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ABSTRACT 

 

This paper proposed an adaptive neural network controller to maintain the chilled water temperature in heating, 

ventilation and air conditioning(HVAC) systems. The heat transfer behavior between chilled water and refrigerant is 

highly nonlinear. It is significant to design a controller that can handle the nonlinearity of the process. Firstly,by 

analyzing the heat transfer process from mechanism perspective, factors which influence the process have been 

obtained. Then the frequency of the compressor is manipulated to control the chilled water temperature in the outlet 

of the evaporator and uncontrolled variables are taken into the neural network controller. With a novel adaptive law 

for the neural network controller, both the nonlinear phenomenon and disturbance of uncontrolled variables can be 

handled. To further illustrate the performance of the NN controller, experiment was conducted on a pilot HVAC 

system. Then the result was compared with that of conventional PID controller. Real time experiment result showed 

the effectiveness of the adaptive neural network controller. 
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INTRODUCTION 

 

Heating, ventilation and air conditioning system are now widely used in office buildings and other commercial 

facilities to provide comfort indoor air temperature and relative humidity. Being accused of consuming almost half 

of the energy related to buildings according to Romeroet al. [8], HVAC system have attracted numerous attentions to 

improve their energy efficiency. Being responsible for generation of chilled water in HVAC system, the refrigeration 

loop plays an important role in HVAC system and forms roughly 50% of the power consumption of the whole 

system. Hence, a lot of research efforts have been devoted to improving the performance of the temperature 

controller in refrigeration loop. 

 

To achieve better control performance, modeling techniques have been extensively investigated to describe the 

dynamic characteristics of the process. Zhang and Zhang [9] proposed a moving-boundary approach to model the 

transient behavior of evaporators. But such numerical integration methods will sometime fail to achieve adequate 

accuracy under various operating conditions and may even lead to unstable performance. Based on the mass, 

momentum and energy conservation principles, Ding et al.[2] proposed a hybrid method to build a semi-mathematic 

model of process in the evaporator. But this kind of model is established based on steady state values and can hardly 

be used for control purpose.  

 

On the other hand, data driven models and black-box methods have attracted numerous research interests thanks to 

their accuracy and practicability. Russell et al. [7] proposed first and second order linear models to approximate the 

dynamic behavior of heat transfer in evaporator. But the linear models can hardly capture the characteristics of the 
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heat transfer process of over whole operating range. Bechtleret al. [1] used neural network to model the 

vapor-compression process, only input and output data were used to train the neural network, so it could lead to 

unsatisfied result when the operating condition changes. 

 

With effective online weight tuning algorithm, neural networks are integrated into adaptive controller directly. In 

direct neural network(NN) controller, no initial learning phase is required and the controller exhibits 

learning-while-functioning feature. So in this paper, a neural network controller is proposed to handle the nonlinear 

heat transfer between the chilled water and refrigerant. Uncontrolled variables are taken as input vector of NN and 

the nonlinear disturbance is rejected by the controller with an online weight tuning algorithm. The rest of this paper 

can be divided into 4 sections: problem formulation is given in section 2，controller design is described in section 3，
to illustrate the performance of NN controller, experimental result is compared with that of conventional PID 

controller in section 4 and conclusion is made in section 5. 

 

PROBLEM FORMULATION 

System setup 

System under investigation is shown in Fig.1. The refrigeration loop of our HVAC system is a typical 

vapor-compression one consisting of an evaporator, a condenser, an electronic expansion valve and a compressor. 

Connecting to the refrigeration loop is a chilled water loop. Both the compressor and chilled water pump are 

equipped with variable speed drivers so that the flow rate variables in either loop can be adjusted continuously to 

satisfy the demand of varying working condition. To complete a closed control loop, resistance temperature 

detectors(RTD) are installed in the inlet and outlet of the evaporator to measure the temperature of chilled water and 

refrigerant. Both speed signals and temperature signals are transmitted to a computer via RS232 protocol.  

 

Problem formulation 

The heat transfer behavior under investigation involves two loops: the chilled water loop and the refrigerant loop.  

 

 
 

Fig.1: System diagram  

 

In the refrigerant loop, after passing the electronic expansion valve, the refrigerant enters into the evaporator with 

reduced pressure causing it to boil and flash into vapor. Heat is transferred from the chilled water to the refrigerant 

through the metal wall. By the time the vapor refrigerant reaches the outlet of the evaporator, it is superheated to 

several degrees higher than its saturated temperature. 

 

Since there is phase change in refrigerant loop, the energy change can be expressed by Larsen (2006) 

 

( )i oQ m h h 
                                                                         

(1) 

 

where m is the mass flow rate of the refrigerant,
ih  is the enthalpy of refrigerant in the inlet of evaporator and 

oh is 

the enthalpy of refrigerant in the outlet of evaporator. 

 

In the chilled water loop, the heat transfer is a single-phase forced convection process, the energy change in chilled 

water passing the evaporator can be expressed as 

 

( )w w w wi woQ c m T T 
                                                                   

(2) 

 

where
wm is the mass flow rate of chilled water, 

wc is the specific heat of chilled water, 
wiT and

woT are 

temperature of chilled water in the inlet and outlet of evaporator, respectively. 

 

By taking the related variables in (1) and (2), the chilled water temperature in the outlet of evaporator can be 

expressed as: 

 

( , , , , )wo wi w o iT H T m h h m
                                                                

(3) 
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where H  is a nonlinear function. 

 

According to Koury et al. (2001), values of enthalpy and mass flow rate of refrigerant are determined by the speed 

of compressor 
cpF  and opening degree of electronic expansion valve 

vD . And 
wm is solely determined by the 

speed of chilled water pump
pF . So (3) can be rewritten  

 

( , , , )wo wi p cp vT K T F F D
                                                                 

(4) 

 

where K is a nonlinear function. 

Next, for simplicity, define 
woy T as the system output and 

cpu F as the control input. Thereafter, for control 

purpose, a general dynamic model of the process can be presented in discrete-time[3] 

 
( 1) ( ( ),..., ( ), ( 1),..., ( ), ( ))

( ( )) ( ) (5)

y k f y k y k na u k u k nb d k

g d k u k

    

  
where na and nb are output order and input order respectively, [ , , ]wi p vd T F D  denotes the measurable 

disturbance and ( )f  is an unknown nonlinear function, ( )g  is an unknown by always positive nonlinear function 

of d . 
 

CONTROLLER DESIGN 

Rewrite the system dynamic as below 

 

( 1) ( ( )) ( ( )) ( )y k f Y k g d k u k  
                                                        (6) 

 

( ) [ ( ),..., ( ), ( 1),..., ( ), ( )]Y k y k y k na u k u k nb d k   
                                                (7) 

 

Assume the desired chilled water temperature as 
d wody T , define the tracking error 

 

( ) ( ) ( )de k y k y k 
                                                                     

(8) 

 
Thus the dynamic of tracking error can be obtain 

 

( 1) ( ( )) ( 1) ( ( )) ( )de k f Y k y k g d k u k    
                                                

(9) 

 

If function and are known, a desired controller can be designed as 

 
1( ) ( ( )) ( ( 1) ( ( )) ( ))d d cu k g d k y K f Y k k e k   

                                                
(10) 

 

where
ck is a constant parameter such that 1ck  . Therefore, (10) generates  

 

( 1) ( )ce k k e k 
                                                                       

(11) 

 

which is asymptotic stable[10]. However, since ( )f  and ( )g  are unknown, the desired controller cannot be 

implemented directly. 
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Fig.2: Neural network structure 

 

In the meantime, due to its universal approximation ability, two-layer neural network can approximate any smooth 

nonlinear functions[4]. With an effective online weight tuning algorithm, disturbance caused by uncontrolled 

variables can be rejected. So this paper employs an adaptive neural network controller with following form to 

approximate the desired controller of (10) 

 
2( ) ( ) ( ) ( ) sgn( ( ))

ˆ ( ) ( ( ))

t v

T

u k k k e k k e k e k

W k x k

  

 （12）
 

 

where

2 2ˆ ( ) ( ( ))
( ) [1 ]

16 16

T

t

W k x k f
k k


   ,  

vk and  are constant parameters, ˆ ( )TW x is the output of 

neural network show in Fig.2. f is the upper boundary of ( )f  .   

 
With the adaptive law: 

ˆ ˆ( ) ( ( )) ( ) ( ) ( )W k x k e k e k W k     
                                                 

(13) 

 

where and  are constant parameters. It can be proven that the error signal is asymptotic stable. See the proof, 

please refer to Sunan et al, [3] for more details.  

 

To test the performance of adaptive NN controller, experiment will be conducted on a HVAC system. Result will be 

compared with that of conventional PID controller in the next section.  

 

REAL-TIME EXPERIMENT 

Experiment setup 

To illustrate the performance of proposed NN controller, experiment is conducted on a pilot HVAC system and the 

result is compared with that of conventional PID controller. Since the cooling load on the chilled water side is the 

main factor causes nonlinear phenomenon, this paper takes wiT  and wm to test the system. Command following 

test and disturbance rejection test are carried out: 

 

(1) command following test: the desired chilled water temperature in the outlet of evaporator is changed and the 

controller was expected to respond so that the chilled water temperature can be maintained to its new set-point. 

 

(2) disturbance rejection test: keep the set-point unchanged and vary the variables of pF and wiT , then employ the 

controllers to reject the disturbance. 

 

Before real-time experiment, controller parameters should be set. Since the NN controller require the upper 

boundary of ( )f  , step response test is used to estimate f .Finally, control interval is 10 seconds, system order is 

chosen as 1,  , vk f ,number of neurons,  and  are chosen as 0.08, 8, 5, 30, 0.002 and 0.001, 
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respectively.Sigmoid function was used as activation function in NN.For PID controller, the parameters of 
pk , ik  

and dk  are chosen as 0.8, 0.8 and 3. 

 

RESULTS 

 

The experiments were conducted as follows: 

 

(1) Command following test: 
woT was initially maintained at 8 ℃ , at 200s, the desired chilled water 

temperature
dy changed to 7℃, both controllers were implemented to maintain the output to the new set-point. 

 

(2) Disturbance rejection test: at 800s, the value of chilled water pump pF increased from 25Hz to 35Hz to 

simulate a sudden disturbance of chilled water mass flow rate and the desired output was still 7℃. And at 1300s, the 

air flow rate in the CCU increased from 35Hz to 50Hz to simulate a disturbance of 
wiT , both controllers were 

employed to reject the disturbance.  

 

The experiment result is shown in Fig.3, due to the lack of system learning, the NN controller gave a sudden change 

in chilled water temperature. With the online learning algorithm, the NN controller still took shorter time to maintain 

the output to its new set-point than PID controller. In disturbance rejection experiment, the NN controller exhibited 

smaller overshot and quicker convergence than PID controller. 

 
Fig.3:Real-time experiment result 

 

CONCLUSION 

 

An adaptive neural network controller for chilled water temperature was developed to address the unknown dynamic 

of heat transfer between chilled water and refrigerant in evaporator. Real-time experimental result shows the NN 

controller gives better performance than conventional PID controller to maintain the desired chilled water 

temperature in the outlet of evaporator. 
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