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ABSTRACT

In order to examine the distributions stress and displacement with the internal dissymmetrical crack, an
asymmetrical dynamic crack design is presented for bridging fiber pull-out in unidirectional composite materials.
The crack extension should also appear in the format of self-similarity because fiber failure is ascertained by the
maximum tensile stress. The formulation involves the development of a Riemann-Hilbert problem. Analytical

solutions under the conditions of an increasing motive force Pt3/x®, Px®/t? are closed for an asymmetrical
dynamic crack with bridging fiber pull-out, respectively.
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INTRODUCTION

It is well known that the matrix crack, as well faacture process of the bridging fibers, is onetha critical
mechanisms of the crack expansion in fiber-reilddrcomposite materials, e.g. the unidirectionadrfiteinforced
brittle matrix composites [1-2]. It is essentialdeal with the mechanical analysis of matrix cragkivith bridging
fibers, in order to evaluate the distribution of txial traction force in each fiber. Literaturé fBoposed a measure
to estimate the distribution of the traction foffoe a crack with bridging fibers in an infinite bdtropic elastic
plane under a uniform remote tensile stress angl @issented a design of bridging fiber pull-outthg same
process. Most of researchers [4-13] have investibdahe bridging fibrous problem of the crack by meaf
boundary collocation method (BCM), but all of thetadied static problems concerning composite nalteriith
numerical solutions. Researches in [14-18] etlatioed a closed solution to the elastodynamickcpagblem in an
orthotropic medium. However, each active crack fmwbmentioned above was not concerned with fragitweess
of the bridging fiber pull-out of composite matdsiaMany researchers [19-22] have studied dynamsblpms of
the bridging fiber pull-out of composite materialisd concluded analytical solutions, but they didl address the
asymmetrical dynamic problem of bridging fiber pollt. Because of the complexity and difficulty, dymic
fracture problems of composite materials resear@rednot enough thoroughly [23-26]. When a crackucg in
composite materials, bridging fiber pull-out oftemists in the front of the crack tip, and this is iaevitable
phenomenon. Composite materials are often regaadedrthotropic anisotropic body in terms of thebrdus
directions, therefore, investigating dynamic fraetproblems concerning the bridging fiber pull-auan extremely
significant aspect on the mechanics of compositéernas because many engineering structures watrdet in
dynamic conditions as time goes on. So far, thdycal solution to asymmetrical dynamic crack ew®n of
bridging fiber pull-out has not been found out veegs[27], the authors try to approach and exantiegproblem
from a new perspective because the new dynamigmésbbvious different from the old one in [27].

In this paper, the problem of an asymmetrical cnaitk bridging fiber pull-out of unidirectional cqmsite material
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is analyzed under the dynamic conditions by mednketdysh-Sedov mixed boundary value method, arat th
analytical solutions for unidirectionally reinfortenaterial with fibers parallel to the free surfare presented. In
the finite orthotropic plate, the distribution dsplacement and stress can be calculated by thessiunctions under
the conditions of a non-uniform tensile stress #raltraction forces of bridging fibers on crack esigin order to
simulate the state of the bridging fibers, the aswtmical design of bridging fiber pull-out is inthoced. By
utilizing this design, the relation between thectien forces on the bridging fiber and the crackerpg
displacement is ascertained. The solution of adislecation in an elastic half-plane is deriveddoynplex variable
analysis. The crack is then described as a congedlistribution of dislocation. This solution immjunction with a
bridging fiber pull-out force gives rise to a syat®f self-similar functions with dislocation densis unknown
units. The self-similar functions are then resoheatlytically by means of Keldysh-Sedov approachorder to
settle efficaciously fracture dynamics problembnfiging fiber pull-out of composite materialsjstindispensable
to build a dynamic design of bridging fiber pulltou

The problem under consideration is that of a cratligning in one plane, assumed to nucleate from an
infinitesimally small micro-crack with the unlikeelocity from the start. This asymmetrical crackrisving with

constant velocityV, and V, at subsonic velocity in both the positive and tiegadirections of the X -axis,

respectively [28] which was not concerned with g fiber pull-out of composite materials. It istieely different
from the symmetrical crack moving in both directasf thex -axis with constant velocityV in literatures [16-22,
25-26, 29]. All of them considered motion in mad#sj which were supposed to be homogeneous andpsntwith
respect to stress-strain relationships and frawucharacter. If the fiber failure is governed bgximum tensile
stress, which occurs at the crack plane, the filveaks and hence the crack extension should alseaapn a
self-similar modality. The fiber breaks lie alongransverse line and therefore, present a notcBqa31]. When a
crack expands at higher speed, bridging fiber putlof composite materials still exists in the dymacircumstance,
which is more significant than those in the statise. Since bridging fibers can lead to an armggtimpose on crack
extension along the original notch plane, dynamactiire effect on bridging fiber pull-out of compiesmaterials
will be expressed, at the same time, stresses @mpiadements as well as stress intensity factoesdaducted
properly. In this paper, a dynamic design of bmdgiiber pull-out is developed to study the asymiogtropagation
of the finite length crack in unidirectional comfiesnaterials.

[1] The correlative expressions of self-similar functins

In order to resolve efficiently fracture dynamia®iplems on composite materials, solutions will b#amed under
the action of mutative loads for a mode asymmetric propagation crack. In terms of the thepof generalized
functions, the dissimilar boundary condition prabeconsidered will be transformed into Keldysh-Seduxed
boundary value problem utilizing self-similar fuitets, then correlative solutions will be attained.

Assume that there are any number of loaded segraadtdisplacement segments along the x-axis, ttie efnthese

sections are running with different constant veiocht the initial momentt = 0, the half-plane is stillness. In
these segments the loads and displacements arectiisary linear combination of the following furats
[18-22,26-27,32-34]

d“f, (x) M0

1
dx* dt® W
[0 &<0
Where fi(é)_{fi £50 )

Here K . k1 and S. S are arbitrary integer positive numbers.

A discretional sequential function of two variablesnd t may be represented as a linear superposition of1fg.
thus it has significance in principle to seek thadings or the displacements satisfying the madafiteq. (2). Let
us introduce the following linear differential opér as well as integral operator:

a m+n ~ a —-m-n

= inverse: L =—— ®)
ax™at" ox "ot ™"

Here+mt+n, -mn and O represent thenf n)th order derivative, thent-n)th order integral and function’s self. It is
easy to prove that there were exist constarasdn. When putting Eq.(3) into Egs. (2), (1); we wiltaan functions
that are homogeneous functions ¥®f and t of zeroth dimension (homogeneous), the couple N will be
called an index of self-similarity [26-27,32-34].
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Utilizing corresponding expressions of elastodyr@amequations of motion for an orthotropic anisaitopody
[18-22, 26-27,32-34]:

for the case when functionkU and Lv are homogeneous
uw’=Lu, Vv'=Lv, g =Lr,, ol=Lo (4)

for the case when functioni;.ay and LTXy are homogeneous

0 0o_0 0o_0
u=—Lu, v’==—Lv, o, =—Lo,, 1, =—Lr1 5
ot ot Yoot Y et Y ©
The relative self-similar functions are as follojd8-23,26-27]
o, = (U/t)ReF(7), v® = ReW(1), (6)
W'(7) =[D,(r)/ D(7)]F (7) )

where 7 =X/t, F(r) . W(7) are self-similar functions. The values &,(7)/ D(7) can be ascertained form

Appendix 1 of literatures [21,18, 27]. Indicatedrévare only D,(7)/ D(7) in the subsonic speed range with
purely imaginary values. Thus, elastodynamics pnmisl for an orthotropic anisotropic body can be ceduto
seeking the sole unknown function for whidh(7) and W(7) must satisfy the boundary-value conditions. This

case is Riemann-Hilbert problem in the theory ohptex functions while for the simplest case, thiereesults from
the Keldysh-Sedov or Dirichlet problem. Refer teratures detailedly [35-37].

Fracture dynamics problems will be researched ifoinéinite orthotropic anisotropic body. Assumingthe initial
momentt =0 a crack appears at the origin of coordinates asmins to spread asymmetrically at constant

velocity V;. V, at subsonic speed in both the positive and negdiiections of thex —axis, respectively; and at,

t <0, the half-plane was at rest. The surfaces of thekcare subjected to the unlike types of loadsutite plane
strain states according to the presumption.

[2] Foundational modality of the solution to dynamic agmmetrical propagation problem concerning mode |
crack

At the initial momentt = 0, a micro-crack suddenly is postulated to occuarinorthotropic anisotropic body. Let
the Cartesian co-ordinate axes accord with the akedastic symmetry of the body. The problem istrieted to

motion in the X — Y —plane. The crack is running asymmetrically with stant velocity V, and V, respectively

in the positive and negative directions &f-axis such that.V; >V, >0. Consider the translation of the following
boundary condition as
o, (x0t) = f,(xt), -Vt <x<Vt

v(x,0,t) =0, X<-V,t or X>Vit (8)

Let's introduce the variableT =X/t . By application of the above corresponding expoess and
to(x) = d(x/t) in the theory of generalized functions [37-39% thoundary conditions can be transformed as:

ReF(r) = f,[7,d(1)] s -V, <r<V,
Rew'(r) =0, r<-V, o 1>V, 9)

In the light of the relationshipF(7) and W'(7) in Eq.(7) and the previous conditions, the forroétsole
unknown functionW'(7) can be confirmed:

W(7) = £[(7,4(7)] (10)

Then the considered problem can be easily decreadéeldysh-Sedov problem:
Reé(r) =0, r<-V, or 71>V
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Imé(r) =0, -V, <r<V, (11)

Synthetically considering asymmetry and the inéirpbint of the plane corresponding to the origicadrdinates of
the physical plane as well as singularities ofgtress at the crack tip [40-41the solution of the above problems
can be deducted by literatures [27-28,42] as fatow

$(M) =TIM -1), (V, +7)] (12)

Then using Egs. (6) or (7), people will facilelyim#éhe stress, the displacement and the stresssitydactor for the
problems concerning asymmetrical crack propagation.

4 An asymmetrical dynamic crack design for bridgimy fiber pull-out in unidirectional composite materials
The crack is postulated to nucleate from an irggiihally small micro-crack located along thé—axis in

self-similar modality, and to move asymmetricallifhwconstant velocity V, and V, in the positive and negative

x directions such thatV, >V, > 0. Bridging fiber pull-out of unidirectional compaosimaterials considered is

designed on a two-dimensional region, having alsingw of parallel, identical, equally spaced fihesegregated

by matrix. The initial damage is taken to consistp arbitrary number of broken fibers such thatbabaks lie
along the x —axis forming a curved notch. In addition to thigaimp a discretional number of self-similar (off-gki
fiber breaks, i. e. fiber pull-outyith asymmetry with respect toand along a transverse line are also considered.
The sketch of an asymmetrical dynamic crack desfdgoridging fiber pull-out configuration is displeg in Fig.1.
The contour in Fig.1 is symmetry both in geometng doading with respect to th& —axis, but it is asymmetry
with respect to thg — axis on account of crack asymmetrical expansior fitfers and the matrix are taken to be

linearly elastic. It is further assumed that tHeefs have a much higher elastic modulus in thel dkiaction than
the matrix and therefore, the fibers are takerupparting all of the axial loads in composite miailsr[43]. Load is
transferred between adjacent fibers through therixnély a simple shear mechanism. The shear stremses
independent of transverse displacements and thBbeigun equation in the fiber direction decreasesin equation
in the longitudinal displacements alone, as ispctt of shear-lag theory [21-23, 27, 30-31]. Tipr@ach and
designing procedure developed by [21-23, 30] wéllused. The major difference among [21-23, 30]taadresent
work is in the mode of fiber break. Unlike in [3@here static problems are considered, the fibeatdras in turn
occur along two single planes, i.e. the fiber fuagtwas self-similar fiber (off-axis) break andviably had relation
to both timet and displacement. In view of this, the geometry of the damage witlt be the same about the
X —axis, i.e. break lie is also dissymmetry aboyt- axis on account of crack asymmetrical extensiorat T8) the

fiber fracture could be self-similar fiber fractuaed therefore. also present a notch. The fibroastdre speeds
presumed areqr; and @, such that.V, >V, >a; >a, >0, as displayed in Fig. 1. The crack or notch is at.

y=0, -Vt <x<Vt in the matrix, and the bridging fiber pull-out &ion is ahead of the crack tips, i. e.
X>Vit or X<-V,t. The fibrous area is located at the interval of\,t <X<-a,t and ajt <x<Vt,
whereas the broken fibers are located in the dowfain- a,t < X<ait.

Ay
-V,t —a,t at Vit

|
<Y

Fig.1. Sketch of an asymmetrical dynamic crack degh of bridging fiber pull-out in unidirectional composite materials

Obviously, the asymmetrical dynamic design of cragpansion problem with bridging fiber pull-out fig.1 is
shown by the mechanical design of a dynamic crddkidging fibers in Fig.2. The bridging fibers asgmmetrical
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state with respect t® — axis. Each bridging fiber is replaced by a paivetical traction forces that act at the points
with the samex-coordinate on the upper and lower track surfacesirbthe opposite direction. Each bridging fiber
is assumed to be balanced with the fracture load diber from the matrix. In order to analyze thesign
conveniently break lie presumed has no effectshenctack. The present design has the symmetry amheggical
and mechanical conditions with respeckte axis, but it has no such a character with respeytaxis because of

the asymmetrical crack extension. Closure forces ac the segment ofy =0, —V,t<Xx<-a,t and

at < X<V, which represent tension forces of bridging fibefiers of the composite materials are usually
arranged tightly, separated by matrix, thereforiglding fiber traction forces are postulated to hstributed
continuously. It is obvious that traction forces &rger near the points ofx ,;t ,a .t , and they are smaller close to

the points of.V ;t ,V ,t [27]. This situation is similar to that of [19-28kcept that the crack asymmetrically runs.

When a crack moves at high speed, its dimensioglased to the parameter and t, and the edges of the crack
subjected to loads must also be related Xo.and t. The fibers in the matrix are supposed to be itisted
homogenously. Each fiber has the same power. Whiexttre occurs, both the fiber and the matrixiardhe same
plane of crack expansion [4, 19-20]. Certainlystisi an assumed mechanical design which maybecootcwith
real cases, and it needs more improvements ingfutur

y

Fig.2. The mechanical design of an asymmetrical dgmic crack in bridging fiber pull-out

5 The solutions of idiographic problems

In order to solve efficaciously asymmetrical dynesnproblems with bridging fiber pull-out in uniditenal
composite materials, solutions will be found unther conditions of different loads for mode | movicrgick. In the
light of the theorem of generalized functions, tindike boundary condition problems studied will tEadily
changed into Keldysh-Sedov mixed boundary valueblpro by the measures of self-similar functions, amel
corresponding solutions will be acquired. The peald researched are under the plane strain states.

1) Presume at the initial momerit.= 0, a crack suddenly occurs and begins to propagat@raetrically with
constant velocityV, and V, in the positive and negative directions of-axis respectively; such that.

V, >V, >0. The surfaces of the crack are subjected to stenglaint force. Pt3/X3, moving at a constant

velocity [ along the positive direction of-axis, where3 <V,; at t<0 the half-plane was at resbn the
half-plane aty = 0, the boundary conditions will be as follows:

g, (x,0,t) = =Pt*/x° [(x - Bt) . -Vt <x <Vt
v(x,0,t) =0, X<-V,t or x>Vt (13)
In this case, the displacement will apparently benbgeneous functions, in whict. =1. Using 7 =X/t and

the theory of generalized functions [37-39] as veallEqgs. (4) and (6), the first representation apf @3) can be
written as:

ReF (1) = -Pt®*/x*0do(x - Bt) = -Pr2d(r - B) -V, <7<V,
RewW'(r) =0, r<-V, or 1>V, (14)

In the light of Eq. (7) , boundary conditions (1#)l be further rewritten as follows:
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D(7)

Re[D @)

W(r)]=-Pr2(r-p), -V, <1<V,
RewW'(r) =0, r<-V, or 1>V, (15)

Deducting from the above formulas, the sole sotutib W'(7) must have the format:

W'(1) = &) I[T3(T - B)] (16)

In the formula £(7) has no singularity in the realm of-=V, <7 <V, ,while D(7)/D,(7) is purely

imaginary for the subsonic speeds, therefdrfl) must be purely real in the neighborhood oV, <7 <V,.
Thus, Eq. (15) becomes as:
Reé(r) =0, r<-V, o 71>V,

Imé(r) =0, -V, <1<V, 17)
According to asymmetry and the conditions of thénite point of the plane corresponding to the origf

coordinates of the physical plane as well as sargiigs of the crack tip [40-41]the unique solution of the
Keldysh-Sedov problem (17) must have the followshgpe:

A
&(n) = (18)
JV =)V, +7)
WhereA is an unknown constant.
Substituting Eq. (18) into Eqgs. (16) and (7), thersults:
A
W'(7) = (19)
(1= BV, - )V, +7)
_ AID(7)/D,(7)
F(r)= - (20)
(1= BV 1)V, +7)
Then putting Eq. (20) into the first of Eq. (14), & » [, constant A can be ensured:
ne PV -B), +B) o1

mim[D(B)/ Dy(B)]

Inserting Egs. (20) into (6) and (4), at the swefag = 0, the stressT v and dynamic stress intensity factor

K,(t) are gained, respectively:

AlIm[D(7)/D,(7)]

(1= BT —VI)(T +V,)

=Im[ D(T)] A X<-V,t or x>Vt (22)

D,(7) r(r B (X=Vit)(x +Vit)

g, —}ReF( )——

Known from the above, aX — —V,t orX — Vjt the stress of the crack tip tends to infinity drabs apparent
singularity, hence its result is right

@ (+y — 1. AlUm[D(z)/D(7)]
KY(t) = I|m 1/277(x -V,t) [ﬂ A - A - V)(r+V)]
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_ ap/271Im[D(V))/ D, (V)]
V13 (Vl - :B)\/(Vl +V2)t

KA (t) = - ALIm[D(7)/Dy(7)]
= I|m 1/ 271(x +V,t) [ﬂ—D ﬂ)\/(r V)(r+V)]

(23)

_ ¥/ 2mIM[D(-V,)/ D,(-V,)] (24)

V,'(V, + By (V; + V)t

The superscripts of Egs. (23) and (24) show thesstintensity factor atX — Vit and. X — —V,t, respectively.
In order to represent expediently, one postulates:

X=V-0)V,+1)=VV, +(V, _Vz)T_T2 (25)

The correlative constants of the above can show §#] as follows: a=V)\,, b=V, -V,, c=-1,
K =4ac-b* =-(V, +V,)?

Putting Eq. (19) Into Egs. (4), (6), after integngtwith respective tor we can attainV:

v:v°=ReV A

t S dr
® T(T‘ﬂ)\/(\/l‘f)(\/z‘”)
¥t 1 1 1 1 dT A X/t 1
= Ll = = -— =~ d
=ARe] Sl Ps 1% =gl i ‘
X/t X/t 1 X/t
N Ay e ek @)
Utilizing correlative integral formulas [44] to yda
dr __\/_ |x/Y+x/_ |
ITZ\/Y T ar +2a3/2 ‘ 2\/5‘ (27)
dr _ 1 |x/7+\/_ |
Ir\/Y T ‘ T 2@‘ @9
dr 3 P> c,pdr _, 1
j rPIX ar2+ 2 )\/YJr(?_Z_a)j = 2ar? 4a2r)\/_
3 ¢ |\/Y+\/_ b |
(8a 2a f T 2@\ 2
I 1 WY +\/_ | (20)
=X J_ T Zﬁ\

where: & =V\V, +(V, -V,) 8- 5%, b =V, -V, -20.

Putting Egs. (27), (28), (29) , (30) into (26), @an easily gainV as follows:
v—éRe{+ |\/7+x/_ b |_l[_\/— b |«/_ Va |]
20 " T2 s 22| 1 2/a
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i 1 3 |\/Y+\/_ | X/t
a2 VX (8a )f \ r 2\/_ B I (- ﬁ)x/_ o
s L Ka b | X b X, b
B B \/g ‘ r 2\/_ ‘ ,Bar 2a3’2,[>’ ‘ r 2[ ‘
s X e, b
"G 4 r)\/_ ( )\/_ I 2\/_‘
|\/_+\/_ | Xlt_éR o |\/_+\/_ b |

ﬂf\ 2ﬂ
+(

oy T s 2ﬂ

1_b ﬁ 1,1 IRJ b |, (L, L 3 X it

5’ 2ap 8’ 2a\/_‘ r 2\/_‘ B 2r 4a ar’ |
1

A1 |n|tﬁ+J(V1t—x)(Vzt+x)+ ql o 3b¢(vl X)(V,t + X)

,8{ B\a, ‘ X — [t 2\/_‘ (,8+2x 4a ax
sL_ b @ 1) 1 WO 00E e +tfa b |,
§ 28 8a Ja \ X 2\/5\'

—V,t <x <Vt (31)

where: a=V)V, , b=V,-V, , K= dac—b* = s\ +V2)2 . a=VV,+V, —Vz),B—,B2
bl =V, -V, - 2[3. Its result is obtained by relative integral folemuin literature [38].

By application of the solution of Eq. (31), thedwing fibrous fracture speedq; and @, of composite materials
can be attained.

p= At A rftiara) , b |
B Ba | a, -8 2\/a,|
1 _ b 3b2 1,1 |\/(V1 1)(\/2+a1)+\/a+ b |

5 205 8?22 Va | a, 2/al
+(1+i 3b \/(\/1 1)(\/2+a1)}, X=aj (32)
B 2a, 4a ala,
A Wt ra)v,-a) | b |

__{ ﬂ\/_ ‘ —a, - B 2\/5‘
b ,3°, 1,1 N(\/l 2)(\/2-az)+\/5+ b |

a5 e T T | a, 24l
_(l_'_ 1 _@)\/(\/1+0'2)(V2—0'2)}’ X = —at (33)
B 20, 4a ald,

Each fibre has the same power [16-18], therefore fibrous fracture power must be equal. That is to
sayA, =A, =A, while, A can be determined by a sole axial tensile test Mt, V, and [ referred to as

known constants. According to this measure, theofib fracture speed#r, and @, can be only attained
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numerical solution, respectively, becaugg and @, will not be represented in the format of explicib€tions.

2) With all conditions holding the same as thosehim pprevious example, the applied loads becoleC /t%. The
boundary conditions will be as follows:

o, (x,0t) = -Px*/t* [B(x~ Bt) , -Vt <x <Vt
v(x,0,t) =0, X<-V,t or x>Vt (34)

In this case, the stress will obviously be homogeseunctions, in which.L =1. According to Egs. (5), (6) and
the theory of generalized functions [37-39], bougdanditions (34) can be rewritten as follows:

ReF (1) = {-2Px®/t* Bo(x - Bt)] = 2Pr3o(r - ) . -V, <1<V,
ReW'(r) =0, r<-V, or 1>V, (35)

Owing to the derivative of Dirac’s function equajinero at. X # [t , the above expression is deduced [37-39].
In terms of Eq. (7), boundary conditions (35) wi#l further rewritten as:

Re[2D) /(1) = 2Pr5(r - ). v, <1<V,
D,(7)

ReW'(r) =0, r<-V, or 1>V, (36)

From the above formulas, the unique solutionM' (7) can be easily deduced as follows:
W'(r) =&(0) &° (T - B) (37)
In the formula, £(7) has no singularity in the scope of:V, <7 <V, ,while, D(7)/D,(7) is purely
imaginary for the subsonic speeds, therefof€7) must be purely real at the interval ofV, <71 <V,. So,
guestion (36) takes:
Reé(r) =0, r<-V, o 71>V,

Imé(r) =0, -V, <1<V, (38)

In terms of asymmetry and the conditions of théité point of the plane corresponding to the arigf coordinates

of the physical plane as well as singularitieshef ¢rack tip [40-41]the sole solution of the Keldysh-Sedov problem
(38) can be attained:

A
$(r)= (39)
[(V, =)V, + )]
WhereAis an unknown constant.
Then putting Eqg. (39) Into Egs. (37) and (7), thesults:
Ar’
Wi(7) = (40)
(T - BV -1V, + 1)
3
F(=29 g AT _ (41)
Di(7) (T=B)IM —1)(V, +7)]
Substituting Eq. (41) Into the first of Eq. (36), & — [, constani can be ascertained:
_ 3/2
A= 2PV - AV, + B)] )

mim[D(B)/D,(5)]

In an orthotropic isotropic body, the disturbanaege of elastic wave can be depicted by the cirarea of radius
Ct and. C,t. Here C, and C, are the velocities of longitudinal and transveveaves C, >C,) of elastic
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body, respectively. In an orthotropic anisotropic bodig tisturbance range of elastic wave is not theulzir area
and can not surpass the threshold valdg =,/C,,/ 0 of elastic body, WhereC,, is an elastic constant of

materials. At. |X| > C,t, with this expressiodm[D, (7)/ D(7)] = 0, thus the stresses and the displacements are

zero which coincide with the initial boundary camalis; and this illuminates that yit= O, disturbance of elastic
wave can not exceedC,t .

Now inserting Eq. (41) into (6) and (5), at thefaoe Y = 0, the stresses and the dynamic stress intensitgrfac
are gained, respectively:

o =ge AT® Om[D(7)/ D,(1)]
Yot (- BV - DV, + 1))
_ —Rejtx Ar? Om[D(r)/ Dl(r)]S/2
C (1= BT -V +V,)]

dr , x<-V,t or x>Vt (43)

. . X Ar>Om[D(7r)/ D,(7)]
K@) = lim 2rm(x-Vit) [Re|" - !
0 v ) ejcd (T =BT -V)(T +V,)]**

_ VZ Om[D(V,)/ D, ()]
=2 /2m d* B TR (44)

KOM = lim /=2 v Relt - Ar? Om[D(7)/Dy(1)]
0= lim = 2m VD Ref] - v

_ V2 Om[D(-V,)/ D, (-V,)]
=2 [om TRV TETAL (45)

The limit of Egs.(44) and (45) remains with thepgiad [0 which should be translated into the modality @f/ co
then the aftermath of the two formulae can be daled by the approaches of L'Hospital theorem [4Bfje

superscripts of the two formulas also represent shress intensity factor atX — Vit and. X — -Vt ,
respectively.

Simplified, we postulate again:
X =V, -1)V,+7) =VV, +(V,-V,)T - 1° (46)

The correlative constants of the above can show §#] as follows: a=V)\,, b=V, -V,, c=-1,
K =4ac-b*=-(V, +V,)?

Integrating Eq.(40) in terms of relevant formuladiierature [44], we will attainW (7)

 fonn B AT?
W(r)_jw (r)dr = (T—,B)\/(Vl—r)(\/2+r)dr
_ £ dr
=A[ [*+1B+ 5+ i /3)] e (47)

Integrating Eq.(47), one will achieve® . But it has four terms, separate denotation iseneapedient, then essential
formulae can be utilized in literature [38], novepuming:

1725



L3O Nian-chun et al J. Chem. Pharm. Res,, 2014, 6(6):1716-1736

1 b 2b-4r, (K+b?) 2br
d bf g
I><’2 - [\/_ ZIX3’21 T 25 X Tkax! @
1 2b-4r
J' _—dr = T (49)
J- r* (K- b2 )T - 2ab .[ _(K-b*)r- 28b_ 27D (50)
X3/2 \/_ \/_K
Putting Egs. (48), (49), (50) into (47), now presugn
K+b*) 2b
Wi(r) = AB[dr = ABE ) -0 6D
W, (1) = AL ’Ba,zdr Aﬂza%w (52)
r? K —b*)r - 2ab 2r-b
W, =Al—=d :AE( - Al +C 53
L(T) qu r KIX rcsmﬁ (53)

Denominator of the fourth term in Eq. (47) contaths term (T—ﬂ)X3/2, so the calculation is incapable of
applying integral formulas directly, thus integi@mat must change into performable integral[38].

By variable replacement? ;= T— [, now, putting it into Eq. (46), one can acquire:

X = (V1 - T)(Vz + T) :V1V2 + (V1 _Vz)lg _:32 + (V1 _Vz - Z,B)Tl - T12 (54)
The relative constants of Eq. (54) can denote tisws: a =V\V, +(V, -V,)3-5°, b =V, -V, -2,
c=-1, K,=4ac-b’*=-(V,+V,)? =K

Substituting Eq. (54) into the fourth term of E47), after integrating with respective tb we can obtainW4(T)
in terms of literature [38]'

AB’°
W,(7) = ﬁj ﬂ)x3/2 ﬁj Xs/z [\/_+'[T\/_ ZIX3/2]

A1 1 NWX+a, b | b b+ 2y
a VX ﬁ T Zﬂ
Ak WX A, b |, 2
B o
_ A KB 28 _ |J_ \/_ b |, 2qf]+c 5)

a KX J_\ Zﬂ

Known from Eq.(47):W(7) =W,(7) +W,(7) +W,(7) +W,(7) . The crack spreads along tkexis, therefore

W(7) including Egs. (51), (52), (53) and (55) can begrened in a definite integral operation, one takesstant.
C=0.

Now replacing Eq.(51) into Egs. (6), (5), then aimy Egs. (27) and (28) to yield the divisionalplecement V
X/t 1 K +b? 2br dr

vlzj;Revvl(r)dt:Rej:“ 2w (r)dr =- Aﬁquj RN
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X, JVX+ia |)K+b2

2a3’2 ‘ T 2\/_‘
~ |\/Y+\/_ | X/t A,B K +b2
2L R ﬂ)] Re[-=—— WX

, (K+b%)b+4ba |¢7+[ b |
2a°'? ‘ r 2\/5‘]

=-Aflx[Re[(-

JVE= )V + %)

X/t —4AB
K

00

—V,t <x <Vt (56)

Then substituting Eq. (52) into Egs. (6), (5) aititizing Egs. (27) and (28), the divisional diapémentV, can
be acquired as:

ot _ Xt X A2 xit1 2b B A1
vz_joRevvz(r)dt_Rej W (1)d7 = -AB xDRej _Z[K\/_ Kﬁ]dr

2b \/_ b x/t
=-Af5° XDRe{_[_a_B' 2a~[ \/—]_Eq_\/— — 2\/—#}
D -JX _b,_ 1 NX+/a, b | JVX+va, b |
= -AB°x [lRe{K[ a0  2a \/— ‘ - \/a‘)] K\/_ ‘ - +2\/a‘,}
= 2b \/_ |\/Y+\/_ b|. 4a [JX+Ja_ b
=-AB*x[Ref- e Ka3’2 ‘ . 2\/5‘ + Ka3’2|n‘ ot
—_ AB* x Re {_2_be/_ da+b? D]n|\/f+\/_ },
a r Ka’?> | 1 2Ja
:—A_'Bz{_z_bq/(v XVt + %) +b2+4ax[nn|\/(\/lt—X)(V2t+X)+t\/g+ b
a K ! 2 al?K ‘ >/a
__ A D =0 +ta | b |
e e (R A R ™ : 2
=Vt <x<Vit (57)

Putting Eq. (53) into Egs. (6), (5) by using E@)(and (28), the divisional displacemew can be attained as:
xit 1 (K b®)r  2ab

v, = J.;Re\/\ls(r)dt = ReLX/ W L(r)dr = -Ax[Re J.

X TR
—afCSin?/T_——_Kb]dT:—Ax[IR [_KKbZEL/L_ %\/Y;r\/_ 235%
2 BT
= -AxCRef- Jl_ %J_r\/_ 2\/_§
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|x/Y+\/_ | 2b \/_
\/5 ‘ r 2\/_‘ K ar
2T -b j

= -Ax[Re[-——

-b
arcsm—

V=K
x/7+\/_ | 2b x/_ 1 2r-b
= -Ax[Re[- In| + = [Arcsin——
[\/5 ‘ r 2\/_‘ K ar r J-K
—J'X/IED = B 2 dr:—Ax[IRe[—iIn|\/Y+\/g+ b |
© T \/1 (2r b) J-K Ja | 1 2/a
7=K
L2 3—\/— + L aresin?L 0 _ J'X/tl E 2
® T -K-(@r-h)

K ar r ﬁ
1 WX+va, b | 2b4/Xx 1 2r -

\/5 ‘ r 2\/5‘ K ar T@trcsmﬁ

iIn|\/Y+\/a+ b |
T =K - (@ -apr +b?) Ja'| 1 2/a
b /X 1 el

+—G—+ @rcsm— a7
K ar 71 r \/4a AT + 4bT

|\/Y+\/_ b |, 2 /X 1 jml

+= 1 @rc&

a7

=-Ax[Re[-—=

r“ 1D 2 fdr = -Ax[Re[-

=-Ax[Re[-—=

e
IX

+= mrcsm—

\/5 ‘ r 2\/_‘ K ar J-K

1 |\/Y+\/_ |]X/t ]X/t

A zﬂ i
2x/t -

—A[ﬂ+— DL/(Vl = X)(V,t+x) +t mrcsm—] -Vt <x<Vt

J-K

Then putting Eq. (55) into Egs. (6), (5), the dis@mentV, can be acquired as:

-AlRe[+ —E}—+tEarcs

+ —

3
v, = [ ReW, (1)dt = Re] ’t—lzw4(r)dr=—A§1X[R "1 K- -2

© r? K\/_
||\/Y+\/_ | 2b1T
e | 1 2( Tk
The second item of the above (without coefficienbt) can be expressed as follows:
[- |\/_x/_ b1|O|,_ I'W_\/_ b1|
rzﬁ ‘ ] 2\/_‘ Ja ‘ ] 2\/_‘
1 |\/_ \/_ b | _ f
TR I IR Y g
-5 2\/5
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b-2r
X[N—Ea -A)-(IX+ J_) X +ya, b
(r- By r\/_ B 2\/_\
f 2/a,(r-p) {b-21)(r - )~ 2X - z/aix
( r 2/aX +2a +b(r-p) 2 X 07 - B)?
XA, b
r\/_ ‘ -4 2\/_‘
jl —bB-br-2a+215-2 /aX 1
2/aX +2a +h(r - B) \/_EGT /3)
XA, b
r\/_ ‘ -4 2\/_‘

1 —bB-br-2a+213- Z/aix 1 dr

r 2\/aix+b,8+br+2a 213 J—mr -B)
|\/_ \/_ | J'].D dr

r\/_ ‘ 2\/5‘ T (r—ﬂ)ﬁ \/_

Substituting Egs. (60), (26), (27) into Eq. (5% displacementv, can be gained:
—A,83xRe{K—bf—2bl,8[_x/Y X +a, |
a K 2a‘°”2 T 2\/_ \

_&i Wx+va, b|, 1 WX+a,
K Va ‘ r 2\/_‘ r\/_ ‘ -8 2\/a
nYX+va, b |, IJ_ f by |/t
ﬂf T 2ﬂ ﬂf T8 2w
AT KB X 1 Iﬁw_ b [, 1,
2, | 8 2fal a

G Yo I S |¢Y+f b |
2k B 7 2& Ba
_AB L K-B2-28B8 tX . x, 1
=S Rel 3 P

Vv, =

_2
K
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_x({K =B = 20,803~ 4aby 5+ 20k X a, b |}x/t o
2a Kﬂ ‘ T 2\/5‘ 00

Then a,b,K,a1 and bl can be replaced with relevant constants by appitaof Eqs. (46), (54), one
presumes:

E,=K-b’-2b8=K-b(b +28) =K -bb (62)
= (K -b? - 2bB)bB - 4aB b+ 2aK = (K —bb)bB - 4aB b+ 2aK = Kb
-bB(b* +4a) + 2aK =K (bB+b B +2a) =K (2bB-2B%+2a) =2aK (63)

Putting Egs. (54), (55) into Eqg. (53), the displaeat V, can be obtained:
AZ, E1 XA, b
V=XVt %) = (t+)
6\1 \/ 1 2 ﬂ \/— ‘ r— ﬂ 2\/&‘
_ V0N /A b |
2a3’2Kﬂ ‘ X 2\/5‘ ’

V=

—V,t <x <Vt (64)

The displacementv is the sum of subdistrict displacemevi=V, +V, +V, +V,. Afterward the addition of Egs.
(56), (50) , (50) and (64), the displacemant is gained:

_- 4A,6’ 2Abﬂ2

E'L/(Vl - X)(Vzt + X) + E'L/(V1 - X)(Vzt + X)

Aﬁ x N(\/l X)(Vzt+><)+t\/_ b|
232 ‘ X 2\/5‘
2x/t -
\/_
Aﬁ AZ Ly 1 V) e b |
,6’\/% i x—pt 2\/a,|
A,Bx |\/(V1 X)(VZHX)H\/_ b|
a2 ‘ X 2\/5‘
A 2bf2 2b ES° x/t=b
__[—4ﬁ+——;+El—]\/(\/1 =X)(V,t +Xx) - At@ircsmﬁ
AL DA DL WM +ta b |
\/_ ‘ X 2@‘
Aﬁ A Lx 1 VM) e, b |
2y T “3ia |

280 = 0 - At aresin? L0 Aa’f BN VEIVAER

A 2b,82 2 E1,8 - 2x/t~b
= [ 45+ - ]\/ (Vit = x)(V,t + x) — At @rcsmﬁ
A/B (t + ) |\/(V1 X)(Vzt + X) +t\/_ bl | —Vzt <x <V1t (65)

,3\/_‘ x— [t 2\/_‘

where: a=V\V, ., b=V,-V, ; a=VV,+V,-V,)B- , b=V,-V,-28, c=-1,
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K, = 4a:LC_b12 =-(\,+V,)* =K

Applying the same approach as that for resolving. E8R) and, (33), substitutX = ajt, X=-a,t into Eq. (65)

While V,, V, andt were also referred to as known constants, thedibfracture speedsr; and @, can be
facilely attained numerical solutions on accounsiafilar reasons.

6 Description of dynamic stress intensity factor
Analytical solutions need translating into numerisalutions in terms of real case of concrete proid,therefore
variable rule ofdynamic stress intensity factors can be depictéidlyawWhen relevant parameters are put into Egs.

(23), (24) (44), (45) to easily plotK P (t) and K2 (t) as a function of timet , respectively, and the numerical
solutions of them are facilely obtained. The follogvconstants [40-41, 36] are presumed:

C,=1924Gpa; C,=125pa; C,,=1783Gpa; C, =100Gpa
V,=300mE™"; V,=250m0E";  B=200mE; P =200N;
©=05x98x10°N [n>;

Known from Egs. (23) and (24) , after simulativdtware Matlab 6.5, dynamic stress intensity factd{él) ®

and Kl(z) (t) decline gradually to slow and trend to constairtally and also have apparent singularity with the

increase of time because only varialdlelocates in the denominator of the two expressiomsieover, the rest
guantities are referred to as real constants. Suotents are detailedly illustrated by the curveig.3. This kind
of the alterable current is related to the resbitamed by relative numerical calculation in literss [47-48],
therefore the outcomes obtained are proved toghé. rThe correlative numerical value relationstips represented
in Table.1.

1.8 1 1 1 1 1 1 1 1 1

161 N ng}m 1

14} .

1.2 4 .

Stress intensity factor K HaKIDt)

Fig.3. Dynamic stress intensity factors Kl(l) (t) and K1(2) (t) versustime. t
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Table.1 Relative numerical values between dynamatress intensity factors Kl(l) (t) , K1(2) (t) and time t

tx10™ kec 2 4 6 8 10
KO (t)x107 / N [ 2 37271 26354 21518 1.8635 1.6668
K@ (t)x107 /N [ /2 14427 10202 08330 0.7214 0.6452
tx10™ kec 12 14 16 18 20
KO (t)x107 /N " 15215 14087 1.3177 12423 1.1786
51008 4.8092 4.5623

Kl(Z) (t) X 10—8/ N |]n—3/2 5.8899 5.4529

1 u T T T T T T

Stress intensity factor K&Kk t)

Fig.4. Dynamic stress intensity factors Kl(l) (t) and K1(2) (t) versus time. t

Table.2 Relative numerical values between dynamatress intensity factors Kl(l) (t) , K1(2) (t) and time t

tx10™ kec 2 4 6 8 10

K9 (t) x10°/ N O /2 29643 12199 51338 59281 14581

K@ (t)x107 /N 2 46109 65209 7.9864 9.2219 10.3121

tx10™ kec 12 14 16 18 20

KO (t)x10°/ N 2 72603 7.8421 83834 88923 9.3729
13042 1.3833 14581

Kl(Z) (t) xloB/ N |]n—3/2 1.1294 1.2199

In terms of Egs. (44), (45), after simulative saftesMatlab 6.5K.”(t) and K2 (t) gradually aggrandize from

zero, but their trends are slow and eventuallyhaacexceed fracture toughness of this materidi @ie enhance of
time, these results will conduct the structuratdbgity because sole variable locates in their numerator, and that
the rest quantities are also regarded as realamssttherefore structural destruction will ocas,shown in Fig.4.
Such trends are homogeneous to the outcomes dkoedt by means of correlative numerical calcufatio
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Literatures [49-52] accordingly it is correct. The relative numericalue relations are illuminated in Table.2.

CONCLUSION

By means of the relevant representatibifx, y,t) =t" f (x/t, y/t) , where n is an integral number, and the

problem considered can be translated into homogentemction ofx andt of zeroth dimension, namely self-similar
functions. All satisfy the relationship of this fttion, thus the analytical solutions can be atthiog Egs. (4), (5), (6)
and (7) with homogeneous function of varialfle. This measure can utilize not only in elastodyr@ambut also in
elastostatics and even in other situations. Reféteratures [53-55].

Analytical solutions of the dynamic asymmetricabak design for bridging fiber pull-out of unidiremal
composite materials were found by way of the thiwak use of a complex variable function. The apgio
developed in this paper based on the methods ofélfesimilar functions makes it conceivable toamttthe
idiographic solution to this design of bridging dibpull-out of composite materials and bridgingrdibs fracture

speedsq; and. @, . The rudimental solution of asymmetrical dynamigok extension problems is derived based

on the self-similar functions. In terms of the realindary conditions, self-similar functiow'(7) can be easily

deduced by means of corresponding to variablaccordingly analytical solutions of stressespldisements and
stress intensity factors will be readily computétlis case is referred to as the analogous clagdgr@Emic problem
of the elasticity theory. However, the present sotuoccurs to be the most straightforward anditiveel of all
alternative methods appeared up to now. Indeedtivel researchers have succeeded in a mixed Keldgdbv
boundary value problem on a half-plane. The probignof sufficient real interest, since all of theembers of
structures in which fractures may expand are afefidimensions and are frequently in the modalitjoag strips.
The method of solution is based exclusively on mémpies of analytical-function theory and is simgad
compendious. By making some observations regartiiegolution of the mixed boundary value problemhage
reasonably decreased the amount of the calculatoré& needed to solve such a crack propagation gnoblThe
approaches of self-similar functions are still aggible in researches of mode | semi-infinite crisf®], mode I

crack [52-54] and modédll interface crack [57-61] and modd interface crack [62-68] as well as axially crack
[32-33, 69].

Analytic solutions of the asymmetrical dynamic desfor bridging pull-out of unidirectional compasimaterials
were found by way of the theoretical applicationao€omplex variable function. The approach develojpethis
paper based on the measures of the self-similartitms makes it conceivable to acquire the concsetation to

this design and bridging fiber fracture speels and @, . The fundamental solution of asymmetrical dynamic
crack extension problems is derived based on tlfesisa@lar functions. In the light of the concreteoundary
conditions, self-similar functiodV'(7) can be easily deduced by means of correspondimgriabler, therefore

analytical solutions of stresses, displacements strebs intensity factors will be readily workedt.othis is
regarded as the analogous class of dynamic probfdire elasticity theory. However, the present sofuappears

to be the simplest and intuitive of all alternatygproaches appeared up to now. Indeed, we haveedrd in a
mixed Keldysh-Sedov boundary value problem on &plahe. The problem is of adequate factual intessce all

of the members of structures in which fractures evegnd are of finite dimensions and are frequentihe format

of long strips. The method of solution is basedl#sigely on techniques of analytical-function theand is
straightforward and compendious. By making someniadions regarding the solution of the mixed baugdralue
problem we have reasonably decreased the amoutieofcalculative work needed to resolve such a crack
propagation problem. The methods of self-similarctions are still relevant in studies of mode | satfinite crack
[56], mode 1T crack [57-61] and modéll interface crack [62-68] as well as axially cra8R{33, 69].
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Appendix

In this appendix we intend to do the necessarybatgivolved in D andD, for orthotropic anisotropy, and also
for isotropy, changing the notation in this lattese in order to make a direct comparison with Brgy22,25]. We
also intend to sho®, =0 when T, =—T, as mentioned in paper, and also fBatD, is purely imaginary for
the possible crack velocities involved in the peshl

Calculationof D, D, for orthotropy (for the subsonic speeds)

Now, in order to illuminate these representatioms universal orthotropy, we are going to refer lte €q.(7) in
literatures [16,20,22,25-27,70], whevrg is replaced by7 , and we write it as

MT*+NT?>+P=0 (A1)
where M =C,C,,
P=(C11 _prz)(C% _prz) (A.2)
N = C66(C66 - prz) +C22(C11 - pz.z) - (C12 + Cee)z

Now write down certain properties of the roots, itee sums and products, etc. From (A.1) we withob
T2+T/=-N/M , (T,-T)’=-(N-2JPM)/M
T T/ =PIM | (T2 -T7)?=(N?-4MP)/M? (A.3)

writt C, =,/Ce/ 0, C,=4/C,,/p, a=(Cqx—pr?), b=(C,-pr?
At T? > Cdz, when a<0, b<0; presumedC,, < C,,, from Eq.(A.2) we will obtain
N? = 4PM = (Cgea + C,,b)* = 2(Cgea + Cy,h) (Cy, + Cge)?
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+(C, +Cy)* —4abC,C,, (A.4)

Evidently 0< N? —4PM <N?, andN <0, reduce = N ++/N? =4PM >0, this denotes T>,T; are
both positive real, therefore all of the four roats(A.1) are real. This tests that far® > C§, we will write

Im[D(7)/D, (7)] =0, which indicates that the disturbance of elastwevcannot overrurCt .
Then putting Eqgs.(6), (8) into (13) in literatufe’[22], there results
D/D, =(T, -T,)S(T,, T,,7 )/[ (T22 _le) (Ciz +Coe) (Ciy + prz)]
S=TT, (ClZ + Cee) [C122 - sz (Cll - :01—2)] - CGG(Cll - pz_z) (T12 +T22)
#C.C,.Co6 T12T22 + (Cll - prz) [C122 +C,Co ~ sz (Cll - prz)] (A.5)

It is not difficult to test that for| T| <C,, D/ D, is purely imaginary for the subsonic speeds. Wegrea

Case(1). ForC, < |T| < C, , remembering that we have taken the positive soraot, then we will obtain

Mg P'/M (Clz + Cee)[clzz - C22(Cll B prz) +MhS

Im[D/D,] = (A.6)
\/N2 —4PM (Cp, + C)(Cyy — :OTZ)
where P' = (C, — pr°) (-Cq + pT°)
1/2 1/2
g= - N ++/N? + 4PM h=p' - N ++/N? - 4PM
2M ’ 2
S'= ClZP + (Cll - prz) [C122 + C12C66 - sz (C11 - prz)] + (Cll - :OTZ) N/sz
Case(2). For |T| <C, <C,, then we can find
IA '
Im[D/ Dl]:( M j S 5 (A7)
N +2¢/PM (Cpp +Cee)(Cyy — po17)
S'=(P/M )% (C12 + Css) [C122 -G, (C11 - pz.z)] - (C11 - pz_z) N/sz
+ C12P + (Cll - prz) [C122 + C12C66 - sz (Cll - prz)]
Case (3). Forisotropy
Isotropy is regarded a special example as orthgtifopm isotropy, we will have
Ch=C, = ,0C12 Ces = 03(C;, —Cp,) = pczz (A.8)

where C,, C,are the wave velocities in the isotropic mediunmy givesD /D, as a function of7, then
substituting them into Eqgs.(5) in literature [12] 2nd (A.6), we can obtain:

D(r) _i6C,[(2C; ~7%)* = 4C3C(C] ~1°)(C} - 1°)
D,(7) r%,|C? - 12

(A.9)
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