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ABSTRACT

In this paper, a new method is defined that endapssi the diameter information of the fingerpri@onsidering
fingerprints of the large diameter containing solaee and quite precise information, such fingenpsi should be
given relative large weight. A review of the MIN-Kl&ernel is provided followed by a thorough defimtof the
improved method by which the diameter informatiérthe fingerprint was encoded. The paper concludik

comparative QSAR studies to test the efficacyisfitimproved MAX-MIN kernel in comparison with a roen of

published methods and results with two dataset€ Bid NCI for the convenience of comparison.
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INTRODUCTION

In the field of chemistry the term molecular fingent refers to the characterization of a molecsltaucture into a
vector of descriptors or features. These descspitan then be applied to a wide variety of problams
Chemo-informatics such as similarity searching €lijster analysis [2] and classification. Considgrthe wide used
fingerprint, we give an introduction about the H&sly fingerprints, which is the foundation of oorglementation.

Hash-key fingerprints, although they also resultairvector-based (and typically binary) represemtathave a
distinctly alternative method of generation fromusture key fingerprints. Each atom in a given roole is iterated
over, with all atom-bond paths being enumeratenhfttat atom between a defined minimum and maximondipath
length. Each of these paths is then encoded ustyglic Redundancy Check (CRC) hashing algorithta @single
large integer, in the range {0.3%21}. This integer is then passed as the seed @nalétn Number Generator (RNG),
from which a defined number, N, of integers areetakEach of these integers is then reduced intéetiggth of the
fingerprint, bits, by application of the modulusepgtor. This set of indices is then used to sefpolate the relevant
positions in the fingerprint vector. The pseudoeéut the typical hash-key fingerprinting algorittsrprovided here:

foreach atomin molecule
foreach pathfrom atom
seed-crc32(path)
srand(seed

fori=1toN

indexsrand ()%bits
setBit(indeX

Hash-key fingerprints provide a rapid and efficidascription of topological molecules. At the saimnee, it also has
its own, somewhat complementary, limitations. Ega#ly, these limitations are characteristics dbimation-based
methods when considering the hash-key fingerpribi® to the method by which hash-key fingerprimesgenerated
they are very difficult to interpret.
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The rests of the paper are organized as followst Bf all, we introduced the representation of poonds, then, we
give a detail interpretation of the ECFPs-basedri@sr and its relationship with tihdorgan Algorithm, we described
the ECFP with a hame-value method to adapt ourekenethod, next, we described the improved Max-kimel
method that we proposed and explained the advantagpared with the old method. Finally, we gavedkgeriment
result and made contrast with the state-of-art otketh

EXPERIMENTAL SECTION

Representation of compounds

In this paper we represent each compound by iteesponding molecular graph. The vertices of theselts
correspond to the various atoms (e.g., carborggetn, oxygen, etc.), and the edges corresponctbahds between
the atoms (e.qg., single, double, etc.). Each ofvérices and edges has a label associated witlhét.labels on the
vertices correspond to the type of atoms and theldaon the edges correspond to the type of b@mkxifically, we
use a unique identifiers for each atomic numbehastom typing for vertices. For the edge labebs,use separate
integers or identifiers for single, double and &ipbnds. We also apply two commonly used strugtarenalization
transformations. First, we label all bonds in artengs as aromatic (i.e., a different edge-labahd second, we
remove the hydrogen atoms that are connected bmeatoms (i.e., hydrogen-suppressed chemical gfaph atom
numbering is shown in Fig. 1.

Converting

NH, N

a2 @ 7
3
Fig.1 Benzoic acid amide atom numbering (of non-hydgen atoms)

Extended-connectivity fingerprints (ECFPSs)

ECFPs are a novel class of topological fingerpfortsnolecular characterization. Historically, topgical fingerprints
were developed for substructure and similarity g@iag but later used for analysis tasks, such astaiing, and
classification. ECFPs are explicitly designed totawagpmolecular features relevant to molecular @&gtiwWhile not
designed for substructure searching, they are switgd to tasks related to predicting and gainigight into drug
activity.

ECFPs are circular fingerprints with a number offulsgualities: they can be very rapidly calculatétty are not
predefined and can represent an essentially infiniteber of different molecular features (includingreo-chemical
information); their features represent the presehparticular substructures, allowing easier iptetation of analysis
results; and the ECFP algorithm can be tailorededoerate different types of circular fingerprintptimized for

different uses.

Relation to Morgan Algorithm

ECFPs are derived using a variant of the Morgaoritgn, In the Morgan algorithm, an iterative preseassigns
numeric identifiers to each atom, at first usingla that encodes the numbering invariant atom inétion into an

initial atom identifier, and later using the idemstifi from the previous iteration. Thus, identifieengrated are
independent of the original numbering of the atofi® iteration process is continued until everynatdentifier is

unique (or as close to “unique” as symmetry allowlsg intermediate results are discarded, and tia ifientifiers

provide a canonical numbering scheme for the atoms.

The ECFP algorithm makes several changes to thdatd Morgan algorithm. First, ECFP generation ieates after
a predetermined number of iterations rather theer afentifier uniqueness is achieved. The initiahaidentifiers, and
all identifiers produced each iteration are collédr®o a set; it is this set that defines the extdncbnnectivity
fingerprint. Indeed, obtaining these partially diségnated atom identifiers is the goal of the proc€hs means that
the iteration process does not have to proceedmtpletion (that is, maximum disambiguation) bytésformed for a
predetermined number of iterations. Second, siraréeqtly accurate disambiguation is not requirddprthmic
optimizations are possible. In the ECFP algorittiis computationally expensive step is replaceé figst hashing
scheme. This results in a savings of computatieffiait when the ECFP algorithm is used for fingerpgeneration, as
compared to the rigorous Morgan algorithm used danonicalization. Importantly, the ECFP-hashingesch
generates identifiers that are comparable acrosscoek. An example about ECFP is show as follows
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The ECFP generation process has three sequeatijaisst

1. An initial assignment stage in which each at@® &n integer identifier assigned to it.

2. An iterative updating stage in which each atdemtifier is updated to reflect the identifiers ofreatom’s neighbors,
including identification of whether it is a strualiduplicate of other features.

3. A duplicate identifier removal stage in which tipé occurrences of the same feature are redured dingle

representative in the final feature list. (The ooenice count may be retained if one requires afsaiumts rather than
a standard binary fingerprint.)

Descriptor-based kernel functions.

Given the descriptor space, each chemical compoandbe represented by a vector X whabedimension will have
a non-zero value if the compound contains thatrifgisc and will have a value of zero otherwise. Vaéue for each
descriptor that is present can be either one, hegtdi a vector representation that captures presenabsence of the
various descriptors (referred to as binary vectorghe number of times (number of embedding) ¢aeh descriptor
occurs in the compound, leading to a representdtiah also captures the frequency information (refé to as
frequency vectors).

Given the above vector representation of the chelm@mpounds, the classification algorithms thatierelop in this
paper use support vector machines (SVM) as therlyiulg learning methodology, as they have been shtiwbe
highly effective, especially in high dimensionabsps. One of the key parameters that affect tHferpaaince of SVM
is the choice of the kernel function (K) that maasuhe similarity between pairs of compounds. Amgction can be
used as a kernel as long as, for any humber n apgassible set of distinct compounds;{X,X.},the nxn Gram
matrix defined by K; = K(X;, X;) is symmetric positive semi-definite. These funuti@re said to satisfy Mercer’s
conditions and are called Mercer kernels, or sinplid kernels.

The Min—Max kernel [3] was selected because itlieen shown to be an effective way to measure thiasity
between chemical compound pairs and outperformriatoi coefficient [3] (which is the most widely uskernel
function in chemo-informatics) in empirical evalioats. Given the vector representation of two conmpisuX and Y,
the Min—Max kernel function is given by

Mo
.o, minlx]

Ko (X,¥) = 1)

Bz, max Lepyi)

where the termg andy; are the name-value mapping along the i th dimensidhe X and Y vectors, respectively.
Note that in the case of binary vectors, the vaililioe either zero or one, whereas in the cadeegfuency vectors the
value will be equal to the number of times the d#scriptor exists in the two compounds. Moreowetge that the
Min—Max kernel is a valid kernel as it has beernvahio satisfy Mercer’s conditions and reduces toifato kernel in
the case of binary vectors.

One of the potential problems in using the aboveddewith descriptor spaces that contain fingengriof different
diameter is that they contain no mechanism to enthat descriptors of various diameters contriliute non-trivial
way to the computed kernel function values. Thissigecially true for the ECFP descriptor spacehichvthe final set
contains a mixture of fingerprints of differing diaters for each atom in the molecule, some largegaite precise
should give relative large weight, while some snaaitl relatively common should give relative smadiight. To
overcome this problem, we modified the above kefurgdtion and give equal weight to the fingerprifitloe same
diameter. Particularly, for the Min—-Max kernel ftioa, this is obtained as follows. LétandY be the feature of X and
Y with respect to only the fingerprints of diameteand let L be the diameter of the largest fingetpiThen, the

improved Max—Min kernel functioky,, (X, ¥) is given by

Kipar (0, Y) =20y I* Ky (X5Y1) (2

The construction of models is to give a set of molles with some annotation of bioactivity. A widariety of
modeling methods are possible. The high dimensiynafl ECFPs is a particular advantage for Bayesiaalysis or
Tanimoto (and related) similarty methods, as thekengood use of the wide variety and large numb&EGFP
features.

ECFPs, being a topological method, do not direcdgresent 3D information. However, for many purgose

topological methods like ECFPs have advantages3ivenethods. In fact, 3D fingerprints are expengivgenerate
because of the need to generate 3D conformati@ssiiating their use to smaller data sets. The igeioa of
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representative conformations is an area of ongmsgarch, and different conformational generati@thiods may
result in vastly different 3D fingerprints. 3D fingeints, such as affinity fingerprints, that replyexperimental data
are also expensive to generate and are unavaftabkatual compounds.

Since the 3D conformation of molecules dependderidpological structure, topological informaticamtains much
of the same useful information as the 3D infornmatimdeed, in most published analyses of topoldgiessus 3D
descriptors, the authors came to the conclusidridpalogical descriptors are as good or supeoi®0 descriptors for
molecular tasks like similarity searching and agtiprediction. There is, however, ongoing deba¢cawhether 3D
fingerprints are better than topological fingerpriots‘scaffold-hopping” between structural classes.

PTC dataset
The Predictive Toxicology Challenge (PTC) datassports the carcinogenicity of several hundred chami
compounds for Male Mice (MM), Female Mice (FM), MdRats (MR) and Female Rats (FR) (Table 1).

Table 1 Distribution of positive and negative examigs and molecular graph statistics in the PTC datats

MR FR MM FM

No. of pos. 152 121 129 143

(44.2%) (34.5%) (38.4%) (41.0%)
No. of neg. 192 230 207 206

(55.8%) (65.5%) (61.6%) (59.0%)
Total ex. 344 351 336 349
Avg. no. of atoms/mol 25.56 26.08 25.05 25.25
Avg. no. of bonds/mol 25.96 26.53 25.39 25.62
Avg. degree 2.03 2.03 2.03 2.03

NCI dataset

In the NCI-HIV database, each compound is desciilydts chemical structure [4] and classified ifeee categories:
confirmed inactive (Cl), moderately active (CM)aative (CA). A compound is inactive if a test shoMess than 50%
protection of human CEM cells. All other compoumdse retested. Compounds showing less than 50%qgiar (in
the second test) are also classified inactive. Tiiier @ompounds are classified active, if they predig0% protection
in both tests, and moderately active, otherwise fod@ulated three problems out of this dataset. firseproblem is
designed to distinguish between CM+CA and ClI; #@ad between CA and Cl, and the third between @AGM.

Comparison with published results

In recent years many new descriptors and graptelehave been introduced in the data-mining liteeatind their
classification performance has been successfulsasd. The performance assessment measure ubeddrstudies
is primarily area under the ROC curve. In Table2oempared the ROC results of ECFP with the reetil@ycles and
Trees (CT) [5], random-walk based graph kernels KR\W6], weighted decomposition kernels (WDK) [7]dan

Frequent sub-graph based descriptors [8]. We Urgeitriproved Max-Min kernelf§) for ECFP-based descriptors.
The results could only be compared for the commatasits with those used in these studies. We hsedefault
misclassification cost factor (1.0) and did not mie for regularization parameter in ECFP-basedrigsrs. We
compared our result with the already reported tesutesponding to the related descriptors, itlbambserved from
Table 2 that the ECFP-based descriptor outperf@msRWK, WDK and FSG for the majority of the datsse
Moreover, the best performing method consisterdlyirito ECFP descriptors (except CA vs. CM) desfiie fact that
no optimization performed on the SVM parameter® average improvement of ECFP over the ROC valil@fK,
CT, RWK, and FSG for the common datasets was 1.62, 7 and 6.8%, respectively.

Table 2 ROC values for the five methods for chemi¢aompound classification

Datasets ECFP CT RWK  WDK FSG
CA+CMvs Cl 0.832 0.809 0.817 0.765
CAvs Cl 0.953 0.925 0.94 0.839
CAvs CM 0.832 0.826 0.842 0.81
MR 0.714 0.632 0.697 0.626
FR 0.685 0.664 0.649 0.634
MM 0.697 0.656 0.705 0.655
FM 0.758 0.645 0.691 0.673

DISCUSSION AND CONCLUSION
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important in providing effective descriptor-basegpresentations for the classification tasks givenftlur design
choices (dataset specificity, fragment complexitgciseness, and coverage) and the fact that nonscteads to a
descriptor space that is strictly superior (in tewhwhat it captures) to the rest of the scheidest of the descriptor
spaces make some compromises along at least dhesef dimensions. In the QSAR [9] model, we beliga the
experimental results presented in Table 2 provigieesanswers on the relative importance and imdabese design
choices.
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