olecular

descriptors, the number of descriptors was subseiyuearrowed down to 3227, after excluding thossatiptors

that do not vary throughout the set.

Cluster analysis of each of the 3227 molecular rifgses returned 157 descriptors for which COX-2estve
inhibitors form a distinct cluster from the nonsgiee COX inhibitors. However, some inhibitors waitially
grouped under nonselective COX inhibitors almostagk cluster with the COX-2 selective inhibitons.dontrast,
some inhibitors we grouped under COX-2 selectivieibibors also cluster with nonselective COX inkilos.
Specifically, Lumiracoxib, etodolac, and N-tert-4aué —phenylnitrone are inhibitors initially classifieshder COX-
2 selective inhibitors but were mostly found inatkr with nonselective COX-2 inhibitors (Figure Three more
compounds grouped under COX-2 selective inhibitwese most often seen clustering with nonselecti@XC
inhibitors (Table 1).

On the other hand, fifteen compounds initially gred under nonselective COX inhibitors cluster witdX-2
selective inhibitors in many molecular descriptoséth lornoxicam, licofelone and talniflumate beitige most
frequent ‘outlier’ in most COX-2 selective inhibitgroups.Table 1 shows the complete list of inbitsitclustering
with the group opposite their initial classificati®he comparable activities of each inhibitor agai@OX-1 and
COX-2seem to explain the observed incongruence.

PRI o

37.mal 37
28.mol 28
85.mol 85
145 mol 145
1.mal 325
L.mal 337 ||
F.mol 330
P.mal 3
lumiracoxib.mol 310
W.mal 348
QO .mal 340
E.mal 328
etoclolac.mol 307
. mol 324
D.mol 326
T.mal 3454
. mal 350
K.maol 336
R.mol 343
BE.maol 3224
L.mal 334~
J.mal 335
E1.mol 328
G.mol 3321+
Xmol 3494
N-tert-Butyl-a-phenyinitrone mol 8
H.mal 333
A.mol 3204
BE1.mol 323+
W .mol —
N.mal 3394
Smol 3444
Q.mol 342

Figure 1. Portion of the dendrogram for moleculardescriptor Eta_B which shows lumiracoxib, etodolaand N-tert-butyl- « —
phenylnitrone clustering with nonselective COX inhbitors. The nonselective COX inhibitors were labele with letters to easily
distinguish from the COX-2 selective inhibitors, ldeled with numbers
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Table 1. The structures and COX activity[5,16] ofimibitors often encountered as outliers in cluster malysis

- pICso
Inhibitor Structure COX-1 | COX2
Nonselective COX inhibitors clustering with COX-2 glective inhibitors
OH
FF H
Niflumic acid E N N 5.975 | 6.037
N~
O§ //o
/ ONH
. . o
Nimesulide ©/ \© 4155 | 5.89
N
o” ~o
?
N-tert-butylo-phenylnitrone Xﬁ\ - -
[oNge)
S
HN""""CHs
NS-398 O/O\© 5161 | 6.456
NO,
Cl
; :NH
Lumiracoxib F OH 4.174 6.886
o
CH3

CH,
NH
Etodolac _ CHg 4,921 5.658
e} OH

(0]
COX-2 selective inhibitors clustering with nonseletive COX inhibitors

0]
H,CO OH
Indomethacin 3 CHz 7.745 | 7.585

N

(|3H3 [e)

) HO N
Tolmetin w 6.237 5.842
0
CHg

OH O |

A

~

P

Piroxicam | 6.119 5.046

X N

H

,,s;'\"c:H3
g o

Phenylbutazone E 5.523 5.421

N
Apazone \@[ Y
N

>\_

-

W
©/ (e} CH,
O\\‘i\/ CHy
HC N =
CH,
HZ

N
|
Cli

738



Viktoria Shade L. Vios and Junie B. Billones J. Chem. Pharm. Res., 2015, 7(8):735-742
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We generatedmulti-linear regression equations terdene which of the 157 descriptors significardalycount for
the variation of biological activity the inhibitoesxhibit against COX. However, the outliers in tlester analysis
were not included from the linear regression arnslgataset, leaving us with 16 nonselective COXbindrs and
313 COX-2 selective inhibitors.

Linear regression of the 157 descriptors for thasetective COX inhibitors against p3or COX-1 returned 15
descriptors, with an ®alue of 1.0. This means that these 15 descripgmsully account for the observed variation
in plCso of the inhibitors against COX-1. However, 15 dgsttnis are too much for only 16 samples. The general
rule of thumb is that to be able to detect reaskenaize effects with reasonable power, 10-20 olzdems per
parameter estimated are needed [22]. HoweverogearSimplified guideline” allows the ratio of sarapsize to
number of free parameters to go down to as lowh§23-25].

To narrow down the 15 molecular descriptors to falimension reduction via jackknifing was employédthis

method, one descriptor was left out of the regogsanalysis dataset at a time, and the resultsyuered for the 14
remaining descriptors was computed. The lowesvaRie corresponds to the largest change dwvaRie, which
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means that the variable left out of the regresaiualysis for that particular’Ralue gives the highest contribution to
the observed value of pig From 15 molecular descriptors, four descriptoesemetained and subjected to linear
regression analysis.For the gGf the inhibitors against COX-1 the following eqoatwas obtained:

pICso = 0.055(GGI1) + 21.923(GGI10) + 0.574(SM1_Dzm)+ 526(Eta_alpha_A) — 19.963
R=0.61 (equation 1)

The four molecular descriptors with the highestigigant contribution to the pl§g of the nonselective COX
inhibitors against COX-1 are GGI1 (topological admindex of order 1), GGI10 (topological chargeexaf order

10), SM1_Dzm (spectral moment of order 1 from Banystrix weighted by mass), and Eta_alpha_A (ETérage

core count). Bivarariate correlation analysis résgahat these four descriptors have no significantelations with

each other.

GGI1 and GGI10 are examples of topological changkices. The ability of topological charge indicesdescribe
molecular charge distribution has been establishyedorrelating them with the dipole moment of aehegeneous
set of hydrocarbons [26].The extended topochenaittah (ETA) indices likeEta_alpha_A is related twesor bulk
of the molecule [27]. SM1_Dzm is a 2D matrix degtois derived from the Barysz matrix weighted bysmarhe
Barysz matrix is a symmetric weighted distance iaccounting contemporarily for the presence der@matoms
and multiple bonds in the molecule [28].

Apparently, the biological activity of nonselecti@OX inhibitors against COX-1 depends chiefly oe #ize or
bulk of the molecule (Eta_alpha_A), the moleculaarge distribution (GGI1 and GGI10) and the preseot
heteroatoms and multiple bonds (SM1_Dzm). The pesitoefficients of these predictors in the modgliaion
imply that the plG, of the nonselective inhibitors against COX-1 wilkrease when these molecular properties are
increased.

Likewise, the four molecular descriptors with thighest contribution to the pkg of the nonselective COX
inhibitors against COX-2 are Ts (T total size indexeighted by I-state), GGI1 (topological chargdex of order
1), SpMax3_Bhv (largest eigenvalue n. 3 of Burdeatrin weighted by van der Waals volume), and GGI10
(topological charge index of order 1). Linear regien of these four descriptors againstspf@ COX-2 gave the
equation:

pIC s = -0.017(Ts) + 0.889(GGI1) + 2.683(SpMax3_Bhv) -1B3(GGI10) — 6.167
R =0.29 (equation 2)

It appears that the 4-predictor model can acconiyt 20% of the observed variability in pJ¢&of nonselective COX
inhibitors against COX-2. This means there areamarkable predictors of COX-2 activity from nonsgilee COX
inhibitors. Meanwhile, the Burden eigenvalues sashthe SpMax3_Bhv in equation 2 have strong engbiric
relationship to electron distribution of the molkcas a whole and the calculated indices are ahpeedict the logP
of molecules, with its predictive power being supecompared to connectivity indices [29].Ts isatpf a group
of 3D structural descriptors called WHIM (Weighteldlistic Invariant Molecular) descriptors, whicheabuilt in
such a way that they capture relevant 3D infornmatiegarding different features on molecular stretsize,
shape, symmetry and atom distribution with respeatvariant reference frames [30]. The coefficgimt the model
equation imply that the bioactivitydecreases wtiile fncrease of Ts and GGI10 values, and increasbstie
increase of GGI1 and SpMax3_Bhv.

The regression analysis of descriptors derived f@@X-2 selective inhibitors using stepwise methetlumed
twelve models, with the first model yielding onesdeptor, the seconds yielding two descriptors, sm@n and so
forth. Choosing the tenth model gives us a inhibitescriptor ratio of approximately 31:1, whichway above the
minimum criterion [22-25]. The generated model h&g the equation:

pICs, = 0.562(SpMax3_Bhp) — 1.173(SpMax_AEAdm) + 47.69/E2 Be) — 29.781(SM5_L) — 0.563
(Eta_betaS) + 0.433(G2) — 0.335(Eig04_EAed) — 0.081Dz2) + 48.924(SM4_L) — 2.970(VE3_Bp) — 96.497
R?=0.60 (equation 3)

Thus, the top ten molecular descriptors which antodor the variation in the plg of the COX-2 selective
inhibitors against COX-2 are SpMax3_Bhp (largegeavalue n. 3 of Burden matrix weighted by polariliy),
SpMax_AEAdm (leading eigenvalue from augmented eattjacency mat. weighted by dipole moment), VE2_Be
(average coefficient of the last eigenvector froord2n matrix weighted by Sanderson electroneggliv@M5_L
(spectral moment of order 5 from Laplace matrixp betaS (ETA sigma VEM count), G2 (gravitatiomalex G2
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(bond-restricted)), Eig04_EAed (eigenvalue n. 4nfredge adjacency mat. weighted by edge degree),zAH D
(Harary-like index from Barysz matrix weighted biomic number), SM4_L (spectral moment of order difr
Laplace matrix), and VE3_Bp (logarithmic coeffidiesum of the last eigenvector from Burden matrixghted by
polarizability). The model equation indicates thtz¢ plG,of COX-2 selective inhibitors has a direct relasbip
with SpMax3_Bhp, VE2_Be, G2 and SM4_L, and has rarerise relationship with SpMax_AEAdm, SM5_L,
Eta_betaS, Eig04_EAed, H_DzZ and VE3_Bp.

Three of these descriptors are based on the Bumagnix, which correlates strongly with the electdistribution of

a molecule, and is obtained from varied weighindgieseces (Sanderson electronegativity for VE2_Be and
polarizability for both SpMax3_Bhp and VE3_Bp). Beptor H_DzZ is based on the Barysz matrix, and is
therefore concerned with the presence of heteraai@mmd multiple bonds in the molecule. Eta_beta&ni€TA
index, and is sufficiently rich in chemical infortiem [31,32]. Descriptors SpMax_AEAdm and Eig04 delfare
both based on the edge adjacency matrix, whictsdeigth the position of atoms in a molecule withpast to each
other [33]. Two descriptors, SM4_L and SM5_L, aesdd on the Laplace matrix, which gives the spantriee
number of a molecular graph. The number of spantiegs of a molecular graph is a measure of madecul
complexity for polycyclic molecules; the higher thember of spanning trees, the higher the complexitthe
molecular structure [28]. Lastly, the G2 molecutiscriptor is a gravitational index, a geometridabcriptor
reflecting the mass distribution in a molecule. Thnavitational indices are related to the bulk cieness of the
molecules accounting, simultaneously, for both &amasses (volumes) and their distribution withia tmolecular
space. The G2 descriptor, however, is restricteddss distribution in pairs of bonded atoms [34tiermore, it is
worthy of note that the equation for COX-2 selegtinhibitors shares no descriptors with the equatiéor
nonselective inhibitors. This an indication of @meptness of our generated models in differengdtie two COX
inhibitor groups from each other.

CONCLUSION

The cluster analysis of the molecular descripténsomselective COX and COX-2 selective inhibitorsrevdone to
determine which structure-based properties protidedistinction between the two groups and to lrnsome
insightsthat might prove helpful in the design eknhgeneration COX-2 inhibitors. Here we have ideat 157
molecular descriptors that differentiate COX-2 sgle inhibitors from nonselective COX inhibitor§hese
descriptors were narrowed down to four descripémcounting for the plégof nonselective COX inhibitors against
COX-1, another four descriptors accounting for ph€s, of nonselective COX inhibitors against COX-2, apd t
descriptors accounting for the p®f COX-2 selective inhibitors against COX-2. Theaied understanding of
these descriptors and their distinct influenceonXCaxtivity may facilitate further development of wmeand
improved COX-2 selective inhibitors.
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