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ABSTRACT

MicroRNAs (miRNAs) take part a significant role in cancer development and also act as a vital feature in several
other diseases. Previously a standard classifier method like SYM classifier exploited for selecting promising
miRNAs encompass differential expression in benign and malignant tissue samples. Consequently, the non-
dominated sets of capable miRNAs are combined into a single most promising miRNA subset. On the other hand, the
most important drawback of such learning techniques is slow learning time. With the aim of overcoming these
problems of conventional learning techniques, in this work Extreme Learning Machine classifier is formulated for
deciding promising MiRNAs because it only needs modification of one parameter. The performance has been
demonstrated on four real-life miRNA expression datasets for ELM and the identified miRNA markers are reported.
The experimental results demonstrate that the proposed ELM method outperforms the standard methods.
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INTRODUCTION

MicroRNAs (miRNAs) are a new class of small noniogdregulatory RNAs that are engaged in process of
regulating gene expression at the posttranscrigtimvel. These tiny (18-24 nucleotides in leng#A molecules
standardize several biological processes [1] [RNAs, normally transcribed by RNA polymerase Il arimarily
made as huge RNA precursors, called pri-miRNAsTs&nscription of miRNA genes are regulated by rsezrthe
modulation of numerous transcription factors as tfigrotein-coding genes [6]. miRNAs and theigets seem to
generate a complex regulatory network.. There avghly one third of all human protein-coding gemlest are
controlled by miRNA in accordance with the compigta&l predictions [7]. Several investigations rdedathat
MiRNA expression appeared to be deregulated inetarrsus normal tissue [8] [9].

Since those initial studies, examples of miRNA detation have been revealed in chronic lymphocigikemia

[10], B-cell lymphoma [11] [12] and breast cancé8] [14]. The area of analyzing miRNA microarrayash
obtained much attention in recent times. One ofhtla@r complications in the analysis of miRNA fupeats was the
nonexistence of techniques for quantitative expoesgrofiling. It is feasible to employ the exigginmarker

selection techniques utilized in gene expressiodiss for miRNA expression data also. On the olizerd, miRNA

expression datasets have certain features whichtméguire to be taken into account at the timepmlying such
techniques for miRNA microarray datasets. In mdghe cases, the expression profiles of miRNAs iokth from

microarray experiments are tissue-specific in reatur

In this paper, a multi objective Genetic Algorithrased feature selection approach is implementddetiodes a
possible feature subset in its chromosomes. Nonstlied Sorting Genetic Algorithm-11 (NSGA-II) [151L6], a

well-known multiobjective GA has been exploited t® underlying optimization tool. The fitness ofeth
chromosomes has been assessed by means of Exteamaing Machine (ELM) classifier, and three objexti
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functions have been concurrently optimized. Theedtdje functions taken here are the number of featu
specificity, and sensitivity. The initial objectivis diminished and the other two objectives are imaed.

Consequently, the most promising miRNAs accountédnienaking a distinction among the normal and gradint

classes are obtained by a third measure (calledsune). The performance of this method has beersssd on
openly available miRNA expression datasets of gssithilar tissue samples viz., breast, colon, kjdrieng,

prostate and uterus. The experimental results legiathe effectiveness of the proposed approadtially, the

experiments have been performed for discoveringNiRnarkers that make a distinction among the noramal

malignant samples globally for all categories sbtie samples. Then, the biological significancts thave been
carried out for the selected markers. The reswtvshthat the proposed ELM based classifier is nediective in

terms of its accuracy, Sensitivity, Specificity, 8land F-measure than the existing SVM algorithm.

The rest of the article is organized as followse Tiext section provides related work of cancer-miARNM Section
I, the proposed method is described in detaihviiie data description and preprocessing. Sectioreports the
experimental results. Finally, Section V concluttesarticle.

EXPERIMENTAL SECTION

Datasets and Preprocessing

A publicly available miRNA expression dataset is quiced from the following website:
http://www.broad.mit.edu/cancer/pub/miGCM. The entilataset includes 251 mammalian miRNAs from sdver
cancer categories. From this website, six datagete extracted, includes the samples from breagtinckidney,
lung, prostate, and uterus. Each dataset is destchi the entire 251 miRNAs. Every sample vecfdhe datasets
is standardized to have mean 0 and variance 1.fihakdataset includes two classes, one indicativeg entire
normal samples (32 samples) and another indic#ttie@ntire tumor samples (57 samples). For pretimifiltering

of miRNAs, signal-to-noise ratio (SNR) is employédditially for each miRNA, the SNR is calculatedNB is
defined as,

SNR=@
gy + oy

Wherey; andg;, i € {1,2}, represent the mean and standard deviation of tlfm the equivalent miRNA. It is

to be observed that larger absolute value of SNRafmiRNA points out that the miRNA’s expressiondeis
elevated in one class and small in another. Thezdfus bias is extremely helpful in distinguishitite miRNAs
that are expressed differently in the two clas$emmples. Subsequent to computing the SNR valeadi miRNA
with regard to normal and cancerous classes, tiRN@$ are organized in descending order of the alts@NR
values.

Then selected from the top miRNAs having absollti®R Salues higher than or equal to the mean of lzdbhute
SNR scores. This provides 100 miRNAs which are eygi further. The dataset is then arbitrarily segpee into
training and test sets with nearly equal distrilutiOn the other hand, at the time of segmentit tiraining and
test sets, it is ensured that both training andgessinclude at least one sample from normal @mt@erous samples
of each of the tissue categories. After making $hise 40 training samples and 49 test samples olet@ned. The
feature selection approaches are executed onljheitraining set. Several real-life optimization gdications are
multiobjective in nature. Unlike single objectivetiomization, numerous objectives are concurrenfltimized in
multiobjective optimization (MOO). Among the avdila MOO methods, the Genetic Algorithm (GA) depertde
approaches like Non-dominated Sorting GA-Il (NSGA-Btrength Pareto Evolutionary Algorithm (SPEA)da
SPEA2, Pareto Archived Evolutionary Strategy (PABR) extremely popular. NSGA-II is an enhancemest is
earlier version of NSGA based on computation titme[17], it has been exposed that NSGA-II executetter
compared to several other MOO approaches. Therdfigranultiobjective feature selection method isetakere
which employs NSGA-II as a principal multiobjectiframework. At last, the test set is categorizgdhe trained
ELM on the chosen miRNAs and the classifier periamoe is reported. It is to be pointed out thattdst set is
entirely disjoint with the training set.

An ELM-Wrapped GA based M ultiobjective Featur e Selection

The proposed approach includes two stages. lpitiallmultiobjective feature selection approach \wesp with
ELM classifier is utilized. Then, the chosen miRNiAdlifferent solutions of the non-dominated set amployed to
acquire a single set of most promising miRNAs thake a distinction among the two classes of tisaneples.
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ELM Learning Algorithm

Extreme Learning Machine (ELM) is a Single-hiddeayér Feed Forward Neural Network (SLFNN) which
arbitrarily picks input weights and hidden neurdaskes without any training. The outputs weightsraethodically
decided using the norm least-square solution andré4Benrose inverse of a general linear systensecpuently
letting a considerable training time reduction. Huo#ivation function such as sine, Gaussian, sigaiatc., can be
selected for hidden neuron layer and linear adgtivatunctions for the output neurons. The SLFNNeased here
employs additive neuron design in place of kerrasdl, thus random parameter selection. Investigatione by
Huang et al [18] confirmed that single layer feedsard neural network with arbitrarily assignedubhpveights and
hidden layer biases and with almost any nonzerwadin function can commonly approximate any combius
functions on any input data sets. Huang et al fl@forwarded an alternate approach to train a Wb finding a
least square solutigsi of the linear system. The unique minimum normtlegsiare (LS) solution is modelled as

A =HTT

where HT represents the MP generalized inverse of mdtfixAs investigated by Huang, ELM using such MP

inverse technique tends to acquire excellent gématian performance with significantly increasedining speed.
The summarization of the ELM algorithm can be d®ves:

Provided a training se¥ = {(x,t;)|x, ER,,t; ER,_,i = 1,....,N ] kernel functionf (x), and hidden

neuroniV.

Step 1: Choose appropriate activation functionmmuber of hidden neurorl§ for the particular problem.
Step 2: Allocate arbitrary input weight; and biask; i = 1,2,.., H

Step 3: Compute the output matfikat the hidden LayeH = f - (w@x + b).

Step 4: Compute the output Weigﬁ[ = HTT.

Feature Selection Using NSGA-I|
A NSGA-Il based feature selection approach has Wesnulated that is wrapped with ELM classifier. tinis
approach, every chromosome in the population igar string having two elements. The first elemisnif length

equal to the number of miRNA(g) in the dataset. For a chromosome, bit “1” pointstbat the equivalent miRNA
is selected, and bit “0” points out that the eql@aamiRNA is not selected. The second elemenhefchromosome
is of lengthk and it encodes the value of ELM regularizatiorapaeterC in binary. The decimal value encoded in
bits is mapped in the range [0,100] to acquire peaametei.. Three objective functions are optimized
concurrently. For the purpose of computing the cibje values for a chromosome, initially the subseiRNAS
that are encoded in the chromosome are obtaineusic® this set is indicated.Bslt contains those miRNAs for
which the bit position of the chromosome has vdtlué The samples in the training set are categakrine the
subspace¥ by means of leave-one-out cross validation by Ewlth the intention of finding out the objective
function values equivalent to the chromosome. Basedhe output of the cross validation, the numbletrue
positives (tp), false positives(fp), true negatives(tr) and false negativeftri) are figured out. The first
objective function is the sensitivity which is gives:

_
tp+ fn

f1 = Sensitivity =

The second objectivg, is the specificity which is calculated using toédwing formula:

tn

= Specificity = ———
iz pecificity P

The third objective is the amount of selected fietwvhich is found using:

£ =Isl
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This scheme makes an attempt to find the smalssf miRNAs that accurately classify the benigd enalignant
tissue samples. In the final generation, a set af-dominated solutions each encoding a promisirjufes
(miRNA) subset is obtained. For the purpose of cige, crowded binary tournament selection methsed i
employed. Subsequent to selection, uniform crogsbas been implemented on the chromosomes andbli&tiip
mutation is implemented to produce the next geimraElitism has been integrated to track the theomosomes
found so far. Elitism is carried out by integratipgrent and child population and transferring tbha-dominated
solutions from the integrated population to thetng&neration. The process of fithess computatietecsion,
crossover, and mutation is done for a particulanimer of generations and the final generation géesra set of
non-dominated solutions.

For the purpose of selecting the most promisingufeasubset that give better values for both sppégifand

sensitivity, the solution that offers the most dbes# F-measure value and precision is selecteghétivalue point
outs better balance among sensitivity and spefifamnd consequently point outs better classificatibhe feature
subset encoded in the solution providing the beasieRsure is taken as the final set of miRNA markeubsequent
to selecting the miRNA markers from the training, $ken the test samples are classified in accemlavith the

selected miRNA markers.

RESULTSAND DISCUSSION
In this section, initially the performance of theoposed approach to find out the miRNA markersnralysed.

Subsequently, the biological importance of the aieced miRNA markers is analysed. The proposed NBGA
based feature selection technique and classifitéiexecuted with parameters shown in Table.1.

Table.1.Parametersfor proposed work

Parameter size Origin Offset
Training 283 *251 Micro RNA 0
Validation
Optimization | Genetic with ng=10 np=14p
Selection 151 +- 20
Test 100 +100, 200

The proposed multiobjective feature selection apginois implemented on the pre-processed trainirigsda for

multiple times and for each run, the output sefeafures is gathered. The classifier performaneeeasured using
the following parameters like accuracy, specifickgnsitivity, F- measure. The wrapper ELM-NSG Aaddorithm

creates better accuracy rate, produces high sétsitiess specificity and high F- measure.When tiuenber of

features increases the accuracy of the resultisases

S. No Parameters Valugs
1 Accuracy 84
2 Sensitivity 93
3 Specificity 83
4 Area under curve 0.98
5 F- Measure 91.2

Table 2: Classifier Performance value
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The comparative graph of all the parameters isrgbedow.
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Figure 1(b)

Figure 1(a) and Figure 1(b) gives the graphicatesgntation of classifier performance. The wraffdvl-NSGA-
Il algorithm gives better result than the existmgthods.

CONCLUSION

In this work, a multiobjective GA-based featureestibn approach wrapped with ELM classifier hasnbee
formulated for identification of miIRNA markers fromiRNA expression datasets. This approach optimizes
different performance criteria at the same time evwlves the required subset of features (miRNBEM offers an
improved computational framework for the classifiza. Results on real-life mMiRNA expression datasdtseveral
tissue categories, viz., Breast, Colon, Kidney, d,uRrostate, and Uterus, have been demonstratetheRuore,
several recognized miRNA markers are also fountlaee association with different categories of carae per
current literatures. Based on the experimentalltgsthe proposed approach is high effective than éxisting
approaches in terms of computational complexityis @pproach takes less computational time of 10utes1to
train and test the dataset than the SVM. The tiegiired for the process is 0.9 seconds, In fujpeeformance of
different well-known classifiers, other than ELM,tb be investigated with the use of Swarm intetlice technique.
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