#### Available online <u>www.jocpr.com</u>

## Journal of Chemical and Pharmaceutical Research, 2014, 6(3):516-521



**Research Article** 

ISSN : 0975-7384 CODEN(USA) : JCPRC5

# Analysis of fault tree importance of turret carrier system of CNC machine tools based on BDD

### Jie Yu<sup>1</sup>, Wu-sheng Tang<sup>1\*</sup> Shuang Yu<sup>2</sup>, Hai-long Zhang<sup>3</sup> and Ning Ding<sup>1</sup>

<sup>1</sup>Mechanical Engineering College of Changchun University, China <sup>2</sup>Foreign Trade Department of Changchun Vocational and Technical College, China <sup>3</sup>Information Center of Sino-Japanese Friendship Hospital of Jilin University, China

#### ABSTRACT

BDD technique is applied to analyze the parts importance of the turret carrier system of the CNC machine tools. Through calculating, parts importance is listed according to the values. The structural importance and probability importance of the turret carrier system are calculated in the paper. From the results we can see that the values of the two methods are perfectly close. But BDD methods are more effective than the FTA methods and can be calculated with the computer.

Keywords: BDD, CNC machine tools, Fault Tree, Importance, Turret Carrier System

#### **INTRODUCTION**

Turret carrier system is a unit with frequent faults of a series of CNC machine tools. The operating principle of the turret carrier system is given as below: as the turret carrier system gets the tool selection commands, the motor makes the worms gears and screws turn, the movable teeth plate rises up, knife sets release and transmission plates drive the tool sets translocation. On the selection station, hall switches send out signals to reverse the motor, the locating pins enter the positioning grooves with the force of the springs, the tool sets cannot turn, the movable teeth plates move down and realize fine positioning and locking. When the locking is placed, hall switches send out signals with the motor off and the knife selection is finished.

The main fault modes of the turret carrier system are units damaged, motor damaged, turn and shift not in place, parts loosed and no turn of the tool sets. The reasons are because of the stuck and misplace of the mechanic parts and parts damaged, loosed, burned and so on.

Transmission deputy of the worm gears of the turret carrier system has a lot of faults mainly in ground, engaging disengaged, worms sprang, worm gears breakage, worm nuts fracture and so on.

The proximity switches, micro switches, encoders and relays of the turret carrier system also have many faults mainly in the loose of the proximity switches and encoders and the damages of the parts.

The motor faults of the turret carrier system are mainly in motor burned out. If mechanical overload or electrical overvoltage and overcurrent phenomenon occur, these show that the motor power is too low or the working voltage is unstable.

The loose of the bottom of the tool sets will lead to the inaccurate workpiece size.

If the bearing of the turret carrier system is damaged, it should be replaced to resume work.

| Event code | Event name                       | Event code | Event name                                           | Event<br>code | Event name                                              |
|------------|----------------------------------|------------|------------------------------------------------------|---------------|---------------------------------------------------------|
| G101       | the fault of the turret carrier  | G102       | the fault of clamping accessories                    | G103          | the fault of the main drive system and spindle assembly |
| G104       | the fault of X-axis feed system  | G105       | the fault of Z-axis<br>feed system                   | G106          | the fault of chip system                                |
| G107       | the fault of power system        | G108       | the fault of CNC system                              | G109          | the fault of electrical system                          |
| G110       | the fault of<br>hydraulic system | G111       | the fault of cooling system                          | G112          | the fault of lubricating system                         |
| G113       | the fault of protecting system   | G201       | No-translocation of the toolset                      | G202          | inaccurate positioning of tool set                      |
| G203       | the tool sets not tight          | G204       | tool set<br>rotating anomaly                         | G205          | the processing precision exceed the standard            |
| G301       | no running of the motor          | G302       | locating pin cannot g303 the fault of driving system |               | the fault of driving system                             |
| G304       | the fault of translocation cam   | G305       | the fault of the middle axis                         | G401          | stator coils burnt                                      |
| G402       | the fault of rotor               | G501       | overload                                             | G502          | overload protection failure                             |
| B001       | over voltage                     | B002       | overcurrent                                          | B003          | overheat                                                |

#### Table 1 The Codes of the Fault Events

| Table 2 The Minimum Cut-sets of The Fault Trees | 5 |
|-------------------------------------------------|---|
|-------------------------------------------------|---|

| cut-set<br>number | the bottom event<br>contained | Event name                                    | cut-set<br>number   | the bottom event<br>contained | Event name                                |  |
|-------------------|-------------------------------|-----------------------------------------------|---------------------|-------------------------------|-------------------------------------------|--|
| 1                 | B070                          | bolt damaged                                  | 36                  | B035                          | unsuitable design                         |  |
| 2                 | B069                          | bolt loosed                                   | 37                  | B033                          | ageing                                    |  |
| 3                 | B069                          | pin-hole worn and torn                        | 38                  | B033                          | improper adjustment                       |  |
| 4                 | B008<br>B067                  | locating pin damaged                          | 39                  | B033<br>B032                  | mistakes in assembly position             |  |
| 5                 | B066                          | others on the surface                         | 40                  | B032<br>B031                  | proximity switch loosed                   |  |
| 6                 | B000<br>B065                  | bolt loosed                                   | 40                  | B031<br>B030                  | encoders damaged                          |  |
| 7                 | B064                          | output mistakes of censors                    | 41                  | B030                          | encoders loosed                           |  |
| 8                 | B063                          | tool offset value mistaskes in<br>the program | 42                  | B029<br>B028                  | slider shearing                           |  |
| 9                 | B062                          | improper toolset adjustment                   | 44                  | B027                          | Bearing broken                            |  |
| 10                | B061                          | relays damaged                                | 45                  | B026                          | too tight or block of bearing             |  |
| 10                | B060                          | lubricating insufficiency                     | 46                  | B025                          | movement                                  |  |
| 12                | B059                          | others in the meshing zone                    | 47                  | B024                          | improper clearence                        |  |
| 13                | B059<br>B058                  | fastening pieces loosed                       | 48                  | B024<br>B023                  | worn and torn                             |  |
| 13                | B057                          | no-fastening of bolts                         | 49                  | B022                          | worn and torn                             |  |
| 15                | B056                          | arrester damaged                              | 50                  | B022                          | ground                                    |  |
| 16                | B055                          | micro switched loosed                         | 51                  | B020                          | ground                                    |  |
| 17                | B055<br>B054                  | improper adjustment                           | 52                  | B020                          | worn and torn                             |  |
| 18                | B053                          | mistakes of assembling<br>situation           | ng 53 B018 movement |                               |                                           |  |
| 19                | B052                          | problems of design                            | 54                  | B017                          | worn and torn                             |  |
| 20                | B051                          | unsuitable assembly<br>adjustment             | 55                  | B016                          | movement                                  |  |
| 21                | B050                          | uneven teeth plate                            | 56                  | B015                          | movement                                  |  |
| 22                | B049                          | low precision of teeth plate                  | 57                  | B014                          | movement                                  |  |
| 23                | B048                          | others in the meshing zone                    | 58                  | B013                          | ground                                    |  |
| 24                | B047                          | rotating teeth plate damaged                  | 59                  | B012                          | unsuitable clearance                      |  |
| 25                | B046                          | too big clearance                             | 60                  | B011                          | gear impact                               |  |
| 26                | B045                          | worn and torn                                 | 61                  | B010                          | ground                                    |  |
| 27                | B044                          | positioning teeth plate<br>damaged            | 62                  | B009                          | pin broken                                |  |
| 28                | B043                          | fastening bolt loosed                         | 63                  | B008                          | bearing stuck                             |  |
| 29                | B042                          | bad assembly adjustment                       | 64                  | B007                          | rotator damaged                           |  |
| 30                | B041                          | non-fastening bolt                            | 65                  | B006                          | big adjustment of the thermal relay power |  |
| 31                | B040                          | too tight or blocked of bearing               | 66                  | B005                          | overhigh rated value of the fuses         |  |
| 32                | B039                          | broken                                        | 67                  | B004                          | software protection out of order          |  |
| 33                | B038                          | worn and torn                                 | 68                  | B003                          | overheat                                  |  |
| 34                | B037                          | too large slide resistance                    | 69                  | B002                          | overcurrent                               |  |
| 35                | B036                          | pin hole worn and torn                        | 70                  | B001                          | overvoltage                               |  |

#### The Construction of the Fault Trees of the Turret Carrier System of the CNC Machine Tools

We regard the whole CNC machine tool as a system and divide the system into thirteen subsystems. Those are turret carrier system, clamping accessories, main drive system and spindle assembly, X-axis feed system, Z-axis feed system, chip system, power system, CNC system, electrical system, hydraulic system, cooling system, lubricating system and protecting system.

We construct the fault trees of the turret carrier system of the CNC machine tools[1-5]. Table 1 is the codes of the fault events. Table 2 is the minimum cut-sets of the fault trees.

Fig.1 is the fault tree of the faults caused by the turret carrier system. Fig.2 is the fault tree of the faults caused by the transmission-mechanism of the turret carrier system. Fig.3 is the fault tree of the faults caused by the inaccurate positioning of the turret carrier system. Fig.4 is the fault tree of the faults caused by the unlocked of the turret carrier system. Fig.5 is the fault tree of the faults caused by the excessive work precision of the turret carrier system.

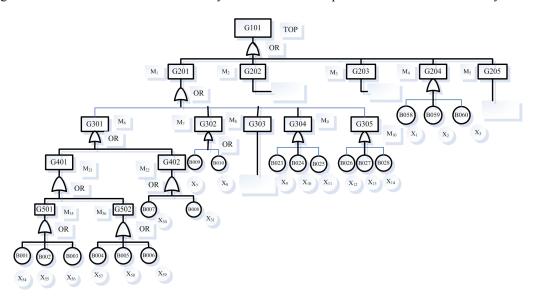



Fig.1 the Fault Tree of the Turret Carrier System

#### **Applying BDD Method to Transform Fault Trees**

Transform the complicated fault trees into standard trees containing And, Or, Non-logic gates. From the bottom events, use the basic events to replace the middle events up layers by layers and encode at the same time[6-8]. At last, get BDD of the summit event. The processes are given as the following figures.

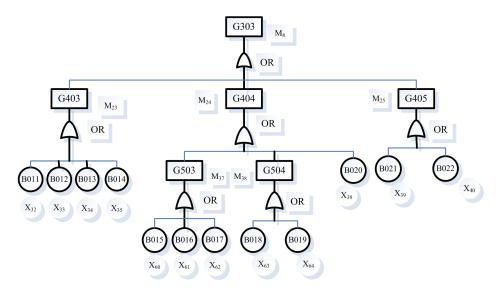



Fig.2 the Fault Tree of the Faults Caused by the Transmission-mechanism of the Turret Carrier System

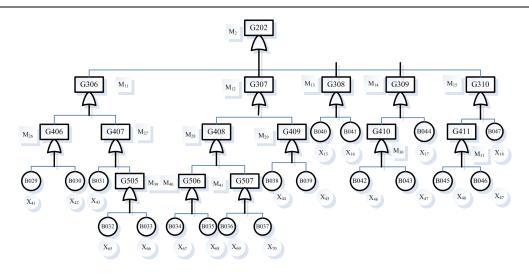



Fig.3 the Fault Tree of the Faults Caused by the Inaccurate Positioning of the Turret Carrier System

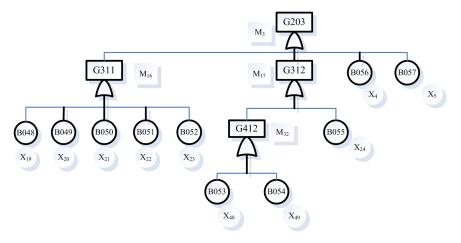



Fig.4 the Fault Tree of the Faults Caused by the Unlocked of the Turret Carrier System

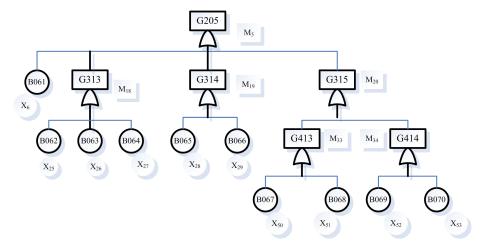



Fig.5 the Fault Tree of the Faults Caused by the Excessive Work Precision of the Turret Carrier System

From the above fault trees, we can know that  $X_1 \sim X_6$  are the sibling evens.  $X_7 \sim X_{29}$  are the sibling evens.  $X_{30} \sim X_{53}$  are the sibling evens.  $X_{54} \sim X_{70}$  are the sibling evens.

## Applying BDD Method On Importance Analysis

| ble <u>3 Importance Results of the Turret Carrier System Based on BDD and</u> FTA |                    |                    |                                                    |                          |  |  |  |
|-----------------------------------------------------------------------------------|--------------------|--------------------|----------------------------------------------------|--------------------------|--|--|--|
|                                                                                   | Construction       |                    | Probability                                        |                          |  |  |  |
|                                                                                   | BDD method         | FTA method         | BDD method                                         | FTA method               |  |  |  |
| $X_1$                                                                             | 0.96278            | 0.96278            | 0.5122                                             | 0.5122                   |  |  |  |
| $X_2$                                                                             | 0.96278            | 0.96278            | 8.8019*10 <sup>-3</sup>                            | 0.00880193               |  |  |  |
| $X_3$                                                                             | 0.96278            | 0.96278            | 8.0913*10-3                                        | 0.00809132               |  |  |  |
| $X_4$                                                                             | 0.96278            | 0.96278            | 8.4319*10 <sup>-3</sup>                            | 0.00843197               |  |  |  |
| $X_5$                                                                             | 0.96278            | 0.96278            | 8.1769*10-3                                        | 0.00817693               |  |  |  |
| $X_6$                                                                             | 0.96278            | 0.96278            | 8.4327*10-3                                        | 0.00843277               |  |  |  |
| $X_7$                                                                             | 0.11429            | 0.11429            | 0.3297                                             | 0.3297                   |  |  |  |
| $X_8$                                                                             | 0.11429            | 0.11429            | 7.0921*10-3                                        | 0.00709211               |  |  |  |
| X <sub>9</sub>                                                                    | 0.11429<br>0.11429 | 0.11429            | $7.0009*10^{-3}$                                   | 0.00700096<br>0.00767811 |  |  |  |
| $X_1$                                                                             | 0.11429            | 0.11429<br>0.11429 | 7.6781*10 <sup>-3</sup><br>7.1365*10 <sup>-3</sup> | 0.00713652               |  |  |  |
| $\overset{0}{\mathrm{X}_{11}}$                                                    | 0.11429            | 0.11429            | 7.3276*10-3                                        | 0.00732763               |  |  |  |
| $X_1$                                                                             | 0.11429            | 0.11429            | 7.9221*10 <sup>-3</sup>                            | 0.00792210               |  |  |  |
| 2                                                                                 | 0.11429            | 0.11429            | 7.8457*10-3                                        | 0.00784571               |  |  |  |
| $\tilde{X_1}$                                                                     | 0.11429            | 0.11429            | 7.5923*10 <sup>-3</sup>                            | 0.00759233               |  |  |  |
| 3                                                                                 | 0.11429            | 0.11429            | 7.3825*10-3                                        | 0.00738251               |  |  |  |
| $\mathbf{X}_1$                                                                    | 0.11429            | 0.11429            | 7.5587*10-3                                        | 0.00755870               |  |  |  |
| 4                                                                                 | 0.11429            | 0.11429            | 7.0143*10-3                                        | 0.00701432               |  |  |  |
| $\mathbf{X}_1$                                                                    | 0.11429            | 0.11429            | 7.0001*10-3                                        | 0.00700011               |  |  |  |
| 5                                                                                 | 0.11429            | 0.11429            | 7.4782*10-3                                        | 0.00747826               |  |  |  |
| $X_1$                                                                             | 0.11429            | 0.11429            | 7.3582*10-3                                        | 0.00735827               |  |  |  |
| 6                                                                                 | 0.11429            | 0.11429            | 7.5593*10 <sup>-3</sup>                            | 0.00755935               |  |  |  |
| $X_1$                                                                             | 0.11429            | 0.11429            | 7.7144*10-3                                        | 0.00771445               |  |  |  |
| 7                                                                                 | 0.11429            | 0.11429            | 7.9129*10 <sup>-3</sup>                            | 0.00791293               |  |  |  |
| $X_1$                                                                             | 0.11429            | 0.11429            | 7.7659*10-3                                        | 0.00776592               |  |  |  |
| 8                                                                                 | 0.11429            | 0.11429            | 7.3575*10 <sup>-3</sup>                            | 0.00735751               |  |  |  |
| $X_1$                                                                             | 0.11429            | 0.11429            | 7.0314*10-3                                        | 0.00703142               |  |  |  |
| 9                                                                                 | 0.11429            | 0.11429            | 7.0949*10-3                                        | 0.00709491               |  |  |  |
| $X_2$                                                                             | 0.11429            | 0.11429            | 7.7615*10-3                                        | 0.00776154               |  |  |  |
| 0                                                                                 | 0.09231            | 0.09231            | 6.9971*10 <sup>-3</sup>                            | 0.00699716               |  |  |  |
| $X_2$                                                                             | 0.09231            | 0.09231            | 6.9035*10 <sup>-3</sup>                            | 0.00690355               |  |  |  |
| 1                                                                                 | 0.09231            | 0.09231            | 6.8625*10 <sup>-3</sup><br>6.8549*10 <sup>-3</sup> | 0.00686252               |  |  |  |
| X <sub>2</sub>                                                                    | 0.09231<br>0.09231 | 0.09231<br>0.09231 | 6.0128*10 <sup>-3</sup>                            | 0.00685497<br>0.00601282 |  |  |  |
| $\overset{2}{X_2}$                                                                | 0.09231            | 0.09231            | 6.7759*10 <sup>-3</sup>                            | 0.00677593               |  |  |  |
| 3                                                                                 | 0.09231            | 0.09231            | 6.5672*10 <sup>-3</sup>                            | 0.00656721               |  |  |  |
| $\mathbf{X}_{2}$                                                                  | 0.09231            | 0.09231            | 6.5526*10 <sup>-3</sup>                            | 0.00655264               |  |  |  |
| 4                                                                                 | 0.09231            | 0.09231            | 6.9138*10 <sup>-3</sup>                            | 0.00691380               |  |  |  |
| $X_2$                                                                             | 0.09231            | 0.09231            | 6.7745*10 <sup>-3</sup>                            | 0.00677451               |  |  |  |
| 5                                                                                 | 0.09231            | 0.09231            | 6.8021*10-3                                        | 0.00680213               |  |  |  |
| $X_2$                                                                             | 0.09231            | 0.09231            | 6.2766*10 <sup>-3</sup>                            | 0.00627663               |  |  |  |
| 6                                                                                 | 0.09231            | 0.09231            | 6.3214*10-3                                        | 0.00632144               |  |  |  |
| $X_2$                                                                             | 0.09231            | 0.09231            | 6.5538*10 <sup>-3</sup>                            | 0.00655381               |  |  |  |
| 7                                                                                 | 0.09231            | 0.09231            | 6.2165*10-3                                        | 0.00621655               |  |  |  |
| $X_2$                                                                             | 0.09231            | 0.09231            | 6.7727*10 <sup>-3</sup>                            | 0.00677272               |  |  |  |
| 8                                                                                 | 0.09231            | 0.09231            | 6.2942*10 <sup>-3</sup>                            | 0.00629421               |  |  |  |
| $X_2$                                                                             | 0.09231            | 0.09231            | 6.5437*10 <sup>-3</sup>                            | 0.00654371               |  |  |  |
| 9                                                                                 | 0.09231            | 0.09231            | 6.7045*10 <sup>-3</sup>                            | 0.00670459               |  |  |  |
| $X_3$                                                                             | 0.09231            | 0.09231            | 6.0732*10 <sup>-3</sup>                            | 0.00607321               |  |  |  |
| 0<br>V                                                                            | 0.09231            | 0.09231            | $6.0943*10^{-3}$                                   | 0.00609432               |  |  |  |
| $X_3$                                                                             | 0.09231<br>0.09231 | 0.09231<br>0.09231 | 6.6577*10 <sup>-3</sup><br>6.0317*10 <sup>-3</sup> | 0.00665773<br>0.00603179 |  |  |  |
| $\overset{1}{X_3}$                                                                | 0.09231            | 0.09231            | 6.0038*10 <sup>-3</sup>                            | 0.006003179              |  |  |  |
| A3<br>2                                                                           | 0.03315            | 0.03315            | 5.9919*10 <sup>-3</sup>                            | 0.00599190               |  |  |  |
| $\mathbf{X}_{3}^{2}$                                                              | 0.03315            | 0.03315            | 5.6785*10 <sup>-3</sup>                            | 0.00567853               |  |  |  |
| 3                                                                                 | 0.03315            | 0.03315            | 5.7793*10 <sup>-3</sup>                            | 0.00577932               |  |  |  |
| X <sub>3</sub>                                                                    | 0.03315            | 0.03315            | 5.6675*10 <sup>-3</sup>                            | 0.00566752               |  |  |  |
| 4                                                                                 | 0.03315            | 0.03315            | 5.6928*10 <sup>-3</sup>                            | 0.00569281               |  |  |  |
| X3                                                                                | 0.03315            | 0.03315            | 5.6648*10-3                                        | 0.00566481               |  |  |  |
| 5                                                                                 | 0.03315            | 0.03315            | 5.3321*10-3                                        | 0.00533215               |  |  |  |
| $X_3$                                                                             | 0.03315            | 0.03315            | 5.6918*10 <sup>-3</sup>                            | 0.00569183               |  |  |  |
| 6                                                                                 | 0.03315            | 0.03315            | 5.5549*10 <sup>-3</sup>                            | 0.00555492               |  |  |  |
| $X_3$                                                                             | 0.03315            | 0.03315            | 5.6648*10-3                                        | 0.00566481               |  |  |  |
| 7                                                                                 | 0.03315            | 0.03315            | 5.0036*10-3                                        | 0.00500362               |  |  |  |
| X3                                                                                | 0.03315            | 0.03315            | 5.0328*10-3                                        | 0.00503281               |  |  |  |
| 8                                                                                 | 0.03315            | 0.03315            | 5.1026*10-3                                        | 0.00510261               |  |  |  |
| $X_3$                                                                             | 0.03315            | 0.03315            | 5.2217*10-3                                        | 0.00522177               |  |  |  |
| 9                                                                                 | 0.03315            | 0.03315            | 5.0095*10 <sup>-3</sup>                            | 0.00500953               |  |  |  |
| $X_4$                                                                             | 0.03315            | 0.03315            | 5.1127*10-3                                        | 0.00511277               |  |  |  |
| 0                                                                                 | 0.03315            | 0.03315            | 5.2092*10-3                                        | 0.00520921               |  |  |  |

## Table3 Importance Results of the Turret Carrier System Based on BDD and FTA

| _ | X4                                         | <br> | <br> | _ |  |
|---|--------------------------------------------|------|------|---|--|
|   | $\overset{1}{\overset{2}{X_4}}$            |      |      |   |  |
|   | 2                                          |      |      |   |  |
|   | X4<br>3                                    |      |      |   |  |
|   | $\overset{3}{X_4}$                         |      |      |   |  |
|   | $\overset{4}{X_4}$                         |      |      |   |  |
|   | 5<br>X4                                    |      |      |   |  |
|   | X4                                         |      |      |   |  |
|   | $\overset{6}{X_4}$                         |      |      |   |  |
|   | $\overset{7}{\mathrm{X}_4}$                |      |      |   |  |
|   | X4<br>8                                    |      |      |   |  |
|   | $\overset{8}{X_4}$                         |      |      |   |  |
|   | 9<br>X5                                    |      |      |   |  |
|   | 0<br>X5                                    |      |      |   |  |
|   | X <sub>5</sub>                             |      |      |   |  |
|   | $\stackrel{1}{X_5}$                        |      |      |   |  |
|   | 2<br><b>V</b>                              |      |      |   |  |
|   | 2<br>X <sub>5</sub><br>3<br>X <sub>5</sub> |      |      |   |  |
|   | X5                                         |      |      |   |  |
|   | $\overset{4}{X_5}$                         |      |      |   |  |
|   | 5<br>X5                                    |      |      |   |  |
|   | X5                                         |      |      |   |  |
|   | 6<br>X5                                    |      |      |   |  |
|   | $\stackrel{7}{X_5}$                        |      |      |   |  |
|   | 8<br>X5                                    |      |      |   |  |
|   | X5                                         |      |      |   |  |
|   | 9<br>X6                                    |      |      |   |  |
|   | $\overset{0}{\mathrm{X}_{6}}$              |      |      |   |  |
|   | A6<br>1                                    |      |      |   |  |
|   | $X_6$                                      |      |      |   |  |
|   | $\frac{2}{X_6}$                            |      |      |   |  |
|   | 3                                          |      |      |   |  |
|   |                                            |      |      |   |  |
|   | X <sub>6</sub>                             |      |      |   |  |
|   | 5<br>X                                     |      |      |   |  |
|   | А6<br>6<br>Х6                              |      |      |   |  |
|   | X <sub>6</sub>                             |      |      |   |  |
|   | $\overset{7}{X_6}$                         |      |      |   |  |
|   | $\overset{8}{X_6}$                         |      |      |   |  |
|   | A6<br>9                                    |      |      |   |  |
|   | 9<br>X7<br>0                               |      |      |   |  |

From table3 we can see that the construction importance and probability importancevalues of the parts are very close with BDD method and FTA method. But it is a complicated process using the traditional FTA analysis to get the construction importance and probability importance. It is an effective and accurate process when using BDD method and it can be realized with the computer.

#### CONCLUSION

Apply BDD method to get the concrete values of the construction importance and probability importance of the basic events of the turret carrier system of the CNC machine tools. In light of these values, we can adopt some measurements to increase the reliability of the turret carrier system and increase the total reliability step by step.

#### Acknowledgements

This research work was sponsored by the project of Department of Education of Jilin Province (No.2014282).

#### REFERENCES

[1]Sinnamon R M, Andrews J D. New Approaches to Evaluating Fault Tree [A], Proceedings of ESrel'95 Conference[C]. June. **1995.** 241-254.

[2]Xiang-rui Dong.Reliability Engineering. Beijing. Tsinghua University Press. 1990.

[3]Wei-xin Liu. Mechanical Reliability Design.Beijing. Tsinghua University Press.1996.

[4]Rui-yuan Liu. Reliability Engineering .2002. 4.P153-155.

[5]Zhi-qiang Fang. Lian-hua Gao. Reliability Engineering. 2002.1.P22-24.

[6] Xiang-cheng Xu, Jian-guo Zhang. Reliability Engineering. 2003.3.P103-106.

[7] Yan-nian Rui, Ge-yan Fu. Modern Reliability Design.Beijing. Defense Industry Press.2006.

[8]Chao Zhang.Optimization of Dynamic Fault Tree AnalysisBased on BDD. Master Thesis.Northwestern Polytechnical University .2006.