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ABSTRACT

Landscape pattern is the principal component ofifmape ecology. Remotely sensed data can providegae

view on spatial and temporal landscape change pata/Vhether the point pattern method can be usexthalyze
urban landscape pattern change, there is lessixaatesearch about it. Based on the remote serigiages of TM,
CBERS and SSMFDE, this study analyzed the landschaecteristics and spatial pattern of Xi'an Ciand

proposed streamlining steps for a point patternlgsia. These analyses were facilitated by the EXRICGIS, and
IDRISI software. The results showed that the starga had a composite landscape matrix consistedaafdland
and farmland. During the study period, the levelanfdscape fragmentation decreased, accompaniethhigcrease
and a reduction in the woodland and farmland laragex connectivity respectively. The different laagsctypes
unanimously showed a prominent spatial patternggfragation. Specifically, the differences in thigical threshold

values for the aggregate, random and discrete padgtavere relatively significant between individyadars and
landscape types.
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INTRODUCTION

Urban landscape patterns are characterized by ticaof@nges, particularly when urbanization undesga rapid
advancement, and artificial landscapes in the sitjeadually penetrate into peripheral natural aechisiatural

landscapes, which is a notable feature of landsdgpamics during rapid urbanization [1]. The reshasf urban
landscape change has been incorporated into atwarieprogrammes within the framework of global nba

research. Monitoring change brought on by urbaitinatas already received considerable attentiorafi2] been a
critical concern both to those who study urban dyica and those who must manage resources and preeitlices
in these rapidly changing environments [3].

Remote sensing has advantages in characterizingpial temporal trends of urban growth using ratige
images [4-5] and is an important tool for providinmformation on urban land-cover characteristice dmeir
changes over time at various spatial and temparales [6]. The remotely sensed imageries such &sldad
multispectral scanner (MSS), thematic mapper (Tarij enhanced thematic mapper plus(ETM+) sensorasage
frequently used for detecting urban change, charaatg urban areas, and analyzing urban spat@ivtr [7-8].
However, other remote sensing imagery such as thiracBrazil Earth Resources Satellite (CBERS) anthlb
Satellites for Monitoring/Forecasting Disasters &myvironments(SSMFDE)with the same spatial resotutis TM
and ETM+ sensor images have rarely been used imiakey urban and landscape changes. So the TM, GBER
and the small satellites remote sensing data wilised and compared in the paper.

Landscape metrics are often used in analyzing tap#s dynamics and urban growth processes [9-10f. Bu
landscape pattern metrics have some shortcominganalyzing pattern changes because of their inheren
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relationship [11]. Most systems in the natural Wate not spatially homogeneous but display some &f spatial
structure. Because of the inherent difficulty irstofiguishing such small clusters from a randomrithistion,
mathematical tools have become increasingly utlice extract information such as domain size ame diraction
[12]. Point pattern analysis comprises a set ofstéar looking at the distribution of discrete ptsirand has a long
history in statistics and the vast majority of pomattern methods rely on a single distance meawme [13].
Ripley’s K function can be used to summarize a ppattern, test hypotheses about the pattern, attiparameters
and fit models [14].The present quantitative wartends to apply a local form of Ripleyé function, which is
widely used in spatial studies, through point pat@nalysis as in Ecology [15]. But point pattemalgsis is not
used in landscape ecology. In the paper, we wél th& point pattern method to analyze urban lamdsgattern
change from the past to the future.

Based on previous research and the recent treratdsviandscape change, this paper analyzed theckape pattern
changes for Xi'an city which were based on the guanf landscape change characteristics of thectire and
spatial pattern as the primary research conterg. ddint pattern method will be used to analyze |#melscape
pattern change of Xi'an. The remote sensing imagésthe TM, CBERS-2 and small satellites for
monitoring/forecasting disasters and environmergsevemployed as the data sources and appraisegl Kappa
index, which under the support of GIS was usechtyae the multi-scale changes of the local langsqeatterns in
recent years combining the landscape indices aimd pattern method.

EXPERIMENTAL SECTION

SITE DESCRIPTION

Xi'an City (E 107°40'-109°49' and N 33°39'-34°45"ocated in the central Guanzhong Plain of SheBmwvince,
which is in the heartland of China. Xian City hagurisdiction spanning nine districts
(Xincheng, Beilin, Lianhu, Yanta, Bagiao, Weiyan@nliang, Lintong and Chang’an) and four countieantian,
Zhouzhe, Huxian and Gaoling). With an average elewaof 400-450 m, the city boasts a variety of
geomorphologic types and features a terrain thabigh-high and north-low. The southern part ofaXj’ residing
mostly within the northern slope of the middle segiof the Qinling Mountains, is dominated by waotls,
grasslands and unused land and accounts for 54f@%e @ity’s total area. The northern part of Xi'@mostly
divided into farmlands, parks and urban construckimd as well as protected areas containing @llheritage sites
and accounts for 45.4% of the city’s total area.e Ttotal water resources (including the river runoff
and groundwater resources) are 3.146 billion®. mFeaturing a climate of the warm-temperate
continental monsoon of East Asia, Xi'an City had@GfC-based accumulated temperature of 4,400°C,nanah
average temperature of 6.4-14.9°C, an average hmpmeeipitation of 537.5-1,028.4 mm, an annual ager
relative humidity of 70—-73% and an annual sunsdumation of 1,983.4—2,267.3 h. By the end of 2at8,city had

a total residential population of 8.46 million.

RESEARCH METHODS

Data Source and processing: Landscape patterns for 2000, 2004, and 2011 wepped by using Landsat TM in
May 2000, CBERS in May 2004 and small satellitesdisaster monitoring/forecasting in May 2011. Tiid data
were obtained form the University of Maryland, vehihe latter two data sets were provided by the&Rienter for
Resources Satellite Data and Application. All ti¢adwere georectified and resampled to a grourmutien of 30
X30 m and projected to UTM projection in the WGS®brdinate system with a RMSE of less than 0.5 pixel
Taking into account both the local characteristind the classification system of China’s land uttes Jandscapes
of the study area were divided into six types: giaasd, farmland, woodland, waters, constructior land unused
land.

Data processing was supported by the ENVI syster) &hd the ArcGIS platform (9.3). During this dptacessing,
the 1:100,000 topographic map, which is registéoethe same projection system, as well as the 8eldey data
from the ground truthing, were used as importafgremces. The classifications were done using aidhgpproach
combining both a supervised (maximum likelihood moef) and unsupervised classification using Iteeativ
Self-Organizing Data Analysis Techniques (ISODAT&ustering method. After the interpretation of ttheee
period images, a field inventory, during the sumwfe2011, was conducted to check the patch clemséso verify
the accuracy of the GIS data: 260 samples wereatell. More importantly, errors, especially thosedpced along
the polygon boundaries due to GIS overlay procesjuaee eliminated. Afterwards, the “clump” functisas used
to filter out some small fragments before some lpegcthat were visibly wrong were corrected in a dmoomputer
interactive manner. At this point, the images weady for the accuracy assessment, which mainigiwed Kappa
indices to evaluate the precision of the clasdificaresults. Although we acknowledge Kappa’s lediability as a
measure of accuracy, it is a commonly used methddrnd use land cover analysis [16-17]. Our assessnesults
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showed that the overall classification accuracythef three phases, assessed on the basis of thindgraample
points collected during field visits of 2011, wa$-83%, and the corresponding Kappa index was 0(B829.
Imagery was also evaluated by in country expertsfeed interviews and deemed acceptable for ugaigstudy.
These data met the requirements of our subsequetysas. The classification had a low rate of oimissnd
commission errors.

Point Patterns Analysis. Point patterns can be studied by the order analy8is One of the most commonly used
order methods is Ripley’s K function, which is altfor analyzing completely mapped spatial poirdqass data, i.e.
data on the locations of events and comparing engpoint distribution with a random distributiore.j the point
distribution under investigation is tested agaith& null hypothesis that the points are distributaxdomly and
independently [12]. Ripley’s K method is based @ humber of points tallied within a given distamcelistance
class. As every point in the sample is taken orsc¢ha center of a plot circle, Ripley’s K functipnovides an
inference at the global level of the studied elenp&si.

Ripley's K function is as follows:

DIPVIR)
L(d) — i=1lj=1j#

mO-D i n W

in which A is the study area,is the number of pointsl is the expected value angi*j is the weight. L(d) ~d ,

L(d) <d o L(d)-d refer to a landscape type that has an aggregaifgrmanor random distribution,
respectively.

Based on the size and minimal classification rerhavdt of the study area, the ArcGIS software wasdito

randomly generate 7000 points in the study arearbdahe corresponding layer was superimposed Wwihvector
graph (of the three phases) in the SHP formatethedetermining the affiliated landscape type athesampling
point. Without regard to whether points are locatéthin or outside domains, Ripley’s K-statisticdsmputed for
all points on the lattice. While generating poimtitprns that simulate K, we require that domaires completely
contained within the lattice so that there are nokén or overlapping domains when the lattice patie tiled.

Subsequently, the point pattern tools, which arsébin the toolbox for spatial statistics analysethe ARCGIS

software, were used to perform the analysis ofdiplK function and the significance tests for difeerent phases
and different landscapes. The starting distancedetermined by the geographical scope of the stwdst and the
step numbers of the 20-class distance, and thandiststep was set to be 2000 m. The boundary débnewas
based on the method of simulating the outer boyndalues. A confidence level of 99% was used tootkenhe

deviation of an index from randomness. The spatiafistic result was produced in the excel filenfat in the

ARCGIS software.

LANDSCAPE PATTERN ANALYSIS

Changes in the landscape patterns: During the twelve years between 2000 and 2011stladée for the maximal
spatial aggregation of the farmland in the studaawas 18 km in 2000, which was gradually reduaesdyas the
aggregation intensity. However, no developmentifffision appeared within the maximal aggregatiostatice. In

addition, the observed values were significantbhler than the upper limit of the confidence intérirdicating that

the spatial aggregation of the distance was dtatist significant. In 2004, the maximal aggregatispatial scale
was 16 km, which is slightly lower than that in BO0O’he aggregation intensity weakened as the acallygcale

increased, so that a random distribution emergetieascale of 36 km and a discrete distributioneapged at the
scale of 38 km. In 2011, the maximal aggregaticatiapscale was 16 km. Likewise, a random distidouaippeared
when the scale reached 36 km, and a discrete blison arose when the scale reached 40 km. Thesdtge
indicated that during the study period, the farrdltandscape experienced a reduction in its spaigadibution and

in its uniformity, corroborating the results of tlaadscape index method.

The scales for the maximal spatial aggregation obdlands were 20, 18 and 24 km in 2000, 2004 arid,20
respectively. The path displayed a pattern ofaliitidropping and later rising and showed that digribution of
woodland displayed less prominent changes. Thigqatvas echoed by the observations that the umifgprof its
spatial distribution showed little alteration arthtt the aggregation registered little reductiontti@rmore, the
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aggregation spatial scale was apparently higher tha upper limit of the confidence interval, irating that the
spatial aggregation at the corresponding aggregati@aracteristic scale during the three phasesstesstically
significant.

The scales of the characteristic spatial aggregatfdhe grassland were 16, 22 and 18 km in 200042nd 2011,
respectively, indicating that the spatial aggrematntensity of the grassland displayed a trenihitifillly decreasing
and subsequently rising. This type of landscapevedoa reduction in both the spatial distributior amiformity
and exhibited a discrete trend. This trend wasmhbst pronounced in 2011, when random and discistetditions
appeared as the analytical scale reached 34 kr3&kah, respectively. Hence, the grassland landsdapeloped a
statistically significant spatial aggregation anstceete distances during the study period.

The scales of the characteristic spatial aggregatiche construction land were 16, 22 and 28 k2060, 2004 and
2011, respectively, and these scales experiengegiam enhancement and were significantly highan the upper
limit of the confidence interval. These resultsicaded that the characteristic scales of the coostm land during
the three phases were in a spatial aggregatiom, stdtich was statistically significant. The expamnsiof the

construction land was correlated with a reductiothe aggregation intensity and an enhancemenntifarmity.

The scales of the characteristic spatial aggregatiothe waters were 8, 12 and 2 km in 2000, 206d 2011,
respectively. The path was similar to that of thesgland. Specifically, the landscape also showedlaction in its
spatial distribution and uniformity and developediscrete trend, with the threshold discrete seglpearing at 6
km. In contrast, in comparison with the grasslahd,water landscape developed a spatial aggregatidrdiscrete
distances that were statistically less signifiddan those of the grassland during the study period

The unused land had the highest aggregation inyeasiong all of the landscape types. It had charistic
aggregation scales of 4 and 2 km in 2000 and 2@3pectively. In addition, threshold discrete dists of 18 and
20 km, respectively, appeared within the rangdefrhaximal studied aggregation values.

Overall, the farmland, woodland, grassland, watemastruction land and unused land in the studg alleexhibited
prominent spatial patterns of aggregation at thebéished study scales. The farmland showed agtioegspatial
patterns at small scales and gradually shifted random distribution pattern as the scale increaskd farmland,
woodland, grassland and urban-rural constructiowl lall had spatial aggregation intensities sigaifity below
those of the waters and unused land. The spassildition of the farmland and grassland had theradteristic
scale with the maximal heterogeneity; at this scéhe two landscape types manifested a certainl lefre
macroscopic heterogeneity because both their lligioins skewed towards a discrete pattern.

CONCLUSION

The study area exhibited a reduction in landscapgnientation and generated a high number of lasgehps,
increased connectivity between the woodland anduaed connectivity between the farmland. The spatial
distribution of the farmland and grassland had aratteristic scale with a maximal heterogeneitypuwewhich
some macroscopic heterogeneity developed and albiah discrete distributions were more likely. Hepat the
pre-determined maximal expected distance, bothheflandscape types showed aggregate, random acrtdis
distributions, with the phenomenon being the moshpunced in 2011.The methods of landscape indindspoint
pattern analysis can be integrated to producerbmiteomes.
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