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ABSTRACT

Based on analysis of chaos theory and adaptability in runoff system, the chaotic analysis method is put forward.
Monthly runoff series is reconstructed in phase space, and chaotic characteristics are identified and analyzed with
Yellow River as the research object. The conclusions are as follows: natural monthly runoff is larger than the
measured in saturated correlation dimension. At least 4 independent variables, up to 8 are needed to properly
describe changing features of the measured monthly runoff series and build dynamic system modeling; while for
natural runoff series, at least 5-6 variables，12 at most are needed. The measured runoff series and the natural
vary in chaotic characteristics in the same hydrologic station during the same period: the chaotic characteristics of
downstream are stronger than upstream; the chaotic characteristics of monthly runoff from 1950s to the beginning
of 21century are slightly stronger than those from 1920s to 1970s in Yellow River; The length of runoff time series
has influence on the level of chaotic characteristics, the length is more longer, the level is more stronger. In a
whole, the Yellow River runoff has chaotic characteristics, which provide the basis for runoff system modeling and
chaotic forecasting.
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INTRODUCTION

The research on runoff changing law is the premise and foundation of rational development and utilization of water
resources. Runoff process is a complex hydrological phenomenon, which shows a strong nonlinear characteristic.
For a long time, people have been using the traditional random theory or deterministic theory or a combination of
the two theories to describe the evolution of runoff which has some limitations. People are unable to describe the
nonlinear complex evolution process of runoff by using the traditional theory of Euclidean geometry. In recent years,
chaos theory and its applications in various fields have developed rapidly and become a powerful tool to describe
the process. Chaos theory reveals the widespread complexity of nature and human society, as well as the unity of
order and disorder, the unity of certainty and randomness, which expands people’s horizons and deepens the
understanding of the objective world. Research on chaos covers all fields of nature and social science. The progress
of the research will effectively promote the development of almost all disciplines and areas of technology [1].
Analyzing chaotic time series in hydrology system is a very significant pioneering work. The new ideas and
methods of chaos theory have injected new vitality into the study of hydrological sciences, especially experimental
analysis. It can be said that the research has moved from the stage of past semi-empirical theory and the statistical
theory into the stage of system dynamics theory [2].This research is intended for the Yellow River, using chaos
theory to analyze the changing characteristics of runoff and reveal its evolution.

1.1 Chaos Definition
Chaos is a seemingly irregular and random-like phenomenon that appears in a deterministic system. The solution
that appears in deterministic nonlinear systems and has inherent randomness is called chaotic solution. This solution
can be predicted in the short term but not in the long term, thus it is different from identification solution and
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random solution. Chaos is not a simple disorder but no obvious periodicity and symmetry. It is ordered structure
with rich interval levels, a new form of existence in non-linear system [3]. Li-Yorke definition is one of the chaos
mathematical definitions with a broader impact [4].

Definition: continuous self-mapping function f is chaotic in interval [a, b], if it meets following conditions:

(1) The period of f periodic points is no upper bound.

(2)There exist uncountable subsets  ,S a b , S does not include periodic points and meets:

1) For any x,y∈S, there is lim inf ( ) ( ) 0n n

n
f x f y


  ;

2) For any x, y∈S, there is limsup ( ) ( ) 0n n

n
f x f y


  ;

3) For any x∈S and any periodic point y of f, there is:
limsup ( ) ( ) 0n n

n
f x f y


 

.

1.2 Characteristics of Chaotic Motion
The current study shows that chaotic motion has three distinct characteristics [5-6].
(1) It is extremely sensitively dependent on initial conditions. This feature means that chaos is impossible to be
predicted infinitely, even if the two points are very close in initial state, chaotic motion will expand as exponential
function with time, and the future stage can not be predicted with decision theory. This is the most essential
characteristic of chaos.

(2) Aperiodic feature shows nonlinear and disorder of chaos.

(3) Strange attractor exists in chaos system. Attractor is a point set and a sub-space in phase space. All trajectories
tend to it after the transient state dies out with time. The attractor dimension is an integer for deterministic system,
but the chaotic attractor dimension is fractional, which is known as strange attractor. The existing of strange
attractor in chaotic system makes the trajectory of chaotic system showing some regularity.

2 ANALYSIS OF THE ADAPTABILITY OF CHAOS THEORY'S APPLICATION IN RUNOFF SYSTEM
To analyze chaotic characteristics of runoff series, first we need determine the suitability of chaos theory applied in
the runoff system, and then construct the runoff series phase. We should analyze the changing laws of runoff system
by applying corresponding chaotic analysis methods. It is agreed generally that chaotic phenomenon will be
produced from the non-linear, open, far-from-equilibrium, irreversible process, fluctuations and breaking system.
Runoff system is a dynamic non-linear, far-from-equilibrium, and complex open system. It is a whole that is
developed by a number of natural factors interacting and influencing [7]. At the same time, it is subject to impacts of
different degrees of human activities, thus forming a complex change process of runoff system. Therefore, it is
possible that the runoff system shows chaotic characteristics [8-11]. Usually, we can use quantitative and qualitative
means, or combine the two, and use as many means as possible to recognize chaotic characteristics of time series.

3 METHODS AND STEPS OF CHAOTIC CHARACTERISTIC ANALYSIS OF RUNOFF
3.1 Phase Space Reconstruction
Reconstruction of phase space is the necessary condition of recognizing runoff series chaotic characteristics.
Determining embedding dimension m and time delay τ [12-14] is the key factor of reconstructing phase space. Runoff
time series can be seen as a power system made up of the n-variable first-order differential equations,

1 2/ ( , ,..., ), 1, 2,...,i i ndy dt f y y y i n  (1)

The stage space of runoff system with time changing can be showed by the n-dimensional phase space made up of
coordinate y(t) and its (n-1) orders derivative.

(1) ( 1)( ) [ ( ), ( ),..., ( )]n TZ t y t y t y t (2)

We can use the discrete time series y(t) and its(n-1) time delay displacements to build a new n-dimensional phase
space(i.e., embedding phase space), to replace the stage space of runoff system reflected by the continuous variable
y(t) and its derivative. That is:

http://dict.cnki.net/dict_result.aspx?searchword=%e5%af%bc%e6%95%b0&tjType=sentence&style=&t=derivative
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( ) [ ( ), ( ),..., ( ( 1) )]TZ t y t y t y t n     (3)

Where, τ is time delay, also known as lag time. The reconstructed phase space's dimension m should be at least
greater than the state space’s topological dimension D's (also known as saturated correlation dimension) 2 times plus
1, that is m ≥2D +1.

For a certain observable discrete runoff time series y1, y2, …,yn, τ is selected, then the reconstructed embedding
phase space can be expressed as formula (4), of which, l=n-(m-1)τ

 
 

 

1 1 1 1 ( 1)

2 2 2 2 ( 1)

( 1)

, ,...,

, ,...,

...

, ,...,

m

m

l l l l m

Z y y y

Z y y y

Z y y y

 

 

 

  

  

  

 

 


  (4)

3.1.1 Determination Time Delayτ of the Phase Space Reconstruction Parameters
Whether the choice of embedding time delay size is suitable will directly affect the effects of reconstructing phase
space, and further affect the identification of chaotic characteristics. There are generally three types of methods to
determineτvalue: phase space expansion method, serial correlation, and the (partial) multiple autocorrelation
between the two.

In this study, (partial) autocorrelation and multiple autocorrelation methods are used respectively to reconstruct
phase space of runoff series. Considering the length of the paper, these two methods are not introduced in detail [15].

3.1.2 Determination of Embedding Dimension m in Phase Space Reconstruction
Generally, if the inserting dimension of phase space is big enough, strange attractor of runoff system can be
displayed, and motion law of runoff system that traditional methods can’t show will be revealed [16]. Therefore,
embedding dimension is usually chosen by m≥2D+1 in phase space reconstruction. In this study, saturated
correlation dimension method (G-P) is used to determine embedding dimension of phase space [17].

(1)The definition of saturated correlation dimension: we suppose rij (m) is the absolute value of any two vectors’
difference, namely the Euclidean distance, in m-dimensional phase space series Z1, Z2,…,Zl.

rij(m)=‖Zi-Zj‖ (5)

Then, we can give a number r0, whose value should be between the maximum and the minimum rij. Group values of
lnr0 and lnC(r) can be calculated when r0 is adjusted properly. Thus, correlation dimension dm can be figured out
through formula (6).

0limln ( ) / ln( )m r
d C r r


 (6)

0 0
, 1 , 1

1 1( ) ( ) ( )
( 1) ( 1)

l l

ij i j
i j i j
i j i j

C r H r r H r Z Z
l l l l 

 

    
   (7)

In which, H(x) is called Heaviside function, defined as follows:

0, 0
( )

1, 0
x

H x
x


  
(8)

(2) Problem-solving ideas of saturated correlation dimension method
According to the definition of correlation dimension, if there is strange attractor in the observation sequence {y (t)},
dm correlation dimension will also increase following the increase of phase space embedding dimension. dm will
reach the saturation value D ,namely saturated correlation dimension of time series when the correlation dimension
increases to a certain value. The main idea of ​ ​ G-P method is to choose a different area ​ ​ radius r0, calculate
the corresponding C(r), and put these different r0 and C(r) into formula (6) to fit dm. The saturation value D of dm
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can be obtained following the increase of m. According to m ≥ 2D +1, the appropriate embedding dimension m can
be determined in the system.

3.2 The Method of Chaotic Characteristic Analysis
3.2.1 Saturated correlation dimension method
The diagram lnr0～ lnC(r) can be drawn under different conditions of embedding dimension according to the
calculating result of formula （5）-（8）. If there is a straight-line part of the figure, then the slope of the straight
part is the correlation dimension corresponding to the embedding dimension m. Draw the diagram of the obtained
correlation dimension dm and different embedding dimension m. The correlation dimension tends to be stable when
embedding dimension m reaches saturation value D, also called saturated correlation dimension. Then the system
has stable chaotic attractor dimension, which indicates the runoff series has chaotic characteristics.

3.2.2 The maximum Lyapunov index
Lyapunov index is a lineage λi (i = 1,2, ..., m-1). If the only maximum value is positive in the spectrum, the system
is one-dimensional chaotic; If the spectrum has two or more values being positive, the runoff system is multi-
dimensional chaotic or hyper chaotic. Otherwise, the system is non-chaotic. So the max Lyapunov index can be used
to analyze chaotic characteristics. The bigger its value is, the stronger the chaotic characteristics are, and the more
sensitive is for initial value. Just because of the initial sensitivity of chaotic system, the long-term prediction of
chaotic system is not possible. Typically, the reciprocal of the index can be used as a predictable scale of the system.
For time series y1, y2,…,yn , the calculation method is as follows:

First, we can reconstruct phase space through the method described in 3.1, then according to formula (9),obtain the
nearest neighbor point Zj of Euclidean space sense Zi and the distance between two points Li, finally find max
Lyapunov index λ according to formula (10).

min , , 1, 2,...,
i j

i j iL Z Z i j l

     (9）

1
1

1

1 1 ln
1

l
i

i i

L
l L










 

(10)

λ is system max Lyapunov index, when λ>0, indicating that the system has chaotic characteristics; when λ=0,
indicating the system has a bifurcation point or periodic solution, that is ,cycle phenomenon appears in system;
when λ<0, the system has a stable fixed point.

3.2.3 Principal component analysis
The method can identify chaos and noise effectively. If a given one-dimension time series is known as y1,y2,y3,…,yn,
the phase space is reconstructed when sampling interval is τand selected embedding dimension is m. So the
trajectory matrix formed by the time series   1l mZ l n m     [18] is as follows.

1 1 1 ( 1) 1

2 2 2 ( 1) 2
1/2 1/2

( 1)

...

...1 1

...

m

m
l m

l l l m l

y y y Z
y y y Z

Z
l l

y y y Z

 

 

 

  

  


  

   
   
    
   
   
    

    
(11）

Covariance matrix A is:
1 T

m m l m l mA Z Z
l  

(12)

Calculate the eigenvalue λi(i=1,2,3,…,m) of covariance matrix A and eigenvector Ui(i=1,2,3,…,m). Sort the
eigenvalues by size: λ1≥λ2≥…≥λm.

Then eigenvalue λi and eigenvector Ui are called principal component. Find the sum  of all the eigenvalues.

1

m

i
i

 



(13)



Li Yanbin et al J. Chem. Pharm. Res., 2014, 6(4):522-531
_____________________________________________________________________________

526

The graph with index i as abscissa and ( )iLn  
as ordinate is called principal component spectrum. The principal

component spectrum of chaotic sequence is a straight line with a negative slope or the points’ fitting line with a
negative slope. The noise spectrum is a nearly parallel line with the horizontal axis.

4 ANALYSIS OF CHAOTIC CHARACTERISTICS OF YELLOW RIVER RUNOFF
4.1 BASIC INFORMATION
Taking runoff series of Lanzhou ，Sanmenxia，Huayuankou station of the Yellow River. The main measured and
natural runoff data are 1955—2005.The total length N of the runoff sequence is 612 months. In addition, other
runoff data of different lengths are experimentally analyzed. Data lengths are in line with the requirements of
chaotic characteristic analysis [19-20].

RESULTS AND ANALYSIS

4.2.1. Parameter determination of phase space reconstruction of runoff series
(1) Determination of time delay τ value. The phase space reconstruction parameter τof natural and measured runoff
series is calculated by using the method described in 3.1.1.The results are shown in Table 1, the calculation process
shown in Figure 1-4. The paper lists only the measured runoff calculation diagram avoiding the paper being too long.
According to autocorrelation features (correlation coefficient diagram through zero point first time), considering the
factors that calculated value is larger than actual value, integrating the calculation of various methods, then taking
coefficient τ of phase space reconstruction as 2 is more appropriate.

Fig．2 the relation of autocorrelation coefficient
and time delay of monthly runoff series in the

Sanmenxia station
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Fig．3 the relation of complex autocorrelation and
time delay of monthly runoff series in the Lanzhou

station
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Fig． 4 the relation of complex autocorrelation and
time delay of monthly runoff series (1960-2006) in the
Sanmenxia station

Table.1 time delay τ

methods
station Method 1 M e t h o d 2 Method 3

Lanzhou M e a s u r e d 3.15 1.64 1.51
N a t u r a l 3.25 1.68 1.00

S a n m e n x i a M e a s u r e d 2.35 1.72 1.12
N a t u r a l 3.05 2.13 1.05

H y u a n k o u M e a s u r e d 3.35 2.01 1.52
N a t u r a l 3.45 2.12 1.54

Note: Method 1 is about Autorelation method (figure first time through zero); Method 2 is about Auto relation method (τfirst time through the
initial value’ (1-1/e）times); Method 3 is about multiple autocorrelation.

（2）Determination of embedding dimension m
According to 3.1.2, r0 equals {100,150,200…, 5000}, phase space embedding dimension m equals {2, 3, 4, 5, 15},
and τequals 2, C(r) can be calculated. The runoff series lnr0～ lnC(r) figures 5-6 are drawn in the condition of
different embedding dimensions. Figures of the correlation dimension and embedding dimension relation figures 7-8
are also drawn. The calculating results are in table 2.
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Table.2 saturation relation dimension and the most Lyapunov exponential of every station

Item
Station

Time
delay

Embedding
dimension

Saturator relation
dimension

Lyapunov index value

Lanzhou
M e a s u r e d 1 2 12 3.73 0 . 3 1 4 0

N a t u r a l 1 2 12 5.42 0 . 1 5 6 1
N a t u r a l 2 2 12 5.15 0 . 2 5 0 0

S a n m e n x i a

N a t u r a l 3 2 12 5.23 0 . 0 4 4 9
M e a s u r e d 2 2 12 3.98 0 . 3 6 7 5
N a t u r a l 1 2 12 5.76 0 . 0 3 2 2
N a t u r a l 2 2 12 5.31 0 . 3 0 0 0

Hyuankou
M e a s u r e d 1 2 12 4.07 0 . 4 4 2 3

N a t u r a l 1 2 12 6.18 0 . 2 2 0 6
N a t u r a l 2 2 12 5.83 0 . 4 1 6 6

Note: Measured 1 is about 1955-2005 measured runoff series; Measured 2 is about 1960-1998 measured runoff series; Natural 1 is about 1955-
2005 natural runoff series; Natural 2 is about 1920-1970 natural runoff series; Natural 3 is about 1920-1998 natural runoff series.

4.2.2 Runoff series chaotic characteristic identification
(1) Analysis of saturated correlation dimension calculation result
According to 3.1.2， the Yellow River runoff series saturated correlation dimension is calculated, as shown in Table
2. Calculating correlation dimension has a variety of meanings: on the one hand for the time series of random
changes, as the embedding dimension increases, the correlation dimension will continue to grow. For chaotic time
series, when the embedding dimension m reaches value D, the correlation dimension tends to be stable and reaches a
saturation value, also known as the saturated correlation dimension, while the corresponding minimum embedding
dimension indicates the effective freedom degree dimension of dynamic system. When the embedding space
dimension reaches D-dimensional, the system has a stable chaotic attractor dimension, indicating that the system has
chaotic characteristics. On the other hand, saturated correlation dimension shows that the minimum number of
independent variables using to describe the system is INT (D +1), the maximum number is INT (2D+1), and INT is
the lower integral function.

Analyze the result from table 2, and take the measured monthly runoff series of Huayuankou station for example.
When the embedding dimension m reaches 12, the correlation dimension tends to be stable and reaches a saturation
value D= 4.07, the corresponding minimum embedding dimension shows the effective freedom degree dimension of
the power system. It is clear that the measured monthly runoff series has chaotic characteristics in Huayuankou
station. When the embedding dimension comes 12; the system has a stable chaotic attractor dimension 4.07.
Similarly, the measured and natural monthly runoff series in Lanzhou and Sanmenxia stations have chaotic
characteristics, but the dimensions of chaotic attractors are not exactly the same. The greater dimension of chaotic
attractors is, the more factors affect the formation process of the runoff series, which is determined by different
characteristics of runoff series itself. Data in the table show that the chaotic attractor dimension of 1955-2005
measured monthly runoff series in Lanzhou Station is relatively small, being 3.73, which indicates it needs at least 4
independent Variables to properly describe the changing characteristics of the runoff system and model dynamic
system. But the chaotic attractor dimension of 1955-2005 natural monthly runoff series in Huayuankou Station is
relatively large, being 6.18, which indicates it needs at least 7 independent variables to describe the changing
characteristics of runoff series.

(2) The maximum Lyapunov index
According to the calculation method of the maximum Lyapunov index 3.2.2,  equals 2, and the embedding
dimension m is 12. The maximum Lyapunov index values of measured and natural monthly runoff series in
Lanzhou, Sanmenxia and Huayuankou station are shown in table 2. The following conclusions can be drawn from
table 2. The chaotic characteristics of measured runoff have slightly stronger than that of natural runoff at the same
hydrologic station. From 1950s to the beginning of 21century, the chaotic characteristic of monthly runoff is
stronger than that from 1920s to 1970s.(i.e., slightly stronger in modern time than the past). For natural monthly
runoff series, the longer the series are, the stronger its chaotic characteristics are. In addition, comparing calculation
results of Lanzhou station to Huayuankou station, it can be seen that the downstream runoff series has stronger
chaotic characteristic than upstream runoff in both natural data and measured data.

(3) Principal component analysis
Using the principal component analysis method introduced by 3.2.3 to study the measured and natural monthly
runoff series of Lanzhou, Sanmenxia and Huayuankou stations, then can draw the relationship map between the
embedding dimension i and the principal components PCA ,namely the main component spectra , and fit the trend
shown in figure 9-10. According to the nature of the principle component spectra of chaotic time series, the
following graphs have the linear parts of negative slope, which further confirm that the runoff series has chaotic
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characteristics, and provide basis to building chaotic prediction model of monthly runoff. However, the difference in
the strength of the chaotic property is difficult to clear from the figures.

CONCLUSION

Based on the study on chaotic analysis methods of runoff time series, Yellow River monthly runoff series is
analyzed in chaotic characteristics and the following conclusions are drawn.

(1)Time delayτand embedding dimension m are two important parameters in the phase space reconstruction of
runoff time series and play a key role in phase space reconstruction.

(2)The time delay τof phase space reconstruction of monthly runoff time series equals 2 in main hydrologic stations
of Lanzhou, Sanmenxia and Huayuankou of Yellow River. When the embedding dimension m reaches 12, system
has the saturated correlation dimension.

(3) At the same hydrologic station, the saturated correlation dimension of natural monthly runoff is bigger than that
of the measured one. It needs at least 4 variables (i.e. 4 factors )and at most 8 variables ( i.e. 8 factors ) to describe
the changing characteristic of measured runoff series and build dynamic models, but least 5-6 and most 12 for
natural runoff.

(4) The measured runoff has different chaotic characteristics from natural runoff at the same hydrologic station
during the same period. For Yellow River mainstream, the chaotic characteristics of measured monthly runoff series
are stronger than those of natural series. For different hydrologic stations, the downstream has stronger chaotic
characteristics than the upstream. From 1950s to the beginning of 21 century, the chaotic characteristic is slightly
stronger than that from 1920s to 1970s (i.e. now is stronger than the past).

(5) The length of runoff time series has influence on identification of chaotic characteristics. The length is longer,
the chaotic characteristics are stronger. The runoff of Yellow River has chaotic characteristics, which provides basis
for runoff modeling and chaotic forecasting.
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