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ABSTRACT 

 

In the process of validation of analytical methods, the guides NF T90-210 or NF V03-110 [1,2] are most often used, 

they are respectively used in chemical analysis of water and the agro-food field. For indirect analysis methods, 

which is frequently the case and especially for spectroscopic analysis methods, validation takes place after 

verification of the performance criteria of an appropriate calibration model. The validation or verification of the 

calibration function in a measurement area depends on the guide used. 

 

For example, an MAD (Maximum Accepted Deviation) can be proposed for the adjustment between the 

experimental values and those adjusted by the calibration function. One can also use a statistical test of suitability 

by a variance study, which compares the residual variance with the variance explained by the proposed model. 

Statistical indicators such as the coefficient of determination and the standard error (R
2
; s) of the model are then 

calculated.  

 

However, these verification methods are insufficient because they do not provide an experimental protocol to test 

the performance of the proposed model in the prediction phase. It is easy to find a coefficient of determination 

R
2
>0.95 for a fit between the observed and calculated values, but it does not guarantee the quality of the results that 

will be obtained. It is easy to erroneously accept an analytical method as valid in one's field of study because the 

instrumental response function is not properly defined. As a result, the performance evaluation of the characteristics 

of the analytical method leads to biased results. In this work, we propose a simple and robust protocol for the 

verification of the performance of the instrumental response function (calibration model) of an indirect analytical 

method.   

 

The approach consists in the use of the cross-validation method (80-20%), which is a method commonly used in 

statistical modeling in chemistry and biology (QSAR and QSPR) [3,4]. Statistical indicators recalculated using this 

method are more robust and reflect better the suitability of the calibration function and its performance. The 

analysis method used in this work consisted of measuring the quantity of organic matter using a UV-Visible 

spectrum between 200 and 300 nm. We used three calibration functions by comparing the statistical indicators, as 

the coefficient of determination and the residual error (R
2
, s), which are derived from the cross-validation method of 

these functions. The fit between the observed and predicted values with respect to an acceptability deviation of 20% 

was additionally verified. 
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 The obtained results lead to the adoption of a three-wavelength multiple regression model as a fair and robust 

calibration model. Unfortunately, the limited data available did not allow us to test other more advanced functions 

as neural networks. 

 

Keywords: Analytical method validation; Calibration function; Cross-validation method; UV visible 

spectrophotometry; Organic matter 

            ______________________________________________________________________ 
INTRODUCTION 

 

The analytical method lifetime is an evolving process that follows different stages [5,6] which can be represented by 

a cycle illustrated in Figure 1. 

 

       
 

Figure 1: The principal phases of the life cycle of an analytical method 

Step 1: The analytical method is developed and implemented for its intended purpose. The optimization of all 

parameters that could influence the measurement process is strongly recommended through the use of experimental 

designs. Taguchi's approach can also be used to study the robustness of the proposed method [7]. The objective is to 

reduce the noise effect of all parameters that vary independently of the analyst. This study is very important because 

it improves the precision of the analytical method. Thus, in this development phase, we can look for the operating 

conditions for a fair and less dispersive method [8]. 

Step 2: Validation of the developed method with respect to the expected use using an intra-laboratory 

characterization as well as an inter-laboratory study if necessary. This study is intended to evaluate the uncertainty 

of the analytical method.  

Step 3: Routine usage of the method may lead to a revalidation requirement. It is sometimes necessary to re-

optimize the analytical method due to measurement target deviation or capability degradation. According to EN 

ISO/CEI 17025 guide [9], the validation of an analytical method is the "confirmation by examination and objective 

evidence provision that the specific requirements for a given intended use are fulfilled". This confirmation consists 

of comparing the values of the performance criteria determined during the method characterization study with those 

expected or assigned beforehand (limits of acceptability, objectives to be achieved) and then declaring the analytical 

method valid or invalid.  

 

The analytical method characteristics are a set of quality parameters that are assigned to the analytical method and 

that can be quantified or qualified. These parameters are quantities to be estimated from a set of measurements, e.g. 

relative bias to indicate accuracy, and repeatability standard deviation to describe the capability of the analytical 

method. However, the validation criteria for an analytical procedure are a specified limit value established for a 

performance characteristic. For example, the validation of a method for the quantification of medicinal product 

residues, according to European regulations, requires a repeatability coefficient of variation ≤ 20% and precision 

between 70% and 120% with respect the reference value to be measured [10]. 

 

In this work, we are focusing on the calibration functions, or instrumental response functions, of indirect analytical 

methods. They allow the determination of any measurable or non-measurable value of a quantity from an 

instrumental response by a mathematical model. They have crucial importance since they govern the whole 

validation process. A misdefined calibration function can cause biased validation characteristics. Analytical methods 

with weak accuracy can easily be promoted. In the case of indirect analysis methods, it is necessary to express the 

value of the measured quantity from an instrumental response by using a function f: Y=f(X). Linear functions are the 
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most used model because they are precise and easy to implement using the least-squares method [5]. In the case 

where deviations from linearity are observed, this disadvantage can be overcome by segmenting the validation 

domain or by reducing it. Quadratic functions can sometimes be used [11].  

 

In practical terms, there is no requirement imposed on response functions in the analytical method validation process 

using an indirect analytical method. However, the ability to provide a good fit must be ensured. This is 

accomplished by using the acceptability limits (Maximum Acceptable Deviations (MAD)) to verify the fit between 

the observed and model-fitted values. This practice is often used in quality control or forensic metrology and 

medical biology for blood parameters as well. Furthermore, it is customary to perform a statistical test by a variance 

study and then calculate the usual statistical indicators such as the coefficient of determination (R
2
) and the standard 

root mean square error (s). These methods are not sufficient because they do not allow assessment of the calibration 

function's performance for measurements that are not part of the learning set. It is therefore easy to incorrectly 

accept an analytical method as valid in one's field of study because the instrumental response function is not 

properly defined. In this work, we propose a more rigorous approach using a cross-validation in order to 

demonstrate the response function's robustness. This consists in decomposing the initial series (the training or 

learning set) into two subsets, the first one of 80% allows building the calibration model, the second one serves as a 

test. The process consists in repeating the experiment as many times as necessary to test the totality of the data. 

Afterwards, we can verify that the deviations between the observed and predicted values are within the acceptable 

deviation limit (MAD). We also recalculate the usual statistical indicators (R
2
 and s), coefficient of determination 

and the root mean square error) of the fit between the observed values and those resulting from the cross-validation 

method to evaluate the performance of the proposed model.  

 

A comparative study between the verification methods proposed in the two guide’s document cited above and the 

cross-validation technique (80-20%) is presented for a series of three calibration functions (two simple and multiple 

linear regression models and a polynomial function). The data are derived from the UV-visible absorption of organic 

matter in water at three wavelengths (265, 280 and 285 nm). 

 

EXPERIMENTAL AND STATISTICAL STUDY 

UV-Visible Spectrophotometry for the Routine Measurement of Organic Compounds in Water 

Organic Matter (OM) and nitrate contents are part of regulations defining the good ecological status of a water 

resource, or its compliance if it is used for drinking water production (Table 1) [12]. However, the determination of 

organic matter content by conventional analytical methods presents a major handicap linked to the cost of the 

analyses and the time required to conduct them, in addition to the use of reagents that are environmentally 

unfriendly. The organic matter content in water is usually measured by determining the CO2 concentration that 

results from an oxidation reaction of the organic matter present in the water [13]. These impairments inhibit 

adequate reactivity in pollution cases. It should also be recognized that these standard methods are precise.  For this 

purpose, a focus is being given to the use of other faster methods, such as UV-Visible spectrophotometry [14]. The 

information offered by this technique is very interesting from a qualitative point of view. It is also interesting from a 

quantitative perspective, as mathematical methods for data exploration in chemo metrics are developed [15]. For the 

organic matter content in water, it can be easily determined by UV absorbance or optical density (OD) 

measurements in the range of 200-300 nm [16]. 

Table 1: Water quality versus organic matter content 

Water quality OM 

(mg/Litre) 

Very good Jusqu’à 20 

Good 25 

Average 40 

Poor 80 

Very poor >80 
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As any indirect analysis procedure, a learning set is required to build the calibration model. It consists of several 

solutions with known organic matter contents in a well-defined range. In this work, six solutions with contents 

ranging from 10 to 200 mg/L are available [17]. These solutions are prepared from the dissolution of a 

monopotassium salt of benzene-1, 2-dicarboxylic acid (Phthalic acid, KHP, C8H5KO4) in distilled water (Table 2). 

 
Table 2: Organic matter content of the learning set 

Solution 1 2 3 4 5 6 

KHP (mg/L) 10 30 50 70 100 200 

 

The absorbance of the prepared solutions is in the range of 200 to 900 nm. The high absorbance is observed between 

200 and 300 nm, which is due to the conjugation present in Phthalic acid [18]. The absorbance at three reliable 

wavelengths (265, 280 and 285 nm) are used as independent variables, as they show a wider variance depending on 

the KHP concentrations. A strong correlation was observed between absorbance at the different wavelengths as well 

as absorbance and organic matter content. The results are reported in Table 3. 

 
Table 3: Correlation matrix between absorbance and organic matter content 

 A265 A280 A285 OM 

A265 1    

A280 0,98 1   

A285 0,98 0,99 1  

MO  0,96 0,91 0,95 1 

 

RESULTS AND DISCUSSION 

Calibration Models and Statistical Analysis 

In the present work, three types of functions were used to implement the calibration models between the organic 

matter content and absorbance at different wavelengths in UV-Vis. The functions are presented in the following 

Table 4. 

Table 4: Proposed calibration models 

Function 1 Simple regression            
Function 2 Quadratic function            
Function 3 Multiple regression                      

 

The absorbances at different wavelengths are highly correlated. For the first two models, the absorbance at 265 nm 

was chosen. The coefficients of the calibration model are estimated using the least-squares method detailed in the 

literature [5]. For a simple model of the type: Y=a.X+b, total error minimization results in the calculation of the 

coefficients a and b using the following formulas: 

   ̅      ̅                   
∑      ̅       ̅  

∑      ̅   

 
 ∑       ∑     ∑    

 ∑   
   ∑   

 
        

 ̅      ̅                                                        

Furthermore, the analysis of variance can be used to decompose the total variation into two components that 

correspond to the explained variation and the residual variation. 

∑          ̅   ∑           ̅   ∑                  
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The following table presents the analysis of variance for a simple affine function model (Table 5). 

 
Table 5: Analysis of variance for a simple model          

Source Sum of squares DDL Average squares Ratio 

Model     ∑           ̅              
   ⁄     

   ⁄  

Residual     ∑                  
             

   ⁄   

Total     ∑          ̅         

(n is the number of measurements and corresponding responses and p=2 is the number of unknowns in the model (a 

and b)). 

 

For a predetermined risk, the Fisher F test compares the ratio F_obs=CML⁄CMR which has been calculated from the 

previous table with a critical value read on the Fisher-Snedecor table with 1 and (n-2) degrees of liberty. This ratio is 

always high to select a valid model. 

The proportional variation explained by the calibration model in the total variation corresponds to the determination 

coefficient noted as R
2
. 

   
∑           ̅  

∑          ̅  
         

As part of a validation of an analytical procedure, the experimental design requires that replicates be performed for 

reproducibility; the variation decomposition takes another form: 

  √
∑                  

 

   
           

As part of a validation of an analytical procedure, the experimental design requires that replicates be performed for 

reproducibility; the variation decomposition takes another form: 

∑∑      ̿  

  

 ∑∑        ̅  
  ∑    ̅   ̂   

  

  

∑    ̂    ̿  

  

        

 ̿                                      ̅                                            

     ̂                                                                              

Taking the same decomposition of the total variation to which is added the variation ∑_i▒〖n_i     _i-   _ij)^2 〗
due to the deviation of the model. For a valid model, a Fischer's test must show that the latter is of the same order as 

the residual variation.  It is important to note that in the majority of cases, this test is very problematic because the 

residual variation is very small in spectrophotometric methods of analysis. By using such a test, there is a risk that 

the model may be automatically rejected despite its good performance. 

For verifying the validity of the calibration model through the maximum accepted deviation, a limit value expressed 

as a percentage is generally proposed in the range of 10-20%. 

|          |

    
                

Calibration models are used to recalculate organic content values. The model is valid and accepted when the 

deviations are less than the limit value. The graph displays in Figure 2 illustrate the accepted calibration model 

distribution.                                  
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Figure 2: Distribution of deviations for a valid calibration model 

 

Analysis and Interpretation 

 

In the first step, a simple model was built using only the absorbance at 265 nm. With respect to statistical indicators, 

the calibration model is efficient, with a determination coefficient of about 93% (Figure 3). However, the Fischer 

test shows that the model is very significant. The deviations between calculated and observed values is less than the 

maximum accepted variance (AMD<20%) (Table 6). 

 

Figure 3: Adjustment between the observed and calculated values by the linear model 

Table 6: Deviations between calculated and observed values of organic matter content 

OMobs 10 30 50 70 100 200 

OMcalc  26,22 61,07 83,08 121,60 174,4 

Deviation >> 12% 20% 18% 21% 13% 

 

All indications suggest that the model is appropriate and suitable in this case. However, the predictive power of the 

model was tested using the cross-validation method (80-20%). The model is constructed from the available data with 

a single value being taken as a test. The value of the organic matter content for this data is recalculated from the 

model and the operation is repeated as many times to recalculate the organic matter contents for the all data. A 

simple model between the observed and calculated values〖OM_obs=a.〖OM_calc+b is constructed to re-evaluate 

the statistical indicators. The statistical indicators appear less satisfactory with a significantly reduced coefficient of 

determination (72%). In addition, deviations between the observed and calculated organic matter values are very 

high (Table 7). 

Table 7: Results of the cross-validation method 

OMobs 10 30 50 70 100 200 

OMcalc  24,7 64,2 85,73 129,22 134,4 

Deviation >> 17% 26% 22% 29,2% 30% 

 

The results of the cross-validation indicate the predictive weakness of the proposed model and its lack of widespread 

use. Therefore, the use of this calibration model may lead to the acceptance of an analytical method with biased 

accuracy. 

06



Jermouni C, et al   J. Chem. Pharm. Res., 2021, 13(2):01-08 

   

In order to improve the fit, a quadratic model is proposed. The least-squares method was used to determine the 

calibration model coefficients and the same procedure was used to determine the statistical indicators of the model 

and the deviations between the observed and calculated organic matter content values. Better statistical indicators 

were found compared to the linear model (Figure 4), with an acceptable fit (Table 8). 

 

 
Figure 4: Adjustment between the observed and calculated values by the quadratic model 

Table 8: Deviations between the calculated and observed organic matter values for the quadratic model 

OMobs 10 30 50 70 100 200 

OMcalc  22,47 48 68 115 193 

Deviation >> 20% 4% 1,8% 13,7% 3,4% 

 

Moreover, the results of the cross-validation are still very poor with a decrease in the determination coefficient 

(91%) and deviations between the calculated and observed values of the organic matter content exceed the 

maximum accepted deviation of 20% (Table 9). Nevertheless, the results show better results than those of the linear 

model. 

Table 9: Results of the cross-validation method 

OMobs 10 30 50 70 100 200 

OMcalc  24,7 47,2 68,73 118,22 152,40 

Deviation >> 24% 6% 3% 20,2% 23% 

In the last step, a multiple regression model was considered integrating the absorbance at wavelengths (265,280 and 

285 nm). The calibration model coefficients are determined by the least-squares method. As the absorbance values 

are of the same order of magnitude, there is no need to transform the absorbance values into reduced values. 

Therefore, these coefficients do not reflect the contribution of each absorbance value since they are highly 

correlated. However, the model's explanatory component value is of around 99% (R
2
) and the deviations between 

the observed and calculated values of the organic matter content are very slight (Table 10). 

Table 10: Deviations between calculated and observed organic matter values for the multiple 

regression models 

OMobs 10 30 50 70 100 200 

OMcalc 12,58 28,92 45,54 68,53 106,20 198,19 

Deviation 25% 3,5% 8,9 2,1% 6,2% 0,009% 

 

Additionally, the predictive power was tested by cross-validation, and the statistical indicators remain very 

satisfactory, with a determination coefficient of approximately 94% and deviations of no more than 20% (Table 11). 

The calibration model using multiple regressions gives better results and is suitable as a calibration model for 

organic matter determination in water from UV absorbance. Nevertheless, it was noted that the 10 mg/l content is 

very difficult to integrate into all three models. Instead, it would be more appropriate to use more complex functions 

or simply reduce the calibration function's use interval. Alternatively, the experiment interval can be split into two or 

three segments and construct as many calibration models. 
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Table 11: Results de the cross-validation method for the multiple regressions 

OMobs 10 30 50 70 100 200 

OMcalc 18 28,09 40,91 65,73 110,22 160,39 

Deviation >> 6,35% 20% 0,6% 10,9% 19% 

 

CONCLUSION 

This study has shown that calibration models, which appeared to be valid with respect to the statistical indicators 

imposed by Fisher's tests and the maximum accepted deviation values defined by certain guides, show a deficiency 

in their predictive and generalizing power. However, cross-validation (80-20%) allows a better verification of the 

robustness of the calibration models in the prediction phase, by recalculating the statistical indicators of a simple 

model between observed values of the organic content in water and those resulting from the cross-validation 

technique. 

Based on three calibration models by measurement of the UV (ultraviolet) absorption at a wavelength of 200 nm ~ 

300 nm, the cross-validation method showed the superior performance of a multiple regression model compared to 

other simple and quadratic regression models with absorbance at a single wavelength (265 nm). The cross-validation 

method is a powerful technique for the validation and verification of calibration models in the validation process of 

indirect analytical methods. In this way, this technique allows us to avoid wrongly accepting an analytical method as 

valid in its field of study as the instrumental response function is not properly defined or has a very poor predictive 

performance. 
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