Journal of Chemical and Pharmaceutical Research, 2014, 6(12):644-649

Technical Note

ISSN : 0975-7384 CODEN(USA) : JCPRC5

Chemical equation as a string using color periodic table

Rishabh Sharma and M. Yamuna

VIT University, Vellore, Tamilnadu, India

ABSTRACT

A chemical reaction is best represented as a chemical equation. Any element and its properties are easy identified using periodic table. A wide variety of products we use everyday are developed with the application of chemical reaction. Products like toothpaste, soap, shampoo, cleaning agents etc., are all the results of chemical reactions. Almost all the things around us are made of some kind of substances. New products are always launched in market, and most of them involve chemical equations. Transfer of data regarding them is a must, and safety of the data send is important for all the industries, due to the heavy competition in today market. In this paper we propose a method of converting a chemical equation as a string using HTML codes and periodic table.

Key words: chemical equation, molecular formula, colors, HTML code, periodic table.

INTRODUCTION

Today chemistry is doing wonders to mankind and evolving into a branch of science which helps survival at luxury with its never ending inventions and researches. In the process of growth of new inventions, derivation of new formulas and chemical equations for synthesis of various materials brings in the need of saving and securing the research and hard work from being stolen, copied or being misused while being transferred. In this paper we propose an idea of encrypting the chemical equation using HTML codes.

Various fields of science have contributed to the development of chemistry. In [1] an analysis on the relativity of water resources utilization in Minqin and economic sustainable development is provided. In [2] a comparison of a series of different DFT methods and higher basis sets than the other ones is done in order to find a more suitable method and basis set in predicting geometry and vibration spectra of Pyrimidine adopting optimal multiple regressions. In [3] a simple method of finding the Wiener index of a tree is developed. In [4] a new genetic code is proposed, which can be used for transfer details about DNA sequences. New methods and techniques are developed, which provides scope for development of chemical sciences.

In this paper we propose a method of representing any chemical equation using periodic table and HTML colors as tool for the same.

Preliminary Note

In this section we provide few discussions used in the encryption of the equation

Periodic Table

The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic number, electron configurations, and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 rows, with a double row of elements below that. We use this regular periodic table for our encryption, since elements are best represented using this [5].

Chemical Equation

A chemical equation consists of the chemical formulas of the reactants and the chemical formula of the products. The two are separated by an arrow symbol and each individual substance's chemical formula is separated from others by a plus sign. The stoichiometric coefficients (the numbers in front of the chemical formulas) result from the law of conservation of mass and the law of conservation of charge [6]. We encrypt the regular chemical equation in this paper.

HTML Color Code

Web colors are colors used in designing web pages, and the methods for describing and specifying those colors. Colors may be specified as an RGB triplet or in hexadecimal format. A color is specified according to the intensity of its red, green and blue components, each represented by eight bits. Thus, there are 24 bits used to specify a web color, and 16, 777, 216 colors that may be so specified. A number of the color swatches below are taken from domain-specific naming schemes such as X11 or HTML4 This html code for colors is used for recognition of a particular shade by the computer, this six bit code is used for the proposed method for encryption [7]. We use this six digit color code for the proposed method.

Proposed String for Chemical Equations

Construction of Color Periodic Table

The first step is to create a new periodic table using HTML colors. In the usual periodic table colors are assigned to represent and classify the elements into different groups. We modify this table and assign different colors to distinct cells of the periodic table randomly. Each cell is represented by a color and each color has a specific color code. So each element in the periodic table is now represented by a color code. A sample periodic table with distinct colors assigned to different cells is provided in Table -1. Table -2 provides the color codes assigned to the elements in the periodic table based on the colors used in Table -1. We have used the base table [8] for preparing the same.

Consider the chemical equation of methyl acetate with water

 $CH_{3}COOCH_{3} + H_{2}O \rightarrow CH_{3}COOH + CH_{3}OH$

In chemical equations we notice that an element is prefixed with its stoichiometric index and suffixed with values based on the chemical equation. We convert these values into three digit numbers (This can be converted into numbers of any size depending on the values in the equation). In the above equation the stoichiometric index of C in CH₃COOCH₃ is 1 and it is not suffixed. So we suffix and prefix C by 001. In H₂O, H has a stoichiometric index 1 and is suffixed by 2. So we suffix H by 001 and prefix it by 002. We replace the elements by the six digit code from table .This is done for each element in the equation. Now + and \rightarrow are replaced with P and E respectively in all places they occur. A chemical equation is now converted into sequence that can be represented as a string of size 3 6 3 with P and E whenever required. This can be summarized in the following algorithm.

Chemical Equation Representation Algorithm

Let S: $2H_2 + O_2 \rightarrow 2 H_2O$ be the chemical equation to be encrypted

Step 1: Convert S into a string of numbers, elements, +, \rightarrow in the order in which they appear in the equation (If an element is not suffixed or prefixed by a number replace it by 1, so that each element is prefixed and suffixed by numbers) to obtain S1.

S1: 2H2+1O2→2H21O1

Step 2: Replace each number in S1 by three digit code (this can vary as per need) to generate S2 S2: 002H002+001O002→002H002001O001

Step 3: Replace each element by its six digit string from Table to generate S3 S3: 002 ffa091 002+001919192002→002 ffa091002001919192001

Step 4: Replace + by P and \rightarrow by E to get S4. S4: 002 ffa091 002P001919192002E002 ffa091002001919192001

Step 5: Send S4 to the receiver. The procedure is reversed for decryption.

For example suppose the received message is

0067faca8001001919192002 919192006P006919192002.

P006ffa091002001919192001E0017faca8006001ffa091012001

919192000F000919192002.

Splitting this into a sequence 3, 3, 6, 3, 3... we generate

Table – 1

1		ffa091	32	9ab9d4	76		c5bcd3	60		a55582
2		fffab3	33	7fb9b5	77		c09fb8	61		d587f6
3		2a3a37	34	ff7fff	78		5e8531	62		c4b7ca
4		f9cce0	35	d5cf7f	79		9590a2	63		877fa3
5	<u> </u>	bb3000	36	af9c89	80		9f9e45	64		98948f
6		7faca8	37	833806	81		e2ce92	65		ecfdb0
7		9698c8	38	9ae803	82		f0bb88	66		cdd1be
8		919192	39	396c03	83		d8aa8a	67		acbf0d
9		867fa5	40	b49eb5	84		735a4a	68		849198
10		7fd2a7	41	b8ffdd	85		d6ae94	69		918498
11		b2860e	42	9aa9bb	86		68992e	70		a6b6b9
12		ce8587	43	d3b1d3	87		8e631/	71		8b978f
13		7fadbf	44	bce5e3	88		t0e2a7	89		8f9382
14		bed3ec	45	bd7fa2	89-103		1.0.046	90		83a592
15		c2b67c	46	19252e	104		buez4t	91		bd9981
16		bce1b9	47	e3d8cc	105		8cd6a6	92		c4bbb5
17		2e08d0	48	00ff84	106		88928c	93		889194
18		300f22	49	9a9a9a	107		b6c6b2	94		9da290
19		c893c7	50	284e4b	108		a783c1	95		9eaba5
20		f689ad	51	c4c4c4	109		86bed2	96		88a698
21		bce5e3	52	fac6aa	110		a2aa81	97		05303e
22		d1b084	53	bed3ec	111		f7e7b0	98		cfe5e3
23		#000000	54	bde2ba	112	i.j	d5c27f	99		8d9393
24		6d8332	55	e37fa0	113		b2b99f	100		8.60E+10
25		7fab92	56	92c292	114		adc669	101		bce0c1
26		alc5e5	57-71	no colour	115		ae9596	102		a8aa94
27		fac6aa	72	77376c	116		fcaeb3	103		cc86c6
28		02fb48	73	7fa9ff	117		d6f1fd		_	
29		c4c4c4	74	9d0522	118		7ffff4			
30		7c6d8e	75	86aac1	57		ebe2d2			
31		fee2c4			58		c7ad7f			
					59		980082			

Table – 2

note: lanthanide series: 57-71 Actinide Series: 89-103

98c08a

006 7faca8 001 001 919192 002 P 006 ffa091 002 001 919192 001 001 7faca8 006 Е 001 ffa091 012 001 919192 006 P 006 919192 002. From Table – 2 the strings of size 6 represent the following 7faca8: Code for C ffa091 : Code for H 919192: Code for O Replacing the three bit strings by their corresponding decimal values we generate the following 6C1O2P6H21O1EP1C61H121O2P6O2 The decrypted message represents photosynthesis [9]

Table – 3

CONCLUSION

In the present scenario chemistry is ever evolving and developing. This proposed method helps in a double encryption which is almost impossible to decode without the key because of the following reasons which helps in safe and secure information transmission.

• The array is complicated and in itself without decoding has no meaning.

• The array fragmentation needs to be done in a specific order. If fragmentation pattern is not followed then the generated array becomes tougher to decode.

• In case of wrong selection the array can be arranged in thousand of possible / desired combinations, which leads the search in a wrong direction, creating time wastage in computation of wrong code, causing misleading by their own trusted systems for example

002ffa091002P001 919192002E002ffa091002001919192001 can be de fragmented in the following wrong combination

• 002f fa091002 P001 9191920 02E002ffa 09100200 1919192001.

• 002f fa0 91002P00 1 919192002E00 2ffa0910 0200191919200 1.

• 002f fa09 1002P 0019 19192 002E0 02ffa09 100200 1919 1920 01...

• The fragmented array in itself is encrypted. As the 6 sized array is a code of the color.

• The guessing of the color becomes difficult because of 16,777,216 color possibilities. With the probability of guess

P (correct_guess) = 1 / 16,777,16

= 5.9960 X 10⁻⁹

• Even at correct guessing the color code with a probability of order -9, the chosen color should again be chosen, as it represents an element out of 118. Once the code is found, for the code as it could be of any of 118 elements. The next code would belong to an element of 117 rest of elements, hence

Permutations of the finding HTML=118 first element x 117_{second} element x 116_{third} Codes of elements element $\dots 2_{117th}$ element x 1_{118th} element

= 118! = 4.684526e+194

So, with this new way of representation of chemical research can help us in protecting the data using the key, keeps the data secure and safe between the sender and the receiver preventing misuse and piracy of the data.

REFERENCES

[1] Chen Yan, Chen Yichen and Han Jianmin *Journal of Chemical and Pharmaceutical Research.*, **2014**, 6(4) 157-161

[2] Neha Shukla, Achchhe Lal, Vipin B. Singh and Devendra K. Singh, Comparison of DFT methods for molecular structure and vibrational spectrum of pyrimidine molecule, *Journal of Chemical and Pharmaceutical Research.*, **2014**, 6(11) 59-69.

[3] M. Yamuna, Der PharmaChemica., 2014, 6(5), 235 – 242.

[4] Uday Bhaskar, Adeesh Nagpal, *Research Journal of Pharmaceutical, Biological and Chemical Sciences.*, **2014**, 5(1), 438 – 451.

[5] http://en.wikipedia.org/wiki/Periodic_table.

[6] http://en.wikipedia.org/wiki/Chemical_equation.

[7] http://en.wikipedia.org/wiki/Web_colors.

[8] http://officetemplate.net/periodic-table-of-elements-templates.html.

[9] www.education-portal.com/academy/lesson/photosynthesis.

[10] http://en.wikipedia.org/wiki/Chemical_equation.

[11] https://www.google.co.in/search?q=space+filling+models+of+chemical+equations.