Available online www.jocpr.com

Journal of Chemical and Phar maceutical Resear ch, 2013, 5(11):96-101

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

Application of LSSVM to logistics demand forecasting based on grey
relational analysis and kernel principal component analysis

Xia Zhao and %Li-Yan Geng*

Trade Union Committee, Shijiazhuang Tiedao UniverShijiazhuang, China
School of Economics and Management, Shijiazhuaedg®i University, Shijiazhuang, China

ABSTRACT

Precise forecasting of logistics demand is verydrtgmt for logistics system planning and designikipwever,
logistics demand is affected by many factors, whithcause the complex model for logistics demfordcasting.
To simplify the forecasting model and improve tbeedasting precision, this paper proposed a leapiases
support vector machines (LSSVM) model based onrgtational analysis (GRA) and kernel principal qooment
analysis (KPCA) for forecasting logistics demandksty, the GRA was applied determining the maintdes
affecting logistics demand. Secondly, the KPCA agdied to eliminating the correlation among theiméactors
and extracting the nonlinear principal componerimally, the extracted nonlinear principal compotemvere as
the input variables to build LSSVM model for logistdemand forecasting. The parameters in LSSVMe wer
optimized by the adaptive inertia weight particlkeasm optimization (AIWPSO) algorithm. The logistitsnand in
China was used to evaluate the effectiveness gbribyigosed model. The results indicate that the psed model
greatly reduces the dimensions of the input vagalznd improves the forecasting precision for laggsdemand.

Keywords. Logistics demand forecasting, Least squares supgatbr machines, Grey relational analysis, Kernel
principal component analysis, Adaptive inertia virtigarticle swarm optimization.

INTRODUCTION

Logistics system is characterized by uncertaintynlinearity and dynamics, which increases the diffy for
forecasting logistics demand. Some traditional dasting methods, such as regression analysis arel deries
analysis establish forecasting model based on #thematical theory and hypothesis. They can't dlesc¢he inner
structure and complexity of logistics demand ddata. improve the forecasting accuracy of logisticandad,
artificial neural network (ANN) was used to forecédsgistics demand [1-2] and has been proven torowg
forecasting results to some extent. However, tipieations of ANN often trapped into local minimadause of its
own disadvantages.

Support vector machines (SVM) was first introdubgdvapnik to solve the classification problem [Bhsed on the
principle of structural risk minimization, SVM hden successfully applied to other fields suchaa chining,
regression and logistics demand forecasting [4lastesquares support vector machines (LSSVM) [5his
reformulation of SVM. Besides keeping the advantagé SVM, LSSVM has its own merits. That is, LSSVM
improves the computation efficiency and reducesptirameters needed to be estimated by solvingrlewaaations.
However, the performance of LSSVM relies heavily the choice of parameters. So, choosing the seitabl
parameters is the key to improve the performandeS&VM.

Logistics system is a subsystem of social econaystem and multiple factors affect the varying elstaristics of

logistics demand. These factors have differenuaite degree and influence law on logistics demisiadeover,
these factors also influence each other, which ieidld to the correlation between the factors areh tthe
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information overlap. When constructing the foreicastmodel, if too many factors were taken into acto the
structure of the forecasting model would becomeplerand the forecasting precision would decrease.

Grey relational analysis (GRA), based on grey systheory, is suitable to analyze the relationshapsong
sequences in a system and determine the degraéiugrice of them. Literatures [6] and [7] havedu&RA to get
the main factors affecting synthesis charactesst hydraulic valve and affecting railway freighiblumes,
respectively.

Kernel principal component analysis (KPCA) is anlebased principal component analysis, which czal dith
the nonlinear interrelationships among the complata. By extracting nonlinear feature informatig®®CA can
eliminate the correlation existed in multiple semges and then reduce the dimensions of the dataKRBTA,
coupled with GRA, has been used to determine tpatiand output variables of LSSVM for evaporationgess
modeling [9].

Combining GRA with KPCA, this paper proposes a L&BWased model for forecasting logistics demand. GRA
utilized to gain the main factors affecting the reltderistic of logistics demand and KPCA is usedina the
nonlinear principal components from the main fagtdthen, LSSVM, optimized by adaptive inertia weighrticle
swarm optimization (AIWPSQO) algorithm, is used tailth a forecasting model based on the nonlineancgral
components.

EXPERIMENTAL SECTION

Grey relational analysis

The core idea of grey relational analysis (GRA)oisascertain the relationships of different seqasrtbrough the
geometric proximity between them. The more proxitied geometrical shape, the closer the relationshifhe
corresponding sequences. The degree of the redhijors described by the grey relational degree. filocedure of
GRA is summarized as follows.

Stepl Get two types of sequence. Consider the statag P, ()}, ( t=L,2,..., N) as the reference sequence, the

data seriegP(9},(1=1,2,....mt=12,...,N jas the comparison sequence. Normalize the origia&l through
mean value:

X0 =D (1) = ) @
ED S CRRNES S

Step2 Calculate the relational degree coefficiantime t' (t'=1,2,...N), the grey relational coefficient between the
reference and comparison sequences is defined as:

R (1)

Amin + A max
)

O e,

where £€[0,1] is the distinguish coefficient;Ag(t)=Xo(t')-x(t')]; Amax and Ay, are defined as
A =maxmax ik, ( X ) and A, =minmin|x, ¢ )X ") | respectively.
i t' i t'

Step3 Calculate the relational degree. The relatidagree is the average value of the relationeffictents and is
given as:

0 %) =5 3 Ly (1) @

t'=1

Step4 Rank the relational degree. The relationgtaieis ranked from a big value to small one. Tiwercan know
the degree of importance of the comparison sequerite reference sequence.
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Kernel principal component analysis
Let x=(X1,Xz,...,Xn) be a data matrix, withX; OR™ be the column vector at tinje for j=1,2,...N. Using the

nonlinear mapping, KPCA transform into a high-dimensional feature spa€and the data covariance matrix in
feature space can be written as:

C :%iq&(xj)qs(xjf (4)

whered(x;) is assumed to being mean centered. By introduaikgrnel matriX< with elementsk(x;,x;), for
i,j=1,2,...N, InF, inner products of two vectors can be evaluatb(&s(j):di(xi)Ttb(x,-). CentralizeK by

K=K-AK-A+AKA (5)

where A=(1N)x-n. Letg=(8,4,,...,5, ) be the orthonormal eigenvector associated withpthelargest positive

eigenvaluesd,, A,,....A,, then the eigenvalue decompositionKois expressed as:

KB =NAp (6)

Thep kernel principal components kare given as:
p
V= Z;'chp(xp) (7)
J:
Let zbe a test vector, theth kernel principal componesgcorresponding t@ is obtained by
N
s(P=v,@2(2 =) B, Kx,2) (8)
=1

L east squares support vector machines

Suppose a training datax{fy)} for I=1 ton, where X, U R is the input vector ang, U R is the corresponding
output variable. The optimization problem for LSS\W/iven as:

. 1 1Q
minJ (@)=~ [|w i +—2V2é ©)
’ 1=1

y, =wWj (x)+b+e, I =1,..n. (10)

where the mapping function(x) transfersx into a high-dimensional feature space. Ands the regularized
parameter. Andv, b are weight vector and bias term, respectivelys the error variable at timrle Combining the
Lagrangian of the optimization problem with the #sii-Kuhn-Tucker (KKT) condition, we can get theekm
equations expressed in the following matrix:

P HEN

where Y=[y1, Va,..., ¥il", 1=[1,...,1]", and| is ann order unit matrix.And a=[a1, ay,..., an]' is the lagrange
multipliers matrix witha@, O R . And @ is the matrix with element®,=¢(x)"¢(x). The final LSSVM for regression
is obtained by
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y(x) =Y ak(x . x)+ b 12

1=1
wherek(x,,x)=¢(x) ¢(X) is the kernel function and is needed to satisgrdér’s condition.
RESULTSAND DISCUSSION

GRA and KPCA of theinfluential factors

This paper takes China logistics demand forecastingn example. Different researchers use diffeneatsurement
index for logistics demand. In this paper, theltstzial logistics cost is used as the index to sueathe logistics
demand.

Analyzing the logistics system comprehensivelys ifound that there are 17 elements influencingcteracteristic
of the logistics demand. GRA is used to determiireekiey factors affecting the varying behavior afistics demand.
The total social logistics costs and the 17 inftisdrelements are regarded as reference sequexceoamparison

sequences. The data used comes from the NatiomehBwf Statistics of China over the period fro911% 2011.

The results are shown in Table-1.

Table-1 The calculated grey relational degree of influential factors

Grey Grey
Influential factors relational Influential factors relational

degree degree
Gross domestic product(x1) 0.9677 Total freighffic(x10) 0.8953
Total investment in fixed assets(x2) 0.8517 Towibht ton-kilometers(x11) 0.9131
Total output value of the primary industry(x3) 082 Number of employed persons in logistics indi{sir2) 0.8865
Total output value of the second industry(x4) 0376 | Possession of civil trucks vehicles(x13) 0.9060
Total output value of tertiary industry(x5) 0.9465 | Number of national owned railway freight cars(x14) 0.9084
{ZT:Q;’:‘;U ni c;/t(i)(I)L:]msee ic egf(x(i) postal arfd 0.7780 Possession of civil cargo vessels(x15) 65689
Total value of imports and exports(x7) 0.9183 Tptapulation(x16) 0.9044
Total retail sales of the consumer goods(x8) 0.9580] Retail price index(x17) 0.9028
Household consumption expenditure(x9) 0.9860

From Table-1, there are twelve factors whose gedgtipnal degree is larger than 0.9. It is belietreat these twelve
elements are the key influential factors for theyirey characteristic of the logistics demand.

Using the Gaussian kernel function, the KPCA idiag¢il to extract the nonlinear feature informatiobom the
twelve important influential factors which is listén Table-2. As is shown in Table-2, the cumulatoontribution
rate of the first two principal components is larean 95%.

Table-2 Eigenvalue, Contribution rate, and Cumulative Contribution rate of the components by KPCA

Component . Contribution Cuml_JIatl_ve . Contribution Cuml_JIatl_ve
Eigenvalue Contribution | Components| Eigenvalue] Contribution
S rate/% rate/%
rate/% rate/%

1 0.0036 90.80 90.80 7 0.0000 0.03 99.98
2 0.0003 6.85 97.65 8 0.0000 0.02 100.00
3 0.0001 1.54 99.19 9 0.0000 0.00 100.00
4 0.0000 0.52 99.71 10 0.0000 0.00 100.00
5 0.0000 0.13 99.84 11 0.0000 0.00 100.00
6 0.0000 0.11 99.95 12 0.0000 0.00 100.00

LSSVM model for logistics demand forecasting

According to the results of the KPCA, the first twonlinear principal components are chosen to cocisL SSVM
model. Gaussian kernel function is selected akéneel function and the LSSVM for logistics demdarkcasting
is expressed as:

%y = a expi|s - s /o2 y+b (13)
=1
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where the input vectas is the nonlinear principal components obtained BBCIA. The output variablgy is the
total social logistics costs. And is the kernel parameter. Coupling (11) with (18)p parameters, the regularized
parametep and the kernel paramete?, should be determined first. Due to LSSVM modei’taelect the proper
parameters itself, cross validation method is comignased to determine the valuesjoinds?. However, cross
validation method is characterized by randomness difficult for this method to obtain the optilm@arameters.

In this paper, AIWPSO algorithm is applied to optienthe parametersands? in LSSVM. The inertia weighty is
one of the key factors for the PSQO’s optimizati@rfprmance and convergence. Adjusting the ineridgiat w
according to the fitness function, AIWPSO algorittvaances the global search and local search agpzfcthe
algorithm and improves the convergence speed TH.inertia weightv in AIWPSO algorithm is given as:

(Wnax_Wnir)x(f_ fm'r)
Lo mr 2 mr - f<f
= P (favg_fm'r*) = e

Wosso f> 1

w (14)

wheref is the current fitness function value. Afag, fmin are the average and minimum fitness function vaune
Winaxs Wmin@re maximum and minimum inertia weight, respectivel

The parameters of AIWPSO algorithm itself are givenfollows: the scale of swarii=10, the acceleration
coefficientsc,=c,=2.0, the maximum and minimum inertia weight.=0.9 andw,,;=0.1, the maximuniteration
number is set a30. The input and output data sets are split iwtw gets. The initial 15 groups are used to traé th
model and the remainder 6 groups to test the ogtoiple forecasting performance of the model.

To demonstrate the performance of the proposed M@RA-KPCA-LSSVM), this paper compares it with the
other three models, including GRA-LSSVM, KPCA-LSSVahd LSSVM. For the GRA-LSSVM, the twelve
important influential factors obtained by GRA al®sen as the input variables of LSSVM. For the KAGSVM,
the three nonlinear principal components direcifiracted from the seventeen influential factormgdkKPCA are
chosen as the input variables of the LSSVM. ForlilB8VM, all the seventeen influential factors ahesen as the
input variables. The two parameterandos® of these three models are also optimized by AIWR&@rithm.

Three evaluation indices, the normalized root msguared errorNRMSBH, the normalized mean absolute error
(NMAE) and the theil statisticSHEIL), are used to evaluate the forecasting performahtiee four models.

Table-3 Logistics demand forecasts and relative errors by four models

Year  Actual GRA-KPCA-LSSVM GRA-LSSVM KPCA-LSSVM LSSVM
values Forecasts Relative Forecasts  Relative Forecasts Relative Forecasts : o
/100MY __ /100MY error/% /100MY ___error/% ___ /100MY error/% j10omy _ Relative error/3%

2006 38414 38325 -0.23 38565 0.39 38927 133 38183 -0.60
2007 45406 45177 -0.50 44531 -1.93 45837 0.95 44402 -2.21
2008 54542 52144 -4.40 52097 -4.48 53036 -2.76 51113 -6.29
2009 60826 58781 -3.36 56468 -7.16 57932 -4.76 5640 -7.27
2010 70984 73717 3.85 66602 -6.17 67555 -4.83 65797 -7.31
2011 84000 91371 8.78 75966 -9.56 69810 -16.89 a4T -11.34

NMSE 0.3929 0.4852 0.6942 0.5676

NMAE 0.2965 0.4038 0.4580 0.4745

THEIL 0.0280 0.0362 0.0520 0.0426

Note: MY denotes Million Yuan

Table-3 contains the forecasting results of the foadels. It is observed that the maximum and mimmmelative
forecasting errors of the GRA-KPCA-LSSVM model ade23% and 8.78%, which are smaller than ones @f th
other three models. With the exception of the KPICGISVM of 2008, GRA-KPCA-LSSVM model has the
smallest relative forecasting error in the four misd As a whole, the forecasting results of the GRRFCA-
LSSVM model are more accurate than those of therdtiree models. Meanwhile, theMSE NMAE andTHEIL

of the GRA-KPCA-LSSVM model are smaller than thadehe other three models, which means GRA-KPCA-
LSSVM model achieve better performance in logistiemnand forecasting.

CONCLUSION
In this paper, a hybrid model called GRA-KPCA-LSSVil proposed to improve the logistics demand

forecasting accuracy. GRA is used to get the maatdrs affecting the logistics demand and KPCAdedi
to extract the nonlinear principal components. L86M used to construct forecasting model basedhen t
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nonlinear principal components as inputs. The fasting performance of the GRA-KPCA-LSSVM model is
investigated through the use of China logisticsaddthe results show that the GRA-KPCA-LSSVM model
has simplified structure. The forecasting perforocmof the GRA-KPCA-LSSVM model is better than those
of the other models. In conclusion, GRA-KPCA-LSSVodel is a powerful tool to forecast logistics
demand. Further works can focus on selecting ofihggroved artificial intelligence technology, least
squares wavelet support vector machine or relevaaceor machine, to forecast logistics demand.

REFERENCES

[1]SY Chen; YC Guol.ogist. Technal 2012, 31(9), 231-233.

[2]Y Geng; SD Ju; YN Chen;ogist. Techno| 2007, 26(7), 35-37.

[3]VN Vapnik. The Nature of Statistical Learning 8dry, 1st Edition, Springer New Y ork995; 119-166.
[4]YZ Hu; HY Lv; Logist. Technal 2008, 27(5), 66-68.

[5]1JAK Suykens; J Vandewall®eural Process. Le{t1999, 9, 293-300.

[6]ZY Jia; J W Ma; F J Wang; L WeExpert Syst. Appl2010, 37(2), 1250-1255.

[7ILY Geng; TW ZhangTiedao Xueba@012, 34(3), 1-6.

[8]YG Liang; LY Geng; ZF ZhangTransp. and Ecan2012, 34(11), 63-67.

[9]1XS Qian; CH Yang;). Chinese Comput. Syst012, 33(8), 1851-1855.

[10]QY Wei; DS Zhang; WP Gadjuagong Zidonghua Ji Yibia@006, 33(1), 24-37.

101



