Journal of Chemical and Pharmaceutical Research, 2014, 6(3):949-954

Research Article

ISSN : 0975-7384 CODEN(USA) : JCPRC5

Adsorption simulation of sulfur oxide on the surface of metal

Jiang Ruiyu¹, Lan Dengyang¹, Chen Chao¹, Zhu Tao¹, Yang Fanfan¹ and Zhang Jinhong²

¹Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, China

²State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China

ABSTRACT

An appropriate adsorption model was established by using the Canonical Ensemble Monte Carlo method, and several characters of SO_2 , SO_3 on different metal surfaces have been simulated including adsorption site, adsorption micro-configuration and the energy structure. As can be seen from the simulated results, single component of SO_2 adsorbed on MgO(200) crystal surface has better adsorption properties, meanwhile SO_3 molecules mainly adsorbes near the crystal surface of the aluminum atoms. Sulfur dioxide on MgO(200) crystal surface has a great influence on the adsorption site of sulfur trioxide, which makes the spaces between SO_3 and MgO(200) crystal surface shorter.

Key words: Monte Carlo method, sulfuroxide, surface of metal, Adsorption simulation

INTRODUCTION

With the acceleration of the process of industrialization, environmental pollution aggravates. Especially sulphur oxide has become one of the main harmful gas pollution of the environment the present world [1]. To control the air pollution by SO₂ reducing SO₂ emissions, protect the atmospheric environment is one of the important subjects of environmental protection in the current and future quite a long period of time[2-3]. The rapid development of adsorption technology and the development of a new type of adsorbent, adsorption process has become an important chemical process; especially in the gas purification store separation has become more and more widely used. Research on gas adsorption has also become a research hotspot in the field of chemistry and chemical industry [4-7]. Molecular simulation method is a method through the theory and computing technology to simulate the molecular motion, which has wide applications in the fields of computational chemistry materials science computational biology the current [8]. The montecarlo simulation is widely used in study the distribution of the adsorption properties of adsorbent and adsorbate, The grand canonical ensemble montecarlo (GCMC) and configurational bias monte carlo (abbreviated as CBMC) method has been used to the adsorption study all sorts of geometry shape of pore structure, able to accurately predict adsorption energy structure and adsorption density, etc[9-15].

This article uses the grand canonical ensemble monte carlo method to establish the corresponding adsorption model, simulation of SO_2 , SO_3 adsorption behavior in sulfur transfer active MgO, Al_2O_3 crystal. Calculate gas sulphur oxide in the adsorption of different metal active adsorption microcosmic configuration and the nature of the energy structure and so on. In order to research study the oxidation of sulfur oxide gases adsorption performance, understand the adsorption behavior of sulfur oxides in the reaction process from a theoretical perspective, so as to better understand the oxidation of sulfur oxides and separation process, provide the necessary basic data.

2. CRYSTAL MODEL AND CALCULATION METHOD

2.1Crystal model

2.1.1 The MgO style (200) crystal plane

The Materials Studio software package used DMol - 3 optimization module in MgO style crystal; under the menu bar Build Surfaces to cleave surface cutting MgO style (200) crystal plane; constructing the super cell under the symmetry; building vacuum layer under the crystals, thickness of 20 Å.

2.1.2 The Al₂O₃ (211) crystal plane

The Materials Studio software package used DMol-3 optimization module in Al_2O_3 crystal; under the menu bar Build Surfaces to cleave surface cutting Al_2O_3 (211) crystal plane; and the same goes for other operations.

2.2 Force field parameters and calculation methods

Using Materials Studio software locator module calculates the adsorption performance, Select $2 \times 2 \times 2$ cell structure as the computational domain. Choosing grand canonical ensemble monte carlo method in the simulation process. Electrostatic and van de Waals potential energy use the Ewald add and the Atom -based method, the truncated distance is set to 18.5 Å, at the same time spline width and buffer width value using the default values,1 Å and 0.5 Å respectively, force field to choose compass.

RESULTS AND DISCUSSION

3.1 The adsorption simulation of one-component adsorbate on metal crystal

3.1.1 Adsorption potential

Calculating SO₂, SO₃ in MgO style Al₂O₃ (200) (211) crystal plane of adsorption under 973 K. The results are shown in figure 1~4, contrast figure 1~4, visible from the figure 1, single molecule SO₂ adsorption interplanar spacing is shorter, which show that SO₂ in MgO style (200) crystal plane of stronger adsorption performance, while SO₃ in MgO style (200) crystal plane and SO₂, SO₃ in Al₂O₃ (211) crystal plane of adsorption is weak. This can also be concluded that the adsorption of SO₂ in MgO style with chemical adsorption, and the adsorption quantity is greater than the Al₂O₃. This also consistent with the results of magnesium easier as the active center adsorption of SO₂ formation sulfate on trail. Can adsorption of SO₂ in (200), is a surface model with 4 coordination of Mg can empty out a ligand to accept fromlone pair electron from one O atom of SO₂, will eventually SO₂ keyed on the surface. SO₂ molecules parallel to the metal surface no longer in figure 2~4, but happened in different configurations of varying degrees of tilt, and the trend of SO₂ molecules are far away from the metal surface.

s argetAtoms

Figure 1 Localization of sulfur dioxide in MgO(200) surface

Figure 3 Localization of sulfur dioxide in Al₂O₃(211) surface

Figure 2 Localization of sulfur trioxide in MgO(200) surface

Figure 4 Localization of sulfur trioxide in Al₂O₃(211) surface

3.1.2 The micro adsorption configurations

The some microstructure of SO_2 and SO_3 absorption in different crystal surface at 973 K is obtained by simulation calculation, specific results are shown in figure 5~7.Contrast can be seen from the picture: both show the different adsorption behavior, the main adsorption of SO_2 molecules near the crystal magnesium atoms; SO_3 molecular

adsorptions mainly near the crystal aluminum atoms and molecules SO_3 concentrations. This is because SO_2 is v-shaped bending type molecules, formal charge is zero, surrounded by five electron pair, from molecular orbital theory point of view, most of these valence electrons are involved in forming S - O bond, form the SO_2 has a resonance structure, resonance structure is as follows:

Magnesium is linear ion compound structure($Mg \rightarrow O$), and the adsorption of SO_2 the space steric hindrance is small, easy to close to adsorb; and alumina is 6 ligand atomic crystal, covalent bonding, the structure is

are more likely to accept 6 ligand Al vacated a ligand to form

Figure 6 Profile of SO₃ adsorption on MgO(200) at 973 K

Figure 5 Profile of SO₂ adsorption on MgO(200) at 973 K

Figure 7 the adsorption distribution on MgO(200) at 973 K

3.1.3 Adsorption energy

Adsorption energy can refers to the definition of the material changes in the total energy before and after the adsorption, its symbol and size can be said the possibility of adsorption and the degree of adsorption [16]. This article combine with the adsorption model; the adsorption can be defined as follows:

$\Delta E_a = E_{surface,(nsox)} - E_{surface(ref)} - nEso_{x...}$

Which $E_{\text{surface, (nsox)}}$ is the total energy of system when gaseous molecules adsorbed metal surface, $E_{\text{surface(ref)}}$ is the energy of the metal surface, Eso_x is gaseous molecular energy. If calculated Ea < 0, suggests that system energy

down after adsorption, gas is adsorbed, the greater the adsorption to the absolute value, the system more stable; conversely, if the Ea > 0, gas cannot be adsorbed.

Seen from the data in Table 1, the absorbing position of SO_2 on the surfaces of MgO(200) may be unique and this is also the most stable state. The length of Mg-O bond in MgO crystal is 0.2106nm, the distance between Mg-O in MgO (200) and O in the Mg-O is 0.2723nm, and this already approaches bond distance. Table 2-4 shows that different locations have different adsorption configuration, there are a variety of possible adsorbing situations and the adsorption energy is also quite different. Although it has a strong absorption, but exists a larges distance between atoms bond.

adsorption site	adsorption energy	d(Mg-S2)/nm	d(Mg-Os)/nm	d(Mg-O _{crystal})/nm
MgO(200)	-9.66658876	0.2942	0.2723	0.2106

Table	2 A	dsorption	energy	of sulfur	trioxide or	1 MgO(200)) at 973 K
		and peron	<u>5</u> ,	v	va avaature on		,

adsorption site	adsorption energy	d(Mg- S ₃)/nm
MgO(200)-1	-12.68134985	1.7252
MgO(200)-2	-1.01641778	0.7354
MgO(200)-3	-0.77757805	0.7681

Table 3 Adsorption energy of sulfur dioxide on Al₂O₃(211) at 973 K

adsorption site	adsorption energy	d(Al-S2)/nm
Al ₂ O ₃ (2 1 1) - 1	-45.29049086	1.9735
Al ₂ O ₃ (2 1 1) - 2	-43.96735076	1.9708
Al ₂ O ₃ (2 1 1) - 3	-36.94247763	0.3803
Al ₂ O ₃ (2 1 1) - 4	-36.48876860	0.3841
Al ₂ O ₃ (2 1 1) - 5	-35.30953435	0.4141
Al ₂ O ₃ (2 1 1) - 6	-34.46646542	0.3477
Al ₂ O ₃ (2 1 1) - 7	-32.24894514	0.3506
Al ₂ O ₃ (2 1 1) - 8	-23.96456998	0.3455
Al ₂ O ₃ (2 1 1) - 9	-13.97739908	1.8072

Table 4 Adsorption energy of sulfur trioxide on Al₂O₃(211) at 973 K

adsorption site	adsorption energy	d(Al-S ₃)/nm
Al ₂ O ₃ (2 1 1) - 1	-22.55806810	1.9080
Al ₂ O ₃ (2 1 1) - 2	-20.55675593	1.9457
Al ₂ O ₃ (2 1 1) - 3	-20.27778460	1.9488
Al ₂ O ₃ (2 1 1) - 4	-19.38387529	0.3865
Al ₂ O ₃ (2 1 1) - 5	-19.01004025	1.7733
Al ₂ O ₃ (2 1 1) - 6	-18.27553650	1.7615
Al ₂ O ₃ (2 1 1) - 7	-17.97484310	0.4215
Al ₂ O ₃ (2 1 1) - 8	-16.82576608	1.7586
Al ₂ O ₃ (2 1 1) - 9	-12.51363784	0.3771
Al ₂ O ₃ (2 1 1) - 10	-11.77573200	0.3584

3.2 Analog Mixed adsorbate adsorbed on the metal surface of the crystal

3.2.1 Adsorption sites

The adsorption of SO₂-SO₃ binary systems under 973K on different crystal surface were simulated, specific results were shown in Figure 8 ~9. As can be seen from Figure 8, under the same conditions, SO₂ has a great influence on the surface adsorption sites of SO₃ on MgO (200). SO₃ single component adsorption has a large crystal plane distance (d_1 (Mg-S₃) = 1.7252), while at the same time the presence of SO₂ and SO₃, the space between SO₃ and the crystal becomes smaller (d_2 (Mg-S₃) = 0.2763).This is due to its reactivity SO₂, SO₃ molecules synergistic activity and the presence of a large number of bits, these make the gas in the MgO (200) of adsorption is always dominant.

Seen from Figure 9, the single component adsorption and $Al_2O_3(211)$ plane, respectively, $d_1(Al-S_2) = 1.9977$ nm, $d_1(Al-S_3) = 1.9174$ nm; mixing the components adsorbed gas molecules plane pitch are reduced to d2 (Al-S_2) = 1.9561nm, $d_2(Al-S_3) = 1.9099$ nm.

Figure 8 Localization of SO₂-SO₃ in MgO(200) surface

Figure 9 Localization of SO₂-SO₃ in Al₂O₃(211) surface

3.2.2 Adsorption energy

From Table 5 and 6, it is seen the adsorbing situation of the mixing components on the crystal surface may be multifarious, since the adsorption process is exothermic, the adsorption of the different adsorbed are all negative. In the most stable adsorption, adsorption energy homeostasis-component mixing ingredients is smaller than the absolute value of the steady-state value of the adsorption energy, indicating that blending system is more easily absorbed by the crystal surface. The adsorption space of the mixing components on the MgO (200) crystal surface becomes smaller and the space on Al_2O_3 (211) crystal surface keeps constant, indicating that more mixing components can be adsorbed on MgO(200).

adsorption site	adsorption energy	d(Mg-S2)/nm	d(Mg-S3)/nm
MgO (2 0 0) - 1	-24.21442063	0.2947	0.2763
MgO (2 0 0) - 2	-23.71314685	0.2969	0.2757
MgO (2 0 0) - 3	-23.36748871	0.3178	0.2746
MgO (2 0 0) - 4	-23.03189303	0.3657	0.2773
MgO (2 0 0) - 5	-22.37932410	0.2940	1.7253
MgO (2 0 0) - 6	-22.29163621	1.6981	1.7229
MgO (2 0 0) - 7	-21.63134854	1.7052	1.6786

Table 5 Adsorption energy of sulfur dioxide-sulfur trioxide on MgO(200) at 973 K

Table	6 Adso	rptio	n ener	gy of s	ulfur di	ioxide-s	ulfur tı	rioxide o	n Al ₂ O ₃ (2	211) at	973 K
											1

adsorption site	adsorption energy	d(Al- S2)/nm	d(Al- S ₃)/nm
Al ₂ O ₃ (2 1 1) - 1	-68.37162344	1.9561	1.8957
Al ₂ O ₃ (211) - 2	-67.85465540	1.9975	1.9079
Al ₂ O ₃ (211) - 3	-66.60540097	1.9725	1.9074
Al ₂ O ₃ (2 1 1) - 4	-65.80359404	1.9972	1.9100
Al ₂ O ₃ (2 1 1) - 5	-65.55315397	1.8101	1.9521
Al ₂ O ₃ (2 1 1) - 6	-65.21356399	1.8467	1.8437
Al ₂ O ₃ (2 1 1) - 7	-64.70976174	1.8857	1.7750
Al ₂ O ₃ (211) - 8	-64.67136210	1.8868	0.4245
Al ₂ O ₃ (211) - 9	-64.37991767	1.8864	1.7820
Al ₂ O ₃ (2 1 1)- 10	-64.24058451	1.8845	0.3881

CONCLUSION

According to the grand canonical ensemble Monte Carlo method adsorption model established for sulfur oxides in the metal crystal surface adsorption calculation results, compared to SO₃ on MgO (200) crystal face and SO₂, SO₃ on Al₂O₃ (211) crystal suction surface, SO₂ in the single component MgO (200) crystal face is stronger; adsorption of SO₂ concentrate around the magnesium atom and adsorption of SO₃ concentrates around the aluminum atom. The absorbing position of SO₂ on the surfaces of MgO(200) may be unique and this is also the most stable state. The length of Mg-O bond in MgO crystal is 0.2106nm, the distance between Mg-O in MgO (200) and O in the Mg-O is 0.2723nm, and this already approaches bond distance. SO₂ in mixing components has a significant impact on the SO₃ adsorption on MgO(200) surface, distance between SO₃ and the the crystal plane is larger (d1 (Mg-S₃) = 1.7252) and it becomes smaller (d₂ (Mg-S₃) = 0.2763) while the SO₂ and SO₃ are both present.

Acknowledgments

The project was supported by research fund of the National Natural Science Foundation of China (21306162), National Key Technology R&D Program of China (2013BAC13B01) and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201309).

REFERENCES

[1] Xu Ming. Journal of Anhui Normal University (Natural Science), v.24, n.2, pp. 187-189, January, 2001.

[2] Yang Benhong. Journal of Hefei Union University, v.10, n.2, pp.102-106, June, 2000.

[3] Zhang Haiyan and Xu Xing. Nonferrous Metals Design, v.30, n.1, pp.38-42, 2003.

[4] Wang Wenning, Fan Kangnian, Deng Jingfa. ActaChimicaSinica, v.53, pp. 1000-1004, 1995.

[5] Wu Guisheng, Li Yongwang, Xiang Hongwei, Xu Yuanyuan. *Computers and Applied Chemistry*, v.19, n.2, pp. 190-193, January, **2002.**

[6] Lv Linghong. Doctoral dissertation.2005.

[7] Liu Yanjie, Wang Jianping, Sun Xiuyun, Su Zhongmin. *Journal of Northeast Normal University*(*Natural Science Edition*), v.39, n.4, pp. 102-105, December, **2007.**

[8] Li Ming, Zhou Li, Wu Qin. Progress In Chemistry, v.14, n.2, pp.93-97, March, 2002.

[9] Che Xiaoj un, Li Yimei, Zhou Yong, Sun Wei. *Journal of wuhan university of engineering*, v.31, n.2, pp. 12-15, March, **2009.**

[10] Gao Shanbo, Chen Shuangkou, Shi Xiaogang. Computers and Applied Chemistry, v.26, n.2, pp. 150-152, February, 2009.

[11] Tang Wang, Ding Jing, Hu Yukun, Yang Jianping, Gao Xuenong. *Journal of Shaanxi University of Science & Technology(Natural Science Edition)*, v.27, n.3, pp.51-55, June, **2009.**

[12] He Shiquan, Ding Jing, Yin Huibin, Tang Wang, Yang Jianping. *Journal of the Chinese Ceramic Society*, v.38, n.9, pp. 1832-1836, September, **2010**.

[13] Zhao Liang, Chen Yan, Gao Jinsen, Chen Yu. *Journal of Molecular Science*, v.26, n.1, pp. 18-22, February, 2010.

[14] Zhuo Shengchi. Doctoral dissertation. 2010.

[15] Li Baorui.*Master's thesis.* 2011.

[16] Sun. M.; Nelson. A. E.; Adjaye. J. Catalysis today, v.105, n.1, pp. 36-43, 2005.