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ABSTRACT

The Bernstein basis in Cartesian coordinate system rotated around z can be the rotating Bernstein basis in
cylindrical coordinate system, so it can get rotating Bezier surface in cylindrical coordinate system. As this surface
has good symmetry, the shape of the rules is not common in geometric modeling, in order to deal this problem we
introduce new parameters  constitute tensor product type Bernstein basis in cylindrical coordinate system, and
gives the tensor Bezier surface in unit circle domain which has it nature and de Casteljau algorithm. But there will
be a gap in Bezier surfaces, so we popularized Bezier method on circular area to​ ​ any type on the tensor Bezier
surface on fan-shaped area.
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INTRODUCTION

In the 1960s, with the rapid development of automobile industry, the automotive shape aided design aspects urgent
to find a practical modeling tool. In 1972, the Bezier in France's Renault car company proposed a curve which is
defined by a control polygon method [1-2], only by move the control points you can easily modify the shape of the
curve and the shape changes completely expected. Bezier method is simple and solving overall shape of the control
problem excellent, so Bezier method plays an important role in CAGD and it took a big step forward for the
mathematical description of the shape of industrial products. Later, after Forrest [3] study it found that the Bezier
curves are valued Bernstein polynomial form.

American Ryan Aircraft Corporation and the University of Cambridge are applied over Bezier method, the former
using Bezier patches (BBP) to establish a system of curves and surfaces in 1972 and the other developed DUCT
system. Farin is studied the rational Bezier curve [4]. In China Bezier curves has a lot research, such as Buqing Su
[5,6], Dingyuan Liu [5-7], Guozhao Wang[8,9], Fazhong Shi[10] and so on.

This paper is organized as follows: The second part of this article describes some definitions of Bernstein basis and
Bezier curve; the third part of this article gives rotating Bernstein basis Bezier surface definition cylindrical
coordinates which has it nature and the de Casteljau algorithm. The fourth part of this paper gives the tensor product
Bernstein basis and Bezier surface definition on cylindrical coordinate system which has it nature and de Casteljau
algorithm. The fifth part of this article general tensor product Bezier surfaces on the unit circle domain to Bezier
surface on fan-shaped area.

2.Bezier curves
2.1． Bernstein basis
Given a function ( )f t on  0,1 , we defined the Bernstein polynomial [14]
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function ( )( 0,1, , )n
iB t i n  is called the Bernstein basis.

2.2．Bezier curves

Give n +1 vector space 3( 0,1,2, , ),iP R i n   we get n parametric curve
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Bézier curve degree is n. iP called control points. Connected with a straight segment between two adjacent control
nodes we can get the n-side line polygon called the Bézier polygon or control polygon. Especially when the

Bernstein coefficient is the real number ib , it can desire the control vertices as ( , )( 0,1, , )i i
iP b i n
n

   .

3.The rotating Bezier surface
In the geometry the surface can be obtained by rotating by curve, such surface tends to have better symmetry.
Rotated Bezier curve we can be obtained rotating Bezier surface, Then we can introduced the method to represent
freedom curve in geometric modeling to study the rotating Bezier surface on cylindrical coordinate system.

3.1． Rotating Bernstein basis
If ( )f r is a function on the unit circle domain, transferred Bernstein basis of Cartesian coordinates around the
axis of z we can get rotating Bernstein basis
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Conversion (2) to cylindrical coordinate system can be obtained

( ) (1 )n i n i
i

n
B r r r

i
 

  
 

Called the n-th rotation Bernstein basis
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Among them 2 2r x y  and combination coefficients
n
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still defined as (1)

0{ ( )}n n
i iB r  are linearly independent, and Each function ( )( 0,1, , )n

iB r i n  called the rotating
Bernstein basis. The follow Fig are rotation Bernstein basis

Fig 1 Rotating Bernstein basis
2
2 ( )B r Fig 2 Rotating Bernstein basis

2
1 ( )B r

3.2．The rotating Bernstein basis character

Character 1 non-negative. ( ) 0n
iB r  , for all ,i n and 0 1r  ;
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3.3． Bezier surfaces

Given the n +1 vectors ( , )( 0,1,2, , )i i iP r z i n   on cylindrical coordinate system, we call n times
parametric surfaces as

0
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It is an n-th Bézier surface. iP called the control curve, the control line is on space of the circle. Connecting
adjacent two control curves by turn we can get Bézier control surfaces.

3.4．Rotating Bezier surface charactor
Character 1 Geometric invariance and affine invariance. As Bernstein basis satisfy the unit decomposition we make
Bézier surface (3) affine transformation, which uses linear transformation M and translational c role to get new
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Affine transformation, the original Bezier surface (3) for the control curve iP obtained to the new control

curve *( 0,1,2, , )iP i n  .

Character 2 Convex hull property. The Bernstein basis nature shows that ( )n
iB r constitutes the weight function.

For fixed r , ( )P r is a weighted average of the control points iP . From the view of geometric, that means Bezier
surface falls in the convex hull of the control surfaces.

Character 3, Derivative function. By the nature of Bernstein basis derivative we can obtained
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The first derivative of n times Bezier surface is an n-1 Bezier surface.

Character 4 Endpoint.
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Character 5 Symmetry. If you reverse the order of Bezier surface (2) control points, put
* ( 0,1, , )i n iP P i n   , then the new Bezier surface is
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*( )P r and ( )P r describe the same curve, just through a parameter change 1s r  , so the curve direction
opposite to the original one.

3.5. De Casteljau algorithm of rotating Bezier surface
By the recursive nature of Bernstein basis functions
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It can get a n rotating Bezier surface is composed of two 1n  Bezier surface. So we can evaluated any point on
a Bezier surface by use recursive of de Casteljau algorithm
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0 ( )nP r Is requested as ( )P r .

4.The tensor-based Bezier surfaces on circular area
Rotated the Bezier curve on a Cartesian coordinate system obtained rotating Bezier surface which with good
symmetry, but in geometric modeling that Bezier surface are rare. Seen from the upper part we found the symmetry
of rotating Bezier is result of unknown parameters r , in order to change this symmetry we introduces another new
parameter , so we can get tensor product Bezier surface model similar Bezier surfaces in Cartesian. The Bezier
surface control turn the control line into the control point, which has more closely to the Bezier curve on the
Cartesian coordinates.

4.1. Tensor Bernstein basis on Circle domain
In the cylindrical coordinate system, the entire coordinate plane shown as ( , , )r z , as the space can be expressed
by a binary function with parameter ,r  , so we can show this Bernstein basis as the product of two Bernstein basis
like that

,
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2
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
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The follow Fig give the Bernstein basis tensor images on the unit circle

Fig 3 The tensor Bernstein basis of 2,2
2,2 ( , )B r  Fig 4 The tensor Bernstein basis of 2,2

1,1 ( , )B r 
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4.2. The character of tensor Bernstein basis
Character 1, Non-negative. ,
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4.3. Tensor Bezier surfaces on Circle domain
Given ( 1)( 1)m n  vector , ,( , , )i j i j i jP r z ( 0,1, , 0,1, ,i m j n   )on cylindrical coordinate system,

( )m
iB r , ( )n

jB  are Bernstein basis. The tensor Bezier surface defined on the unit circle of cylindrical coordinate

system is
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It called m n Bezier surface, ,i jP named control vertices, connected to the same type of control vertices In turn

can be get the polyline which called control network.

4.4. The character of tensor Bezier surface on Circle domain
As a new Bezier surfaces, it also has similar properties to ordinary Bezier surfaces

Character 1, Geometric invariance and affine invariance.

Character 2, Convex hull property. As the Bernstein basis has the nature of non-negative and units decomposition,
then we known tensor Bezier surfaces on cylindrical coordinate system is located inside the convex hull of control
mesh.
Character 3, Isoparms character. The isoparametric lines *  and *r r of tensor product Bezier surface are
also Bezier curve
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Character 4, Corner interpolation character. The four corners of surfaces interpolations nets of four corner points,

0,0(0,0)P P , 0,(0,1) nP P , ,0(1,0) mP P , ,(1,1) m nP P

4.5. The de Casteljau algorithm of tensor Bezier surface
The tensor Bezier surface on cylindrical coordinate system has many similarities with common Bezier surface
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This shows am n Bezier surfaces is combination by four ( 1) ( 1)m n   Bezier surface. So we can obtained
at any point on Bezier surface by de Casteljau algorithm

0,0 0,0
, , ,( , ) , 0,1, , , 0,1, ,i j i j i jP r P P i m j n     

, 1, 1 1, 1 1, 1 1, 1
, , , 1 1, 1, 1( , ) (1 )(1 ) ( , ) (1 ) ( , ) (1 ) ( , ) ( , )k s k s k s k s k s
i j i j i j i j i jP r r P r r P r r P r r P r               

           a

mong them 0,1, ,k m  , 0,1, ,s n  , 0,1, ,i m k  , 0,1, ,j n s  。

It can be written as
1 1

1,1 1 1
,

0 0

,
,

0 0

,
0,0

( , ) ( ) ( )

( ) ( )

( , )

m n
m n

i j i j
i j

m k n s
k s m k n s
i j i j

i j

m n

P r P B r B

P B r B

P r

 





 
 

 

 
 

 



















,
0,0 ( , )m nP r  is required point on Bezier surface.

5.The tensor Bezier surfaces on fan-shaped domain
5.1 Bernstein basis on fan-shaped domain
The discussed above tensor Bezier surface model on circular domain is a special surface which has a good closure
and discontinuous at the origin, they all was not successful when modeling application so we must have a better
general methods. Here we give the tensor Bezier surface modeling on fan-shaped domain, the following figure give
the fan-shaped domain, among them o is origin and or is Polar radius, and the blue area is the shape regional.

Fig 5 A schematic figure of fan-shaped domain

Among the Fig 5, 1OA r , OB r and 1 [0,1]r r  , the angle [0, ]  . For tensor Bezier surfaces on this

area we can be defined two groups Bernstein basis of ,r  is
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1( ) ( ), 0,1, ,m m
i iB r B r r i m   

( ) ( ), 0,1,n n
j jB B j n


  

So we can be obtained tensor Bernstein basis through the fan-shaped domain

,
, 1( , ) ( ) ( ), 0,1, , , 0,1,m n m n
i j i jB r B r r B i m j n


    

When 1 0r  , 2  , fan-shaped domain is the unit circle domain and when 1 0r  , 2  Fan-shaped
domain ​ ​ degraded as the unit ring.

When 1 1r  ,
2
  , we can be obtained tensor Bernstein basis on fan-shaped domain as following figure

Fig 6 The tensor Bernstein basis of
2,2
2,2 ( , )B r  Fig 7 The tensor Bernstein basis of

2,2
1,1 ( , )B r 

Since the Bernstein basis of unit circle is a special case of the Bernstein basis on fan-shaped domain, so we can
easily get the similar Bernstein basis properties on fan-shaped domain.

5.2 Bezier surface on fan-shaped domain
Since the above has been given Bernstein basis on the fan-shaped domain, When we along concentric circle and rays
given control mesh , ,( , , )i j i j i jP r z 0,1, , 0,1, ,i m j n   then we can get the fan-shaped domain

Bezier surface

,
0 0

( , ) ( ) ( )
m n

m n
i j i j

i j
P r P B r B 

 



It can be seen the same manifestations of Bezier surface on the fan-shaped domain and on the unit circle, due to the
definition of Bernstein basis differences the resulting final expression is quite different., but they have similar
properties and de Casteljau algorithm.

CONCLUSION

In this paper Bernstein basis of Cartesian coordinates rotate along the axis of z to get rotating Bernstein basis, and
then obtain rotating Bezier surface of cylindrical coordinate system. However, the rotating Bezier surface with good
symmetry in geometry modeling so it not widely used. In order to solve this problem, this paper introduces a new
parameter of the angle on cylindrical coordinates to get tensor Bernstein basis on circle domain, so it resulting tensor
Bezier surface on circular domain. But this surface would still cause discontinuities, to avoid this problem we
introduces tensor Bezier surface on fan-shaped domain instead of on circle domain.
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