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ABSTRACT 
 
Precise forecasting of logistics demand is very important for logistics system planning and designing. However, 
logistics demand is affected by many factors, which will cause the complex model for logistics demand forecasting. 
To simplify the forecasting model and improve the forecasting precision, this paper proposed a least squares 
support vector machines (LSSVM) model based on grey relational analysis (GRA) and kernel principal component 
analysis (KPCA) for forecasting logistics demand. Firstly, the GRA was applied determining the main factors 
affecting logistics demand. Secondly, the KPCA was applied to eliminating the correlation among the main factors 
and extracting the nonlinear principal components. Finally, the extracted nonlinear principal components were as 
the input variables to build LSSVM model for logistics demand forecasting. The parameters in LSSVM were 
optimized by the adaptive inertia weight particle swarm optimization (AIWPSO) algorithm. The logistics demand in 
China was used to evaluate the effectiveness of the proposed model. The results indicate that the proposed model 
greatly reduces the dimensions of the input variables and improves the forecasting precision for logistics demand. 
 
Keywords: Logistics demand forecasting, Least squares support vector machines, Grey relational analysis, Kernel 
principal component analysis, Adaptive inertia weight particle swarm optimization. 
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INTRODUCTION 

 
Logistics system is characterized by uncertainty, nonlinearity and dynamics, which increases the difficulty for 
forecasting logistics demand. Some traditional forecasting methods, such as regression analysis and time series 
analysis establish forecasting model based on the mathematical theory and hypothesis. They can’t describe the inner 
structure and complexity of logistics demand data. To improve the forecasting accuracy of logistics demand, 
artificial neural network (ANN) was used to forecast logistics demand [1-2] and has been proven to improve 
forecasting results to some extent. However, the applications of ANN often trapped into local minima because of its 
own disadvantages.  
 
Support vector machines (SVM) was first introduced by Vapnik to solve the classification problem [3]. Based on the 
principle of structural risk minimization, SVM has been successfully applied to other fields such as data mining, 
regression and logistics demand forecasting [4]. Least squares support vector machines (LSSVM) [5] is a 
reformulation of SVM. Besides keeping the advantages of SVM, LSSVM has its own merits. That is, LSSVM 
improves the computation efficiency and reduces the parameters needed to be estimated by solving linear equations. 
However, the performance of LSSVM relies heavily on the choice of parameters. So, choosing the suitable 
parameters is the key to improve the performance of LSSVM. 
 
Logistics system is a subsystem of social economic system and multiple factors affect the varying characteristics of 
logistics demand. These factors have different influence degree and influence law on logistics demand. Moreover, 
these factors also influence each other, which will lead to the correlation between the factors and then the 
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information overlap. When constructing the forecasting model, if too many factors were taken into account, the 
structure of the forecasting model would become complex and the forecasting precision would decrease.  
 
Grey relational analysis (GRA), based on grey system theory, is suitable to analyze the relationships among 
sequences in a system and determine the degree of influence of them.  Literatures [6] and [7] have used GRA to get 
the main factors affecting synthesis characteristics of hydraulic valve and affecting railway freight volumes, 
respectively. 
 
Kernel principal component analysis (KPCA) is a kernel-based principal component analysis, which can deal with 
the nonlinear interrelationships among the complex data. By extracting nonlinear feature information, KPCA can 
eliminate the correlation existed in multiple sequences and then reduce the dimensions of the data [8]. KPCA, 
coupled with GRA, has been used to determine the input and output variables of LSSVM for evaporation process 
modeling [9]. 
 
Combining GRA with KPCA, this paper proposes a LSSVM based model for forecasting logistics demand. GRA is 
utilized to gain the main factors affecting the characteristic of logistics demand and KPCA is used to find the 
nonlinear principal components from the main factors. Then, LSSVM, optimized by adaptive inertia weight particle 
swarm optimization (AIWPSO) algorithm, is used to build a forecasting model based on the nonlinear principal 
components.  
 

EXPERIMENTAL SECTION 
 
Grey relational analysis 
The core idea of grey relational analysis (GRA) is to ascertain the relationships of different sequences through the 
geometric proximity between them. The more proximal the geometrical shape, the closer the relationship of the 
corresponding sequences. The degree of the relationship is described by the grey relational degree. The procedure of 
GRA is summarized as follows. 
 
Step1 Get two types of sequence. Consider the data series

0{ ( )}, ( 1, 2,..., )P t t N=  as the reference sequence, the 
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Step2 Calculate the relational degree coefficient. At time t’ (t’=1,2,…,N),  the grey relational coefficient between the 
reference and comparison sequences is defined as: 
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where ξ∈[0,1] is the distinguish coefficient; ∆0i(t’ )=|x0(t’ )-xi(t’ )|; ∆max and ∆min  are defined  as 
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Step3 Calculate the relational degree. The relational degree is the average value of the relational coefficients and is 
given as: 
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Step4 Rank the relational degree. The relational degree is ranked from a big value to small one. Then we can know 
the degree of importance of the comparison sequence to the reference sequence.  
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Kernel principal component analysis 

Let x=(x1,x2,…,xN) be a data matrix, with 
m

j R∈x  be the column vector at time j, for j=1,2,…,N. Using the 

nonlinear mapping Φ, KPCA transforms x into a high-dimensional feature space F and the data covariance matrix in 
feature space can be written as:  
 

j=1

1
( ) ( )

n
TΦ Φ

n
∑ j jC = x x                                                                                                                                                 (4) 

 
where Φ(xj) is assumed to being mean centered. By introducing a kernel matrix K with elements k(xi,xj), for 
i ,j=1,2,…,N, In F, inner products of two vectors can be evaluate as k(xi,xj)=Φ(xi)

T
Φ(xj). Centralize K by  

 

n n n nA A− −K = K K + A KA                                                                                                                       (5) 

 
where An=(1/N)N×N. Let

1 2=( , ,..., )Tnβ β ββ be the orthonormal eigenvector associated with the pth largest positive 

eigenvalues 1 2, ,...., pλ λ λ , then the eigenvalue decomposition to K is expressed as: 

 

K λβ = N β                                                                                                                                                (6) 

 
The p kernel principal components in F are given as: 
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Let z be a test vector, the pth kernel principal component sp corresponding to Φ is obtained by 
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Least squares support vector machines 

Suppose a training data {(xl,yl)} for l=1 to n, where  
d

l R∈x  is the input vector and ly R∈  is the corresponding 

output variable. The optimization problem for LSSVM is given as: 
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where the mapping function φ(xl) transfers xl into a high-dimensional feature space. And γ is the regularized 
parameter. And ω, b are weight vector and bias term, respectively; el is the error variable at time l.  Combining the 
Lagrangian of the optimization problem with the Karush-Kuhn-Tucker (KKT) condition, we can get the linear 
equations expressed in the following matrix: 
 

0 0T b

γ
     

=     
     

1
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                                                                                                                                       (11) 

 
where Y=[y1, y2,…, yn]

T, 1=[1,…,1]T, and I  is an n order unit matrix. And α=[α1, α2,…, αn]
T is the lagrange 

multipliers matrix with l Rα ∈ . And Ω is the matrix with elements Ωl=φ(xl)
T
φ(x). The final LSSVM for regression 

is obtained by 
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where k(xl,x)=φ(xl)

T
φ(x) is the kernel function and is needed to satisfy Mercer’s condition.  

 
RESULTS AND DISCUSSION 

 
GRA and KPCA of the influential factors 
This paper takes China logistics demand forecasting as an example. Different researchers use different measurement 
index for logistics demand. In this paper, the total social logistics cost is used as the index to measure the logistics 
demand.  
 
Analyzing the logistics system comprehensively, it is found that there are 17 elements influencing the characteristic 
of the logistics demand. GRA is used to determine the key factors affecting the varying behavior of logistics demand. 
The total social logistics costs and the 17 influential elements are regarded as reference sequence and comparison 
sequences. The data used comes from the National Bureau of Statistics of China over the period from 1991 to 2011. 
The results are shown in Table-1. 
 

Table-1 The calculated grey relational degree of influential factors 
 

Influential factors 
Grey 

relational 
degree 

Influential factors 
Grey 

relational 
degree 

Gross domestic product(x1) 0.9677  Total freight traffic(x10) 0.8953  
Total investment in fixed assets(x2) 0.8517  Total freight ton-kilometers(x11) 0.9131  
Total output value of the primary industry(x3) 0.9296  Number of employed persons in logistics industry(x12) 0.8865  
Total output value of the second industry(x4) 0.9763  Possession of civil trucks vehicles(x13) 0.9060  
Total output value of tertiary industry(x5) 0.9465  Number of national owned railway freight cars(x14) 0.9084  
Business volume of postal and 
telecommunication services (x6) 

0.7780  Possession of civil cargo vessels(x15) 0.8966  

Total value of imports and exports(x7) 0.9183  Total population(x16) 0.9044  
Total retail sales of the consumer goods(x8) 0.9580   Retail price index(x17) 0.9028  
Household consumption expenditure(x9) 0.9860      

 
From Table-1, there are twelve factors whose grey relational degree is larger than 0.9. It is believed that these twelve 
elements are the key influential factors for the varying characteristic of the logistics demand.   
 
Using the Gaussian kernel function, the KPCA is utilized to extract the nonlinear feature information from the 
twelve important influential factors which is listed in Table-2. As is shown in Table-2, the cumulative contribution 
rate of the first two principal components is larger than 95%.  
 

Table-2 Eigenvalue, Contribution rate, and Cumulative Contribution rate of the components by KPCA 
 

Component
s 

Eigenvalue 
Contribution 

rate/% 

Cumulative  
Contribution 

rate/% 
Components Eigenvalue 

Contribution 
rate/% 

Cumulative  
Contribution 

rate/% 
1 0.0036  90.80  90.80  7 0.0000  0.03  99.98  
2 0.0003  6.85  97.65  8 0.0000  0.02  100.00  
3 0.0001  1.54  99.19  9 0.0000  0.00  100.00  
4 0.0000  0.52  99.71  10 0.0000  0.00  100.00  
5 0.0000  0.13  99.84  11 0.0000  0.00  100.00  
6 0.0000  0.11  99.95  12 0.0000  0.00  100.00  

 
LSSVM model for logistics demand forecasting 
According to the results of the KPCA, the first two nonlinear principal components are chosen to construct LSSVM 
model. Gaussian kernel function is selected as the kernel function and the LSSVM for logistics demand forecasting 
is expressed as: 
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where the input vector sl
 is the nonlinear principal components obtained by KPCA. The output variable x0l is the 

total social logistics costs. And σ2 is the kernel parameter. Coupling (11) with (13), two parameters, the regularized 
parameter γ and the kernel parameter σ2, should be determined first. Due to LSSVM model can’t select the proper 
parameters itself, cross validation method is commonly used to determine the values of γ and σ2. However, cross 
validation method is characterized by randomness. It is difficult for this method to obtain the optimal parameters.   
 
In this paper, AIWPSO algorithm is applied to optimize the parameters γ and σ2 in LSSVM. The inertia weight w is 
one of the key factors for the PSO’s optimization performance and convergence. Adjusting the inertia weight w 
according to the fitness function, AIWPSO algorithm balances the global search and local search capacity of the 
algorithm and improves the convergence speed [10]. The inertia weight w in AIWPSO algorithm is given as: 
 

( ) ( )
,

( )

,

max min min
min avg

avg min

max avg

w w f f
w f f

f fw

w f f

− × − − ≤ −=
 >

                                                                                                                   (14) 

 
where f is the current fitness function value. And favg, fmin are the average and minimum fitness function value. And 
wmax, wmin are maximum and minimum inertia weight, respectively.  
 
The parameters of AIWPSO algorithm itself are given as follows: the scale of swarm M=10, the acceleration 
coefficients c1=c2=2.0, the maximum and minimum inertia weight wmax=0.9 and wmin=0.1, the maximum iteration 
number is set as 30. The input and output data sets are split into two sets. The initial 15 groups are used to train the 
model and the remainder 6 groups to test the out-of-sample forecasting performance of the model. 
 
To demonstrate the performance of the proposed model (GRA-KPCA-LSSVM), this paper compares it with the 
other three models, including GRA-LSSVM, KPCA-LSSVM and LSSVM. For the GRA-LSSVM, the twelve 
important influential factors obtained by GRA are chosen as the input variables of LSSVM. For the KPCA-LSSVM, 
the three nonlinear principal components directly extracted from the seventeen influential factors using KPCA are 
chosen as the input variables of the LSSVM. For the LSSVM, all the seventeen influential factors are chosen as the 
input variables. The two parameters γ and σ2 of these three models are also optimized by AIWPSO algorithm. 
 
Three evaluation indices, the normalized root mean squared error (NRMSE), the normalized mean absolute error 
(NMAE) and the theil statistics (THEIL), are used to evaluate the forecasting performance of the four models.  
 

Table-3 Logistics demand forecasts and relative errors by four models 
 

Year Actual 
values 

/100MY 

GRA-KPCA-LSSVM GRA-LSSVM KPCA-LSSVM LSSVM 

 
Forecasts 
/100MY 

Relative 
error/% 

Forecasts 
/100MY 

Relative 
error/% 

Forecasts 
/100MY 

Relative 
error/% 

Forecasts 
/100MY 

Relative error/% 

2006 38414 38325 -0.23 38565 0.39 38927 1.33 38183 -0.60 
2007 45406 45177 -0.50 44531 -1.93 45837 0.95 44402 -2.21 
2008 54542 52144 -4.40 52097 -4.48 53036 -2.76 51113 -6.29 
2009 60826 58781 -3.36 56468 -7.16 57932 -4.76 56407 -7.27 
2010 70984 73717 3.85 66602 -6.17 67555 -4.83 65797 -7.31 
2011 84000 91371 8.78 75966 -9.56 69810 -16.89 74477 -11.34 

NMSE 0.3929 0.4852 0.6942 0.5676 
NMAE 0.2965 0.4038 0.4580 0.4745 
THEIL 0.0280 0.0362 0.0520 0.0426 

Note: MY denotes Million Yuan 
 

Table-3 contains the forecasting results of the four models. It is observed that the maximum and minimum relative 
forecasting errors of the GRA-KPCA-LSSVM model are -0.23% and 8.78%, which are smaller than ones of the 
other three models. With the exception of the KPCA-LSSVM of 2008, GRA-KPCA-LSSVM model has the 
smallest relative forecasting error in the four models. As a whole, the forecasting results of the GRA-KPCA-
LSSVM model are more accurate than those of the other three models. Meanwhile, the NMSE, NMAE and THEIL 
of the GRA-KPCA-LSSVM model are smaller than those of the other three models, which means GRA-KPCA-
LSSVM model achieve better performance in logistics demand forecasting. 
 

CONCLUSION 
 
In this paper, a hybrid model called GRA-KPCA-LSSVM is proposed to improve the logistics demand 
forecasting accuracy. GRA is used to get the main factors affecting the logistics demand and KPCA is used 
to extract the nonlinear principal components. LSSVM is used to construct forecasting model based on the 
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nonlinear principal components as inputs. The forecasting performance of the GRA-KPCA-LSSVM model is 
investigated through the use of China logistics data. The results show that the GRA-KPCA-LSSVM model 
has simplified structure. The forecasting performance of the GRA-KPCA-LSSVM model is better than those 
of the other models. In conclusion, GRA-KPCA-LSSVM model is a powerful tool to forecast logistics 
demand. Further works can focus on selecting other improved artificial intelligence technology, least 
squares wavelet support vector machine or relevance vector machine, to forecast logistics demand. 

 
REFERENCES 

 
[1]SY Chen; YC Guo; Logist. Technol., 2012, 31(9), 231-233. 
[2]Y Geng; SD Ju; YN Chen; Logist. Technol., 2007, 26(7), 35-37. 
[3]VN Vapnik. The Nature of Statistical Learning Theory, 1st Edition, Springer New York, 1995; 119-166. 
[4]YZ Hu; HY Lv; Logist. Technol., 2008, 27(5), 66-68. 
[5]JAK Suykens; J Vandewalle; Neural Process. Lett., 1999, 9, 293-300. 
[6]ZY Jia; J W Ma; F J Wang; L Wei; Expert Syst. Appl., 2010, 37(2), 1250-1255. 
[7]LY Geng; TW Zhang; Tiedao Xuebao, 2012, 34(3), 1-6. 
[8]YG Liang; LY Geng; ZF Zhang; Transp. and Econ., 2012, 34(11), 63-67. 
[9]XS Qian; CH Yang; J. Chinese Comput. Syst., 2012, 33(8), 1851-1855. 
[10]QY Wei; DS Zhang; WP Gao; Huagong Zidonghua Ji Yibiao, 2006, 33(1), 24-37.  
 
 


