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ABSTRACT

Algorithmic trading has become more popular with large ingtitutional investors these days. Complex event
processing is a typical data processing technique which becomes the new spotlight of researches. In order to obtain
semantic data, in this paper, we investigate the definition, detection, and management of events in the architecture
of complex event processing based on algorithmic trading. Especially we propose a corresponding event model and
develop an algorithm that can efficiently detect complex event over event stream.
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INTRODUCTION

Beginning in the late 1990s, the electronificatifrexecution venues enabled market participantsk&ebrokers and
their institutional and retail clients) to remotelgcess electronic order books. Electronic tradéfgrs to the ability
to transmit orders electronically as opposed taelephone, mail, or in person. Since most ordetsday’s financial
markets are transmitted via computer networkstefma is rapidly becoming redundant. Over the pastyears there
has been a rapid increase in the volume of tradove by algorithms. Algorithmic trading (AT) formearkets is
more complex than electronic trading. AT for e-nedskis the use of computer programs to enter tgaoliders with
the computer algorithm deciding on characteristithe order such as the timing, price, or quarntdftthe order and in
many cases initiating the order without human irgation. In AT orders are placed with the algorittunich decides
on various aspects of the order such as order,@ie, timing of purchase etc [1].

Realizing AT for e-markets is a challenging taske®f the biggest challenges is to deal with adangount of data
produced in real-time. This is because e-marketsie a large number of users (possibly from auad the world)
and have been growing in size rapidly over the testade [2]. Other challenges include developinigwsoe
components that interface effectively with the nedrleeds and handling the different types of datenéts used to
encode e-market transactions.

A large class of both well-established and emergimglications can best be described as event [miogethat need
to process massive streams of events in (neantine@l Event processing differs from general dati@asn

management in two major aspects of the query watkldirst, it has a distinct class of queries, Whigarrants
special attention. In complex event processing (CE8ers are interested in finding matches to epatierns, which
are usually sequences of correlated events. Seaor@€EP, there is usually a large number of commirqueries
registered in the event processing systems. Thisinslar to the workload of publish/subscribe sys$e In

comparison, data stream management systems (DSivtSasually less scalable in the number of quecegsable of
supporting only a small number of concurrent qeefe]. CEP provides flexibility in handling data different

formats without a pre-processing step and offeatabdity in handling the increasing amount of diagéng produced
in e-markets.
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The conception of complex event that is typicatpressed by means of patterns that declarativelgi§pthe event
sequences to be matched over a given data sehifigim the research rule processing in activebdaw CEP
Systems (shown in Figure 1) associate a preciserg@s to the information items being processedy thre

notifications of events happened in the externalldvand observed by sources. The CEP engine i®mnsgye for

filtering and combining such notifications to unstand what is happening in terms of higher-levehts (sometimes
also called complex events or situations) to béiadtto sinks which receive output events resgltirom the queries
running on CEP engines and act as event consudiers [

\s

Event stream

/

Complex Event
Processing Engine Event stream

Event Observers Event Consumers
(Sources) (Sinks)

Figurel. TheHigh-level View of a CEP System

ARCHITECTURE OF CEP BASED ON ALGORITHMIC TRADING

The continuous analysis of streaming events isedatiomplex event processing (CEP). CEP allows irgpct
immediately when specific events occur. An everd fgir (p, t) consisting of a payload p that imednformation
about a real or virtual event and a timestamp t ¢pacifies the instant of time when the event oecl Typically,
CEP is used to combine events that occurred ireeifsporder or within a timeframe. For example, application
running on a touch screen device can wait for ge¥ to put exactly three fingers into the uppehtriguarter of the
screen within two seconds (correlation of ever®)a computer game can detect that a player hasgigp some
item at place A and brought it to place B beforpredefined mission timer elapsed (pattern matcbingvents).
Besides correlation and pattern matching, filteramgl aggregating events are other important basie Qperators.
These four basic CEP operators can be combinettailyi to express more complex queries. Becausgyenew
input event can produce new results, all querieparformed continuously in an event-driven manner.

We consider a scenario from the financial computifognain, in which Web services provide live datauib
companies and stock prices. The aim is to combieeirtfformation in an XML document that is activelgdated
when the underlying data change. Figure 2 illustabn a high level, how data and events are red@ind processed.

Stock Company |News Price Status |Max.Bids
%] BIDU Baidu Baid. . 40. 12| t rising|1.8 Mio.
= GO0G Google  |Googl. . 35.35| t rising|2. 1 Mio.
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Figure 2. data and events processed

AT & VWAP

There are various powerful algorithms being usedsdényous organizations like Volume Weighted Averdyice
(VWAP), Time Weighted Average Price (TWAP), Market Close (MOC) and Information shortfall [5]. Of tilese
VWAP has been the most popular model over the y&dhen a bulk order is placed the algorithm brealksto
several smaller orders according to the historitzth as computed to be optimum. Volume curves anergted
which describe the objective buying. In case ofaittay buying if large fluctuations are observeehtlthe curve is
interpolated accordingly to reflect the currentrsg@. Orders are executed according to the volounee as long as
they are within the maximum order size supportedhigyalgorithms. Once the limit is reached, traditaps. Hence
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brokers try to optimize the algorithm to incredse taximum trading limit. It is particularly usefuhen the trader is
not able to gauge the current market trends.

For instance the VWAP of a stock can simply be &ixigld as the average price paid per share duspgdified time,
usually a day. This means that the price of eaistction in the market is weighted by its volume/WAP-trading
the goal is to buy or sell a fixed number of shaaegrice that closely tracks the VWAP. VWAP is esplly
common in automatic trading algorithms, especiailyoptimal trading execution strategies [6]. Thenfala for
calculating VWAP is as follows (1).

Zj Pi *Qi
Pawe =~
szj

where:

PVWAP = Volume-Weighted Average Price

Pj = price of trade |

Qj = quantity of trade |

j = each individual trade that takes place overdhéned period of time, excluding cross trades basgket cross
trades.

@)

Here is an AT & VWAP example.

IF(

MSFT's price moves outside 1% of MSFT-15-minute-VRWA
FOLLOWED-BY{

CSCO' price moves up or down by 0.5%
AND

IBM' price moves up by 3%

OR

MSFT' price moves down by 1%

}

) ALL WITHIN any 120 seconds time period
THEN {

BUY MSFT;

SELL IBM;

}

Complex Eventsand Event Operators

An event is defined to be an instantaneous, at@aippens completely or not at all) occurrence tHrast at a point
in time. It is the smallest, atomic occurrence syatem that may require a response. By atomianean that either
the event happens completely or it does not happeti. A set of attributes can be associated wébh primitive
event. These attributes can carry information witiah be used when a complex event occurs (at retilaie) about
the action that caused the event to occur.

Similar events can be grouped into an event typedives the metadata for events that belong tehee class and
includes the attributes of these events, and antéype is expressed by an event expression. Antemnstance is a
single occurrence of an event of a particular tyfge.consider E1, E2, ..., En as being primitive ewgpés and el,
e2, ..., en some of their respective instances.

Although an event is assumed to instantaneouslyraaica time point, the event might be initiatecagtrior time

point, thus yielding a closed time interval betweka start and end points. That is each eventriostawhether
primitive or complex, has both a start and end staap. Two special event types—START and END—anedd
internally by Synoptic to keep track of initial aterminal events in the traces [7]. A complex evisndefined by

applying an event operator to constituent everdas dhe primitive or other complex events. In theasze of event
operators, several rules are required to spectfgraplex event. Furthermore, some control infornmatieeds to be
made a part of a rule specification (shown in Feggiy.
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Figure 3. The Class Diagram of Events

An event E (either primitive or complex) is a fuoat from the time domain onto the boolean valueagTand False.
E : T— {True, False} given by (2).

T(rue)--- if aneventof typeE occurs
E(t)= at timepoint t 2
F(alse)--- otherwise

We denote the negation of the boolean function E-Bs and~E expresses the non-occurrence of E at a giver poin
in time. The other event operators and the sensoticomplex events formed by these event operateras follows:
Definition 1.0R (V ): Disjunction of two events E1 and E2, denotedVE#2, occurs when E1 occurs or E2 occurs.
This captures those points in time, where at leastof E1 and E2 occurs. Formally (3),

(B, OE)M=E M) TE, () (3)

Definition 2. AND (A ): Conjunction of two events E1 and E2, denoted/EE2, occurs when both E1 and E2
occur, irrespective of their order of occurrenciisTcaptures those points in time where an instah&l occurs, E2
having occurred earlier (or at the same instatitrig), or vice versa. Formally (4),

(B OE)(®) = (()(E, (1) DE, (D) O

(4)
(Ex(t) OE, (1) Ot <1)
Definition 3.Sequence ( ; ): Sequence of two ev&idtand E2, denoted E1;E2, occurs when E2 oceaksded E1
has already occurred. This implies that the timeoodurrence of E1 is guaranteed to be less thartirtee of
occurrence of E2. This sequencing operator look#® occurrence of E1 followed in time by the acence of E2,
i.e. an occurrence of a is followed by an occureenfch; thereby a must end before b starts [8]rfadly (5),

(B E)() = ((L)(EL(t) DE, (1) Oty <t) 5)

For example if the pattern being detected i&(8;B) if an instance of B follows an instance of the sequence
operator will be fired as long as an instance @b€s not occur between them.

Definition 4.WITHIN operator: WITHIN operator allasmthe user to specify not only the order of eveatsicipating
in an operator but also how far they are allowetiedrom each other. For example WITHIN (A;B)1hafies that
an instance of B needs to happen after an instin&éut within 1 hour from it [9].We can expressvale variety of
complex events by these operators. here is anmggshown in Figure 4):

WITHIN ( ( ( StockQuote ( symbol = IBM, price>40)) /A ( StockQuote ( symbol = CSCO, price < 36 ) ) ) ;
StockQuote ( symbol = MSFT, price >30) ) 120s .
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Sequence

WITHIN  120s

StockQuote ( symbol=MSFT,

AD price>30 )

StockQuote ( symbol=IBM, StockQuote ( symbol=CSCO,
price>40 ) price<36 )

Figure4. The Example of a Complex Event

Architecture of CEP Based on AT

Figure 5 shows the architecture of CEP Based on Wi AT rule definitions is done by the Analyzedathe
Constructor, well separated from the runtime tastepresented by the Complex Event Detector, the Bviamager
and the Executor. The following briefly describleege components.

The Analyzer principally analyzes a rule definitiand produces—an intermediate representation afuteenhich is
sent to the constructor, and code corresponditigeteondition and action of the rule.

Event
Analyzer
‘Algorithmic

trading rule o
definition

+buyStock()|
“setPrice()

lRulcs

Stock

Complex Event

management ; ;

rocessing Enginel

system
owlones jec
Event Detector e,
- q
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Figure5. Architecture of CEP Based on AT

The Constructor creates a persistent representattiaries and offers a low level interface well pital for software
integrators and developers who need basic reacdipabilities for supporting some functions of tiistem they want
to implement.

The Event Executor is responsible for processigsrtaking into account coupling modes, rule piiesi It realizes
quite complex execution semantics and this combinill the need for runtime efficiency represents thain
reasons for having implemented the part.

The Event Detector is responsible for detectingjtiie events and for signaling them to the eveanager. The
latter recognizes complex events using a detegtiaph and signals both primitive and complex eventhe Event
Executor.

The event manager has to represent the informgtored from the analysis of event definitions, itgs responsible
for managing the event base which consists of &fihdd events patterns. If the event type is primithe Event
Manger subscribes it to the CEP Engine. If the etgre is complex, the Event Manager subscribesptiaitive

event types composing the event type to the eveteictbr and builds an event tree representing dhgplex event

type.

COMPLEX EVENT DETECTION

Development of algorithms involves a high levekoflaboration with the client as algorithms are nida meet the
trading strategy objectives of the trader. Algarithare meaningless if the strategies don’t perfofire basic
processes involved are: closely interacting withukers to understand their strategies, creatirsdgamnithm based on
the inputs, presenting the client with results aflbtests and analysis using historical tick-leleh. The algorithm is
then released to one or two beta clients, who btginse it on small volumes of live trades. Fromatthoint the
vendor and the client will engage in a period efative feedbacks during which they conduct pasateranalysis to
ensure that the desired results are being achiéVeslfinal product is moved up and down the develept chain
with constant feedback from the end user. Oncedbaired results are obtained the product is fmeali The basic
fact to remember is that the client is just integdsn results and they demand good performanesdspf execution.
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So the manner in which an algorithm is tested errttanner in which it is implemented is rarely ohcern to the
trader.

Event Graph

Events are detected on the server using an evaphgAn event graph which consists of nodes arettid edges is
a graph constructed to reflect the primitive anthplex events declared in an application. Each eigerggpresented
as an event node in the graph, and the event rmodennected by their subscription relationshipsinternal node
of the event graph represents a complex eventadadf node represents a primitive event. Thustieat detector
generates an event tree whose root node reprebentomplex event. An event tree is created foh eanplex
event and these trees are merged to form an evapl dor detecting a set of complex events. This avioid the
detection of common sub-events multiple times thwereducing storage requirements.

For each node in the event graph, there is an esdrsicriber linked list containing all the compkwents that use
this event as its constituent one. An event node @gointer to its subscriber which becomes itenqanode.
Complex events and rules can subscribe any nunfhgtimitive events. These events and rules are kéhper in
event-list or in rule-list of the primitive everteaf nodes pass the primitive events immediateléir parent nodes
as the semantics of all contexts are identicapfonitive events [10].

Whenever a primitive event is detected, it will pmrgate the event notification to its subscribévat ts, its parent
nodes. Event occurrences flow upwards as in afttatacomputation. The parent nodes maintain theurenice of
its constituent events along with their paramests which are stored separately for each contixtosthe node. If
the complex event occurs by the last notificatibis detected and further propogates to its sutbscs. Each time an
event is raised, it will check its "send back" flafjthe "send back" flag is true, the server vgiind this event
notification to a specific application accordingtiis event "site" attribute.

Complex Event Detections

An event detector has a linked list whose noded bok reactive class of an application. Each niodieirn, has two
linked lists, begin list and end list. The listsvbahe subscribers to be notified at the beginmintghe end of these
methods's invocations. For example:

event begin (el) int sellStock(int number);

The primitive event el is bound to a method nanedidstock and the method notifies its occurrencihatbeginning
of its invocation. The event detector detects pimievents produced during an application proogsdi detects
only events for which event type subscription hasrhsubmitted and signals them and their envirotsmenthe
event manager. The general principle for recoggiauents is the following: primitive events areeitted at the
leaves of the event graph. Then these events flpmards following edges through internal nodes whigbresent
component events. When a triggering node is reat¢hedecognized triggering event is signaled et taken into
account for rule execution.

The event subscriber list records complex everdsdte related to this event. Each node has agdimteach of its
subscribers. Thus each subscriber of a global eaettdmes one of its parent nodes that the evenidreuilt from.
By default a subscriber is inserted in the endHigtdoes not specify when to be notified. Thiganization reduces
the search which is based on the class. Howevarclsdor the class is sequential. An event graptoisstructed
while the event trees of complex events in theiagfibn are built by their subscribing relationfieTevent graph is
connected to the reactive class list through piieiteaf nodes. A primitive-leaf node is pointed dynethod which
is belonging to one of the reactive class nodeis ddnnected event graph and the reactive listtitotesa local event
detector for the application. A primitive event stmctor registers itself to the reactive classdsa subscriber of a
method in the list.

Esper Event Programming Language (EPL)
EPL processing by executing continuous queriesvemtestreams is used to define complex events/asing the
concepts known from active databases [11]. Theseydanguages execute operations similar to SQilyding:

SELECT (Selects event types, attributes of an evetite event stream)

WHERE (Define conditions for the events that shdulfill the query)

AGGREGATION (Min, Max and other aggregations knainom SQL are available)

JOIN (Similar to our definition of event correlaticevents can be joined via their attributes)
TIMEWINDOW (The queries are executed against thenevin a specific sliding time window)
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For example:

select avg(price)

from StockTickEvent.win:time(300)

where StockTickEvent.symbol='IBM";
select symbol, avg(price) as averagePrice
from StockTickEvent.win:length(100)
group by symbol;

The first query returns the average price of aMIBtock tick event within the last 300 seconds lvétsliding time
window). The second query returns the average pecsymbol for the last 100 stock ticks.

EVALUATION

In order to obtain an impression of the performaoceur CEP system, we conducted an experimentauation.

Two things are remarkable about our implementatind test environment. Our implementation is sirisihgle-

threaded and consumes only few resources (in thetwase, one CPU core is fully utilized). We aedid
implementing a multi-threaded CEP server, becausdarget use-cases are applications that needdetedeCEP
functionality on the same machine.

We have examined for each basic CEP operator tmb&uof input events being processed per secondal¥dehave
evaluated the scalability of all basic CEP opegatoy running multiple of them at the same time. @st machine
had an Intel i7 CPU with 8 GB main memory. FigGrghows the results on a logarithmic y-axis.

In the experiments, exactly one event was pushedaithinput event streams for every millisecond. &l adjacent
events in an event stream had timestamps thatetiffexactly by one millisecond from each other.réfae, all time
windows of the parameterized test queries werdfilith 500 events on average.

Events/Second
100000

10000 —

1000— -

100 —

10

Figure6. Theresultson alogarithmic y-axis
CONCLUSION

In this paper, we have investigated how eventslefimed, detected and managed and presented agssix@ event
specification language that supports AT. We halwestilated the detection of complex events and megpoan
architecture for its implementation based on ATr @pproach clearly substantiates existing evenedrisystems
with declarative semantics. All the event detect@lgorithms we have developed extend readily whes t
identification of the object is allowed as an esplparameter of a primitive event.
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