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ABSTRACT 
 
In this paper, a new method is defined that encapsulates the diameter information of the fingerprint. Considering 
fingerprints of the large diameter containing some large and quite precise information, such fingerprints should be 
given relative large weight. A review of the MIN–MAX kernel is provided followed by a thorough definition of the 
improved method by which the diameter information of the fingerprint was encoded. The paper concludes with 
comparative QSAR studies to test the efficacy of this improved MAX-MIN kernel in comparison with a number of 
published methods and results with two datasets: PTC and NCI for the convenience of comparison. 
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INTRODUCTION 
 
In the field of chemistry the term molecular fingerprint refers to the characterization of a molecular structure into a 
vector of descriptors or features. These descriptors can then be applied to a wide variety of problems in 
Chemo-informatics such as similarity searching [1], cluster analysis [2] and classification. Considering the wide used 
fingerprint, we give an introduction about the Hash-key fingerprints, which is the foundation of our implementation. 
 
Hash-key fingerprints, although they also result in a vector-based (and typically binary) representation, have a 
distinctly alternative method of generation from structure key fingerprints. Each atom in a given molecule is iterated 
over, with all atom-bond paths being enumerated from that atom between a defined minimum and maximum bond path 
length. Each of these paths is then encoded using a Cyclic Redundancy Check (CRC) hashing algorithm into a single 
large integer, in the range {0...232–1}. This integer is then passed as the seed to a Random Number Generator (RNG), 
from which a defined number, N, of integers are taken. Each of these integers is then reduced into the length of the 
fingerprint, bits, by application of the modulus operator. This set of indices is then used to set or update the relevant 
positions in the fingerprint vector. The pseudo-code for the typical hash-key fingerprinting algorithm is provided here: 
 
foreach atom in molecule 
foreach path from  atom 
seed=crc32(path) 
srand(seed) 
for  i=1 to N 
index=rand()%bits 
setBit(index) 
 
Hash-key fingerprints provide a rapid and efficient description of topological molecules. At the same time, it also has 
its own, somewhat complementary, limitations. Essentially, these limitations are characteristics of information-based 
methods when considering the hash-key fingerprints. Due to the method by which hash-key fingerprints are generated 
they are very difficult to interpret.  
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The rests of the paper are organized as follows. First of all, we introduced the representation of compounds, then, we 
give a detail interpretation of the ECFPs-based descriptor and its relationship with the Morgan Algorithm, we described 
the ECFP with a name-value method to adapt our kernel method, next, we described the improved Max-Min kernel 
method that we proposed and explained the advantage compared with the old method. Finally, we gave the experiment 
result and made contrast with the state-of-art method.  

 
EXPERIMENTAL SECTION 

 
Representation of compounds 
In this paper we represent each compound by its corresponding molecular graph. The vertices of these graphs 
correspond to the various atoms (e.g., carbon, nitrogen, oxygen, etc.), and the edges correspond to the bonds between 
the atoms (e.g., single, double, etc.). Each of the vertices and edges has a label associated with it. The labels on the 
vertices correspond to the type of atoms and the labels on the edges correspond to the type of bonds. Specifically, we 
use a unique identifiers for each atomic number as the atom typing for vertices. For the edge labels, we use separate 
integers or identifiers for single, double and triple bonds. We also apply two commonly used structure normalization 
transformations. First, we label all bonds in aromatic rings as aromatic (i.e., a different edge-label), and second, we 
remove the hydrogen atoms that are connected to carbon atoms (i.e., hydrogen-suppressed chemical graphs). An atom 
numbering is shown in Fig. 1. 

                                    
Fig.1 Benzoic acid amide atom numbering (of non-hydrogen atoms) 

 
Extended-connectivity fingerprints (ECFPs)  
ECFPs are a novel class of topological fingerprints for molecular characterization. Historically, topological fingerprints 
were developed for substructure and similarity searching but later used for analysis tasks, such as clustering, and 
classification. ECFPs are explicitly designed to capture molecular features relevant to molecular activity. While not 
designed for substructure searching, they are very suited to tasks related to predicting and gaining insight into drug 
activity. 
 
ECFPs are circular fingerprints with a number of useful qualities: they can be very rapidly calculated; they are not 
predefined and can represent an essentially infinite number of different molecular features (including stereo-chemical 
information); their features represent the presence of particular substructures, allowing easier interpretation of analysis 
results; and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for 
different uses. 

 
Relation to Morgan Algorithm 
ECFPs are derived using a variant of the Morgan algorithm, In the Morgan algorithm, an iterative process assigns 
numeric identifiers to each atom, at first using a rule that encodes the numbering invariant atom information into an 
initial atom identifier, and later using the identifiers from the previous iteration. Thus, identifiers generated are 
independent of the original numbering of the atoms. The iteration process is continued until every atom identifier is 
unique (or as close to “unique” as symmetry allows); the intermediate results are discarded, and the final identifiers 
provide a canonical numbering scheme for the atoms. 
 
The ECFP algorithm makes several changes to the standard Morgan algorithm. First, ECFP generation terminates after 
a predetermined number of iterations rather than after identifier uniqueness is achieved. The initial atom identifiers, and 
all identifiers produced each iteration are collected into a set; it is this set that defines the extended-connectivity 
fingerprint. Indeed, obtaining these partially disambiguated atom identifiers is the goal of the process. This means that 
the iteration process does not have to proceed to completion (that is, maximum disambiguation) but is performed for a 
predetermined number of iterations. Second, since perfectly accurate disambiguation is not required, algorithmic 
optimizations are possible. In the ECFP algorithm, this computationally expensive step is replaced by a fast hashing 
scheme. This results in a savings of computational effort when the ECFP algorithm is used for fingerprint generation, as 
compared to the rigorous Morgan algorithm used for canonicalization. Importantly, the ECFP-hashing scheme 
generates identifiers that are comparable across molecules. An example about ECFP is show as follows 
 
 

Converting 
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The ECFP generation process has three sequential stages:  
1. An initial assignment stage in which each atom has an integer identifier assigned to it. 
2. An iterative updating stage in which each atom identifier is updated to reflect the identifiers of each atom’s neighbors, 
including identification of whether it is a structural duplicate of other features. 
3. A duplicate identifier removal stage in which multiple occurrences of the same feature are reduced to a single 
representative in the final feature list. (The occurrence count may be retained if one requires a set of counts rather than 
a standard binary fingerprint.) 
 
Descriptor-based kernel functions.  
Given the descriptor space, each chemical compound can be represented by a vector X whose i th dimension will have 
a non-zero value if the compound contains that descriptor and will have a value of zero otherwise. The value for each 
descriptor that is present can be either one, leading to a vector representation that captures presence or absence of the 
various descriptors (referred to as binary vectors) or the number of times (number of embedding) that each descriptor 
occurs in the compound, leading to a representation that also captures the frequency information (referred to as 
frequency vectors). 

 
Given the above vector representation of the chemical compounds, the classification algorithms that we develop in this 
paper use support vector machines (SVM) as the underlying learning methodology, as they have been shown to be 
highly effective, especially in high dimensional spaces. One of the key parameters that affect the performance of SVM 
is the choice of the kernel function (K) that measures the similarity between pairs of compounds. Any function can be 
used as a kernel as long as, for any number n and any possible set of distinct compounds {X1,...,Xn},the n×n Gram 
matrix defined by Ki, j = K(Xi, Xj) is symmetric positive semi-definite. These functions are said to satisfy Mercer’s 
conditions and are called Mercer kernels, or simply valid kernels. 

 
The Min–Max kernel [3] was selected because it has been shown to be an effective way to measure the similarity 
between chemical compound pairs and outperform Tanimoto coefficient [3] (which is the most widely used kernel 
function in chemo-informatics) in empirical evaluations. Given the vector representation of two compounds X and Y, 
the Min–Max kernel function is given by 

                                                                                                                                 (1) 

 
where the terms xi and yi are the name-value mapping along the i th dimension of the X and Y vectors, respectively. 
Note that in the case of binary vectors, the value will be either zero or one, whereas in the case of frequency vectors the 
value will be equal to the number of times the i th descriptor exists in the two compounds. Moreover, note that the 
Min–Max kernel is a valid kernel as it has been shown to satisfy Mercer’s conditions and reduces to Tanimoto kernel in 
the case of binary vectors. 

 
One of the potential problems in using the above kernel with descriptor spaces that contain fingerprints of different 
diameter is that they contain no mechanism to ensure that descriptors of various diameters contribute in a non-trivial 
way to the computed kernel function values. This is especially true for the ECFP descriptor space in which the final set 
contains a mixture of fingerprints of differing diameters for each atom in the molecule, some large and quite precise 
should give relative large weight, while some small and relatively common should give relative small weight. To 
overcome this problem, we modified the above kernel function and give equal weight to the fingerprint of the same 
diameter. Particularly, for the Min–Max kernel function, this is obtained as follows. Let Xl and Yl be the feature of X and 
Y with respect to only the fingerprints of diameter l, and let L be the diameter of the largest fingerprint. Then, the 
improved Max–Min kernel function  is given by 

                                                                                                                  (2)                                                                     

 
The construction of models is to give a set of molecules with some annotation of bioactivity. A wide variety of 
modeling methods are possible. The high dimensionality of ECFPs is a particular advantage for Bayesian analysis or 
Tanimoto (and related) similarty methods, as they make good use of the wide variety and large number of ECFP 
features.  
 
ECFPs, being a topological method, do not directly represent 3D information. However, for many purposes, 
topological methods like ECFPs have advantages over 3D methods. In fact, 3D fingerprints are expensive to generate 
because of the need to generate 3D conformations, restricting their use to smaller data sets. The generation of 
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representative conformations is an area of ongoing research, and different conformational generation methods may 
result in vastly different 3D fingerprints. 3D fingerprints, such as affinity fingerprints, that reply on experimental data 
are also expensive to generate and are unavailable for virtual compounds.  
 
Since the 3D conformation of molecules depends on the topological structure, topological information contains much 
of the same useful information as the 3D information. Indeed, in most published analyses of topological versus 3D 
descriptors, the authors came to the conclusion that topological descriptors are as good or superior to 3D descriptors for 
molecular tasks like similarity searching and activity prediction. There is, however, ongoing debate as to whether 3D 
fingerprints are better than topological fingerprints for “scaffold-hopping” between structural classes. 
 
PTC dataset 
The Predictive Toxicology Challenge (PTC) dataset reports the carcinogenicity of several hundred chemical 
compounds for Male Mice (MM), Female Mice (FM), Male Rats (MR) and Female Rats (FR) (Table 1). 

 
Table 1 Distribution of positive and negative examples and molecular graph statistics in the PTC datasets 

 
 MR FR MM FM 

No. of pos. 
152 

(44.2%) 
121 

(34.5%) 
129 

(38.4%) 
143 

(41.0%) 

No. of neg. 
192 

(55.8%) 
230 

(65.5%) 
207 

(61.6%) 
206 

(59.0%) 
Total ex. 344 351 336 349 
Avg. no. of atoms/mol 25.56 26.08 25.05 25.25 
Avg. no. of bonds/mol 25.96 26.53 25.39 25.62 
Avg. degree 2.03 2.03 2.03 2.03 

 
NCI dataset 
In the NCI-HIV database, each compound is described by its chemical structure [4] and classified into three categories: 
confirmed inactive (CI), moderately active (CM), or active (CA). A compound is inactive if a test showed less than 50% 
protection of human CEM cells. All other compounds were retested. Compounds showing less than 50% protection (in 
the second test) are also classified inactive. The other compounds are classified active, if they provided 50% protection 
in both tests, and moderately active, otherwise. We formulated three problems out of this dataset. The first problem is 
designed to distinguish between CM+CA and CI; the second between CA and CI, and the third between CA and CM. 

 
Comparison with published results 
In recent years many new descriptors and graph kernels have been introduced in the data-mining literature and their 
classification performance has been successfully assessed. The performance assessment measure used in those studies 
is primarily area under the ROC curve. In Table 2 we compared the ROC results of ECFP with the results of Cycles and 
Trees (CT) [5], random-walk based graph kernels (RWK) [6], weighted decomposition kernels (WDK) [7] and 

Frequent sub-graph based descriptors [8]. We used the improved Max-Min kernel ( ) for ECFP-based descriptors. 
The results could only be compared for the common datasets with those used in these studies. We used the default 
misclassification cost factor (1.0) and did not optimize for regularization parameter in ECFP-based descriptors. We 
compared our result with the already reported result corresponding to the related descriptors, it can be observed from 
Table 2 that the ECFP-based descriptor outperforms CT, RWK, WDK and FSG for the majority of the datasets. 
Moreover, the best performing method consistently fell into ECFP descriptors (except CA vs. CM) despite the fact that 
no optimization performed on the SVM parameters. The average improvement of ECFP over the ROC values of WDK, 
CT, RWK, and FSG for the common datasets was 1.64, 1.72, 7 and 6.8%, respectively. 
 

Table 2 ROC values for the five methods for chemical compound classification 
 

Datasets ECFP CT RWK WDK FSG 
CA+CM vs CI 0.832 0.809  0.817 0.765 
CA vs CI 0.953 0.925  0.94 0.839 
CA vs CM 0.832 0.826  0.842 0.81 
MR 0.714  0.632 0.697 0.626 
FR 0.685  0.664 0.649 0.634 
MM 0.697  0.656 0.705 0.655 
FM 0.758  0.645 0.691 0.673 

 
DISCUSSION AND CONCLUSION 

 
The work in this paper was primarily motivated by our desire to understand which aspects of the molecular graph are 
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important in providing effective descriptor-based representations for the classification tasks given the four design 
choices (dataset specificity, fragment complexity, preciseness, and coverage) and the fact that no scheme leads to a 
descriptor space that is strictly superior (in terms of what it captures) to the rest of the schemes. Most of the descriptor 
spaces make some compromises along at least one of these dimensions. In the QSAR [9] model, we believe that the 
experimental results presented in Table 2 provide some answers on the relative importance and impact of these design 
choices. 
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