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ABSTRACT

In this paper, an adaptive fuzzy sliding-mode controller (AF-SMC) based on fractional calculus for uncertain
chaotic nonlinear systems were proposed. Three fuzzy logic systems were designed to approximate the unknown
system functions and the switching term of SMC, respectively. Stability of the closed-loop system was proved and
adaptive laws for the tuned parameters were obtained by using Lyapunov arguments. Numerical simulations are
done on the chaotic nonlinear gyroscope system and results show that the proposed fractional

order controller is effective and feasible.
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INTRODUCTION

Due to its valuable applications in numerous andevdpread fields, fractional calculus has receiv@uasiderable
popularity during past three decades [1]. Accordmghe Poincare-Bendixon theorem [2], an integelenchaotic
nonlinear system must have a minimum order of 3cf@os to appear. However, in fractional systemamare
specifically, non-integer-order systems), it is tiod case. Recently many authors began to invéstiha chaotic
dynamics of fractional order dynamical systems.yTtn@ve found that many systems are known to disfoéagional
order dynamics, For example, it has been shownGhag's circuit of order as low as 2.7 can prodacaghaotic
attractor [3]. Non-autonomous Duffing systems atfional order have been addressed in [4], whesesttown that
a sinusoid ally driven Duffing system of order I¢isan 2 can still behave in a chaotic manner. |h ¥, chaotic
behaviors of the fractional order ‘jerk’ model wsisidied, in which chaotic attractor was obtainethveystem
orders as low as 2.1. In [6], based on the celldaral networks (CNNs) and replaces the traditiiret-order cell
with a non-integer-order one, a simple system shgwhaotic behavior is introduced. More recenthaas control
and synchronization of fractional order system7hHave been investigated. Address the problenhabs control
for autonomous nonlinear chaotic systems of integet fractional orders. Where the nonlinear colgrolvas
designed using the recursive “back-stepping” methbite controller’'s effect is to stabilize the outphaotic
trajectory by driving it to the nearest equilibriymoint in the basin of attractor. In this paper tmatrol of the
fractional order chaotic systems will be studied.

Over the past decade, the variable structure dof\f®C) strategy using the sliding mode concept leesn widely
studied and developed for control and state estimgtroblems since the works of Utkin. SMC is aficednt tool

to control complex high-order dynamic plants opeatunder uncertainty conditions due to its ordeduction
property and low sensitivity to disturbances ananplparameter variations. In SMC, the states ofctiwrolled

system are first guided to reside on a designdfdciin state space and then keeping them theheavghifting law
[8]. The most prominent property of the SMC isiitsensitivity to parameter variations and exteniaturbances.
However, its major drawback in practical applicaids the chattering problem. In order to eliminelattering,
Palm noted the similarity between fuzzy controfied sliding mode controller with a boundary layserd provided
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a fuzzy sliding mode design approach in [9]. Thésign can lead to stable closed-loop system withidavg the
chattering problem in the SMC.

Numerous techniques have been proposed to eliminat@henomenon in SMC, such as saturating apmation,
integral sliding control and boundary layer teclugigTo tackle these difficulties, fuzzy logic calters (FLC) are
often used to deal with the discontinuous sign fiencin the reaching phase of SMC [10]. As well {um fuzzy
logic control (FLC) is a knowledge-based contropmyach which can mimic human experience in contgll
complex systems and has excellent capability td it nonlinear plants [21,22]. This method is@od choice for
inferring the control gains of VSSM controller innd turbines through fuzzy-rules-based inferenceaMvhile, the
modeling error and the uncertain disturbance ofdwpower system can be estimated to obtain the pppte
switch gain through a fuzzy inference system wittgle input and single output. Many new algorithinase been
proposed based on the integration of the fuzzyclagid the SMC [11]. These approaches are similénéraspect
that they directly approximate the sliding modetoonlaw by fuzzy approximations. The main advasetag this
control scheme is its ability to eliminate the ¢dehg using a fuzzy sliding surface in the reaghiondition of the
SMC [12]. Recently, adaptive fuzzy SMC methods als used for this purpose, which is shown to bikequ
effective [13]. In contrast to a conventional feadk control algorithm, there is a fuzzy controlaithm consists of
a set of heuristic decision rules that can be mpred as a non-mathematical control algorithms Hhgorithm
proves to be very effective especially when thecigee model of the system under control is not aidél or
expensive to prepare. This combination (i.e., F-$Nd@vides the mechanism to design robust contwolfer
nonlinear systems with uncertainty.

Unfortunately, there are not many contributionsilatée for the problem of the sliding mode contodlfractional
order systems with uncertainties. In [14], someiltesare obtained without using a fractional slgdmanifold. In
this work, we incorporate adaptive fuzzy SMC appho#o control the nonlinear fractional order gyrhoactic
systems with uncertainties, and new results ontadafuzzy SMC of fractional order systems with artainties are
derived.

[I. SLIDING MODE CONTROLOFFRACTIONAL ORDERCHAOTIC SYSTEMS
A. Mathematical model of fractional order systems
Fractional calculus is a mathematical topic moranttBOO years. It is a generalization of integratamd

differentiation to non-integer order operator, dedoby D, where a and t are the limits of the operatorsThi

operator is a notation for taking both the fracsibimtegral and functional derivative in a singl@ression, and the
simplest and easiest definition is Riemann-Lioevikfinition given as in [15]

1 d" v f(r) 1

DI f(t) = dr (1)
S r(n-g) dt" J -7

wheren is the first integer which is not leasand " is the Gamma function.

Consider a fractional order chaotic dynamic system

x) = £ (x,t) + g (x,t)u+d(t) )
where X =[x, X,,+++, % ]" =[x x@, .-, xX"I[is the state vectorf (x) and g(xt) are smooth and bounded

nonlinear system functions. In this paper, we agstimat botH (x,t) andg(x,t) are unknownu(t) is the control input
andd(t) is the external bounded disturbance, i(ﬁ(t)\ <D.

The control task is to regulate the system outptd follow a smooth command signgd, which is the output
trajectory of a drive system, and all signals ineal must be bounded. Before the controller deglgg,command
vectoryd and the tracking error vecterare firstly defined as following

e(t) = y, (t) = x(t) T N
Ya (t) = [yd , yl(ja) oo yl(j(n—l)a):|

In this paper, we will develop adaptive fuzzy stigimode control of uncertain fractional order cimsystems, i.e.,
the control objective is to force output trajectofithe response system to track output trajeaddbtire drive system.

B. Siding mode controller design
Design of the SMC controller involves two importaatitases. The first phase is to design a suitaldimglsurface

function 0'('[) so that once the system enters the hyper—pm("fé =0, the desired dynamic characteristics can be
realized. The second is to design a proper coetroi(t) so that it can drive the system’s dynamics inte th

designed hyper plane and stay thereafter.
Two type of control law must be derived separatehthose two phases described above. We firshddfie sliding
surfaces in the space of the error states as fellow
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o(t)=—-ke= —(k1e+ kg™ +-o 4 kne(n—l)a) 4)

n .
wherek = [k k,, - ,kn]T and thek; is real and chosen such that the polynorhié) = Zkis('"l)” k. =1, is
i=1
Hurwitz, wheres is a Laplace operator. The tracking problem wal tonsidered as the state error ve@or
remaining on the sliding surfaeg(t) =0 forall t = 0.

In order to ensure that the trajectory of the stater vectore will accross from the approaching phase to the
sliding phase, the sliding mode reaching condition

o(t)o(t) <0 )
must be satisfied. In the sliding mode phase, iamsa(t) =0 and 6 (t) =0. In order to force the system
trajectories to remain in the sliding surface, égeivalent controueq (t) can be derived as follows.

We first assume thdt(x,t) andg(x,t) are known and external disturbance does not exst,d(t) =0. Take the

derivative of the sliding surface, we have
n-1
g (t) ==Y k —e" =ke(t)+ f (x,t)+ g(X,t)ug — vy (6)
i=1
Hence, the equivalent control can be obtained as
T g(x)
On the contrary, in the sliding mode reaching phag¢) # 0, a sliding-mode hitting contrall,,, should be

imposed to guarantee the reaching condition (4usTthe total sliding mode control can be obtaimed

{U(t) = Ugg (1) + U, (1)

(ke(t)+ f(x,t) -y, ) @)

3 ®)
uy(t) = g7 (x,t)7sgn6)
where the sliding mode gaing > 0 andsgn() is the sign function.

C. Adaptive fuzzy diding mode controller design
When design the sliding mode control (8), the swysfanctionsf (x,t) andg(x,t) must be exactly known and the

sliding mode gainj,, should be properly chosen. Unfortunatélifx,t) andg(x,t) are always unknown and there also

exist external disturbance, then the feedback finaton control effort (7) cannot be obtained. &letwo fuzzy
logic systems are adopted to approximate the unkrfanctionsf (x,t) andg(x,t), respectively, as the following

f(x16,)=¢& (x)6,
a(x16,)=¢&" (x)8,
where £(X) is the fuzzy basis function?f and 6’g are the adjustable parameters. In this articleysesl the set of

9)(

fuzzy systems with singleton fuzzifier, producterdnce, centroid defuzzifier, triangular antecedaambership
function and singleton consequent membership fancti
The indirect adaptive controller is given as follow

u(®) = §(x[8, ) = ke®) + y," - f (x|6; ) -u, (10)

Since the switching control effort contains inhereigh-frequency chattering, which is harmful tedtical circuits,
we also adopt a fuzzy logic system to online apinaxe the switch control term, that is

0,(t) =h(o|4,) =1 sgn@’) (11)
When replacing the unknown functioris(xt) and g(xt) with the estimatedf (X|&;). §(x|6,)and the
controller ﬁ , we design the indirect adaptive fuzzy sliding maedntroller as follows

u(t) = Q‘l(x\eg)[ke+ y, ) - f(x\ef)—ﬁ(s)} (12)

where the estimated switching controllgio(t)) = g, (o) , HhT is the adjustable parameter ag(0) is the fuzzy
basis function.
The optimal parameter estimatioﬁ%, 9; and 6’; are defined as
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g, =arg min, ., [sup f X6, ¥ fxt)]

6, =arg min, o, [Suph X6, g Xt )

g =arg minghDQh{SDLép h(o B,)-u, ¢ )],

whereQ;, Qg and Q are constraint sets of suitable boundsn, 6, and 6, respectively.
By using (11), (12), sliding surface equation (dh de rewritten as
(1) = w+[F(x167) = F(x]16,)1+[9(x] ;) = 9(x] 6, Uy 1)

(13)
—h(U|9h)+d(t)
where the minimum approximation erray is defined as
w=al f(x]67) = f(x]6,)]+[9(x|6;) ~ 9(x]6,)lu, (t) (14)

< Whin
It should be noticed that in (14), the estimatianoe betweenh(c|8”) and h(c'|6") is ignored. Since the
switching control effort itself is not a part ofethmodel and is only a designed robust term to detd the
disturbance, the exact value gf(t) is not necessary.
The parameters’ approximation errors are defireed a
6,=6,-6,,6,=0,-6, andg, =6, -6,,
thus, we have

V() = —w- G @xo) - G E(X) - G E(Xu, () —h(a | 85) +d (t)
Il. STABILITY ANALYSIS

In this section, the Lyapunov direct argument ismdd to analysis the global stability of the pregd control
scheme.

Theorem 1: Consider the fractional order chaotic nonlinear system (2) with uncertainties, if the control input is
designed as (12), and the adaptive laws are chosen as

D =r0()&()., (15.0)
@) = g(t)E(X)u(t), (15.b)
D =-ro)g(Ax) (150

where I, >0,i =1~ 4, are the adaptive gains, then, the obtained closed-loop system will have the global stability

and the tracking error will converge to zero asymptotically aswell as all signals involved are uniformly bounded.
Proof: Now consider a non-negative Lyapunov functiwegias follows

V(t) = —a (t)+2—HT9 +— HTH + HTH (16)

l

Noting thatH 9 67 67 and@ «9 and using the control effort (11) and (12), these, obtain the time
derivative of the Lyapunov functlon as follows

V@ = g0\ 172678, + 1,267 61 +1;°gr G

= ow- 06, X0) - 06 £(X) - 06, E(X)u(t) - ah(a‘ﬁh*)

+od (t)+1r72076,) +1,676. () + ;g7 6, (17)

< ow+ 167 (éf( 105(x))+r‘19T( —rzag(x)u(t))

+, 1HT( 30'(0(0)) o(D+n)sgn(o)
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When using the adaptive laws given above and aftaple computation, we can deduce that the follgwin
inequality holds

V() < ow- on, sgn(o) 8)
= ow-|aln,
The inequality (18) indicates th¥(t) holds whena(t) 2 0, thenV; and o (t) will approach to zero in finite

time. If a proper value of the gains are selectiee trajectories of system (2) will reach the slglsurface and the
system motion enters the so-called “sliding modéierefore, when the control law is used in (12} #Hre adaptive

gains are designed as abO\)é(t) <0 is satisfied. Using the corollary of Barbalat's nuima, we have
lim,__|o()F 0. Thus,lim,__ |e(t) |= O, and the control law drives the state error ttajées of the system

in (2) onto the sliding surface (4) and the systestable.
This completes the proof.

[TI. NUMERICAL SIMULATION

In this section, simulations are done on the cbawtinlinear gyroscope system to demonstrate tleeteféness of
our fractional order adaptive fuzzy sliding modeteoller. The control object is to force the respoof the system
to track the trajectory of the drive system. Coesithe fractional order chaotic gyroscope drive a@sponse
systems as follows:

X (t) = x,(t)
%, (t) = —20x, (t)+ 0.1252 ( )= 0.1%° t(} 0%5,t()
-0.05,” ¢ )+ 2sir( 0.%, t()— 4cos(2x) t (HAF x(t (9, Hu(t)+d(t)

where the system uncertainty, for the responseyshe uncertainties nd the external disturbanee a
Af (x,t) =0.1sin(X, * 0.05cosq , d(t) =0.6cosft
while for the drive system
Af (x,t) =0 andu(t) =0.

The control objective is to force the trajectoriéshe response system to track the referencectmjes of the drive

system. The initial states of response and drivstesys are set ag(0) :[1, - ]]T and x(0) :[1.5, O.7$T.

The value of the fractional ordex=0.75, and all design constants are choserkas k, =10, r, =200,

r,=50,r,=2.

The membership functions for the states and thénglifunction are selected as follows:

Hy (%)= PRCRORCE ﬂAZ. (x)= g2, N (x)= g™
— X — o (%+17/8 —(x+2.57 /8

/JAA‘()Q)—E)HS,,UAS,()Q)—G X y'u%‘()g):e(ﬁ Y18,

Wy (%) =€y (x) =g

The membership functions far are selected as follows:
He(0) =1 A+ &), p ()= p (o) =,

-1°/8
f

X +5)218 ,

U (@) =0Ty ()=

If the control input isn’t imposed on the systehe 8-D phase portrait of the drive and responsesysis given in
Figure 1. It is obvious that the tracking performans poor for the lacking of control effort impdsen response
system. Figure 2 and Figure 3 shows the trajectarfehe stategl, yl andx2, y2, respectively. Trajectory of the
sliding surface is given in Figure 4. Figure 5 gitke control effort. From the figures, it can leersthat the initial
tracking error is obvious, when the sliding modews, the tracking error diminishes. The estimatiohf (x; t),
o(x; t) and their corresponding real values are showigare 7 and Figure 8.
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y2 X2 yl x1

Figurel. Phaseportrait of chaotic drive and response systems

-10 )

Figure2. Statetracking of thedrive and response systems
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Figure3. Trajectoriesof thestates X and Y
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Figure4. Trajectoriesof thestates X, and Y,
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Figure5. Control effort
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Figure7. Estimationsof f (x,t) and itsreal values
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Figure 8. Estimationsof g(x,t) and itsreal values

CONCLUSION

Since many systems are known to display fractimrder dynamics, this paper has accordingly propcsed
adaptive fuzzy sliding mode controller based ortfomal calculus for a class of nonlinear chaotistesms. The
scheme integrates fuzzy logic approximation teamigith sliding mode control method, and has beapgsed
for the chaotic systems with unknown parameters extdrnal disturbance. Moreover, by means of Lyapun
arguments, the adaptive laws and the robustlyl&tabf sliding motion have been derived. It hagbeshown that
both the switching surface and the FSMC contrdiere been obtained. Numerical simulation on chawiinear
gyroscope system has been done and results vatfgatorrectness and the effectiveness of the pambscheme.

1732

20



X.Z.Zhang J. Chem. Pharm. Res,, 2014, 6(5):1725-1733

Acknowledgment

The authors are grateful to the anonymous revieamedsto the support of the National Natural Scighoendation
of China (61203019), the Key Project of Chinese ibtig of Education (N0.212122) and the ScientifiesRarch
Fund of Hunan Provincial Education Department (MAQ**).

REFERENCES

[1] Tavazoei M.S.; Haeri M.; Jafari, et. 8EEE Transactions on Industrial Electronics, 2008, 55(11), 4094-4101.

[2] Petras I. Fractional-order chaotic systems, ModelAnalysis and Simulation, Higher Education Pr&ssjing, 2011, 123-
129.

[3] Petras IChaos, Solitons and Fractals, 2008, 38(1), 140-147.

[4] Gao X.; Yu JChaos, Solitons and Fractals, 2005, 24(4), 1125-1133.

[5] Ahmadd W. M. ; Sprott J. Chaos, Solitons and Fractals, 2003, 16(2), 339-351.

[6] Arena, P.; Caponetto R.; Fortuna L., etlalernational Journal of Bifurcation and Chaos, 1998, 8(7), 1527-1539.

[7] Tavazoei M. S.; Haeri M. Physica A: Statistical Manics and its Application2008, 387(1): 57-70.

[8] Zhang X. Z.; Wang Y.N.; Yuan X. F. Internationaudoal of Computers Communications and Con®2010, 5(4), 592-602.
[9] Palm R.Proceedings of IEEE Conference on Fuzzy Systems, 1992, San Diego, pp. 517-526.

[10] Yau H.T.; Chen C.LChaos, Solitons and Fractals, 2006, 30(3), 709-718

[11] Yu X.; Man Z.; Wu B.Fuzzy Set Syst, 1998, 95(3), 295-306.

[12] Zheng F.; Wang Q. G. ; Lee T.HEEE Transactions on Fuzzy System, 2002, 10(6), 686-697.

[13] Wai R. J.; Su K. HIEEE Transactions on Industrial Electronics, 2006, 53(2),569-580.

[14] Hosseninnia S. H.; Ghader R. i.; Ranjbar A., eflalrnal of Computers and Mathematics with Applications, 2010, 59(5),
1637-1643.

[15] Podlubny, I. Fractional Dfferential Equations, Aeadc Press, San DiegtQ99, 86-89.

[16] P. Gahinet, A. Nemirovski, A. J. Laub and M. ChjlaIMI Control Toolbox, Natick, MA: The MathWorks,
1995,

1733



