
Available online www.jocpr.com

Journal of Chemical and Pharmaceutical Research, 2013, 5(12):118-122

Research Article ISSN : 0975-7384
CODEN(USA) : JCPRC5

118

An independence display platform using multiple media streams

Zhang Gen-Yuan1,2

1School of Information Engineer, Wuhan University of Technology, Wuhan, China

2School of Electronics and Information, Zhejiang University of Media and Communications Hangzhou, China

ABSTRACT

Sharing of display content amongst different display device such as laptop, desktop, handheld computers and smart
phones (IPAD) is needed for collaboration. Because of different architectural, sharing of display content is
complicated and the performance is very low. By using special media stream formats, the complexities and
performance bottlenecks is reduced or avoided. Display content is encoded by continuous media, and a media server
processes and distributes customized or fixed rate streams to viewers by streaming it to the media server, and
playing it back on up to 1000 clients distributed over 20 computers. The CPU load is below 40% on the server.

Keywords: Display Technique; Media Streams

INTRODUCTION

The number and diversity of personal computational devices (PCs, laptops, PDAs, etc.) is increasing. The number of
individual users increases. At the same time, more users start using multiple devices. This increased dispersion of
personal devices causes an increasing need for sharing information and computational resources dynamically as
users move between different networked environments where they want both to interact and to make use of available
devices. As a result, there are very light load in the network. However, applications can hardly support different
hardware and software architectures[1]. Graphics library model needs the same graphics libraries in devices. Pixel
model is simple, but it spends more network bandwidth. But there is no general display sharing solution that is
adopted across the range of display devices that we address[2]. Different sharing protocols are applied between
notebooks, display walls, and PDAs. For example, the virtual network computing protocol (VNC) may be used to
share desktop content among PCs; while a display wall typically needs a modified VNC to distribute and share
desktop content across tiles and externally[3,4]. For reasons of compute and power restrictions, PDAs require other
solutions. The scenario also requires that differences in network performance capabilities, display size and
resolution, and graphic processing capabilities are handled. There are many applications with real-time
requirements, such as 3D rendering. VNC achieves poor 3D frame rates, and effectively only supports 2D
applications[5,6]. In summary, achieving seamless sharing of display content across the range of devices ad-dressed
raises several issues for which there is no established answer. The contribution of this work is to develop and
demonstrate the applicability and performance of a new pixel based display sharing system, MultiStream, that uses
media streams as a unified solution to transmit encoded display pixel areas across networks to a wide range of
display devices. MultiStream supports 2D and 3D applications and is independent of any shared applications. Using
well established formats for encoding pixel data also allows our solution to benefit from the availability of a diverse
set of highly tuned media players all platforms.

Zhang Gen-Yuan J. Chem. Pharm. Res., 2013, 5(12):118-122
__

119

Design and Implementation
To support multiple users with a range of different devices and applications, MultiStream must (1) capture visual
content without requiring the shared applications to be modified and (2) provide for heterogeneous clients that may
require different media resolutions and encodings. To support multiple platforms and reduce network bandwidth
usage, MultiStream uses standard media streams as the communication protocol to share content. The
implementation includes three components, shown in Figure 1, that solve each of the problems identified above: (1)
live streaming producers, (2) streaming servers, and (3) live streaming consumers.

Figure 1. MultiStream Implementation

Capturing and Encoding
The goal of the live streaming producer is to produce media stream sources, which includes capturing pixels and
encoding pixels. It requires the independence on shared applications in order to support various applications. The
independence is based on the pixel model because the model reads pixels from frame buffers. Sharpshooter is one
prototype of producers implemented by us, which is developed with visual C++. Sharpshooter supports to share
display of desktop and 3D applications. Sharpshooter employs Windows hooking, which is a technique uses hooks
to make a chain of procedures as an event handler. A hook is a point in the system message handling mechanism.
When Sharpshooter starts, it registers the hook procedure which notifies Sharpshooter before activating, creating,
destroying, minimizing, maximizing, moving, or sizing a window. When the system receives the window messages,
Sharpshooter gains a chance to check whether the hooked application is needed to capture pixels. If Sharpshooter
finds that the application is interesting, it modifies a few of the graphics library functions addresses. These functions
are used to render the graphics into the frame buffer so that Sharpshooter reads the pixels data from the frame buffer
when the hooked application updates the frame buffer each time. Sharpshooter sends the data to one thread, which is
to encode pixels into media streams and send media over network. Sharpshooter uses FFmpeg library to deal with
media/audio encoding.

Scale Media Server
Streaming servers will receive multiple media streams and provide them to consumers over network. At the same
time, streaming servers also need to support some extra functions, such as converting between different resolutions
of various devices and forwarding media streams between streaming servers in order to improve performance. We
implement one scale media server with the FFmpeg library, which is a http media server. One consumer uses http
proto-col to access data. The server also needs to provide flexible media qualities, such as different media formats,

Zhang Gen-Yuan J. Chem. Pharm. Res., 2013, 5(12):118-122
__

120

resolutions and frame rates, in order to address devices polymorphism. When the server finds requests from one
consumer is different in media quality, the server scales the media into the requested media quality and sends the
scaled media to the consumer.

Performance
We have measured the frame rate which the 3DMark application can achieve with and without concurrently
encoding a media of the frames. The media resolution was 320*200, 640*480, 800*600, 1024*768, and 1600*1200.
Each experiment ran for 10 minutes. The result is shown in Figure 2. The five values on the X-axis is the number of
kilobytes per frame for each of the five resolutions, respectively. Each pixel is encoded by four bytes. The y-axis is
the frame rate of 3DMark. When 3DMark runs without encoding a media of its frames, the frame rate drops from
about 50 to 18 with increasing resolution. When encoding is done concurrently with running 3DMark, the frame rate
drops from about 38 to 4.

Figure 2. Performance impacts on producer

Figure 3. CPU Load on the server

Zhang Gen-Yuan J. Chem. Pharm. Res., 2013, 5(12):118-122
__

121

Figure 4. Memory Load on the server

Figure 5. Network bandwidth usage

CONCLUSION

We have documented through a prototype and experiments with it, the performance characteristics of using live
streaming medias to share display content. The obvious advantage of the architecture is to utilize media players as
consumers of live display content since media players are supported by most devices and computers. The live
streaming producer captures stream sources without modifications for the target. The MultiStream system scales
significantly. It uses lower CPU and bandwidth, while supporting at least an order of magnitude more clients. In
addition, the MultiStream architecture supports scalability as several streaming servers can be used. The drawback is
that the encoding of the live media will impact the CPU load of the computer running the encoding software. This
will impact the performance of applications on the computer.

Zhang Gen-Yuan J. Chem. Pharm. Res., 2013, 5(12):118-122
__

122

REFERENCES

[1] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T. Klosowski. Chromium: A
stream processing framework for interactive rendering on clusters. SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, July 2002, pages 693–702.
[2] K. A. Perrine and D. R. Jones. Parallel graphics and interactivity with the scaleable graphics engine. Proceedings
of the 2001 ACM/IEEE conference on Supercomputing, November 2001, pages 5–5.
[3] R. Singh, B. Jeong, L. Renambot, A. Johnson, and J. Leigh. Teravision: a distributed, scalable, high resolution
graphics streaming system..Proceedings of the 2004 IEEE International Conference on Cluster Computing,
September 2004,pages 391–400.
[4] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson, and J. Leigh. High-performance dynamic
graphics streaming for scalable adaptive graphics environment. Proceedings of the 2006 ACM/IEEE conference on
Supercomputing SC ’06, November 2006, page 24.
[5] Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. IEEE Internet Computing, January 1998,
2(1):33–38.
[6] SGI. Opengl vizserver 3.5: Application-transparent remote interactive visualization and collaboration.
http://www.sgi.com.

