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ABSTRACT

The recent discovery of dihydrothiophenone derivatives as P. falciparum dihydroorotate dehydrogenase
(PfDHODH) inhibitors spurs quantitative examination of the relationship between the properties of these
compounds and the observed antimalarial activity. Quantitative Structure-Activity Relationship (QSAR) study was
carried out on dihydrothiophenones as inhibitors of PfDHODH in PfDd2 strain using multilinear regression
analysis.The inhibitory activity was shown to be a function of eight DRAGON-type descriptors, namely, HATS7p,
Hy, Morl7e, RDF145m, Glu, HATSBv, H5e, and Mor22m.The model indicates that an electronically dense
molecule with highly electronegative atoms and less number of hydrophilic groups tend to be a potentantiplasmodial
agent.
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INTRODUCTION

Malaria is a disease caused by the infectiofPlabmodium parasites, which require two hosts in its life eyc
mosquito vector and a vertebrate host. Among the Fiasmodium species that caused malar,falciparum is
responsible for the highest death rate and contygits [1].According to World Health Organization @), there
were an estimated 213 million cases of malaria, @000 malaria deaths worldwide in 2011 [1]. Atiraated
3.3 billion people worldwide were at risk of makin the same year.

Although there are existing drugs against maldhi@,emergence of drug-resistant strainBlasmodiumspecies has
posed a serious health problem [2-4]. Resistantrmaditional antimalarial drugs like chloroquinegh sulfadoxine-
pyrimethamine [3], and mefloquine has been a majocern [7].Moreover, recent reports by Hynes amevorkers
[8,9]on artemisinin-based therapy have showed asme parasite clearance times with these agentgysig
development of resistance. In fact, cases of asiemi resistant malaria were already reported ideast two
countries in Asia [1,10,11].

Needless to say, there is apressing need for nassa&s of effective antimalarial agents. In thistlighe WHO
Tropical Diseases Research (WHO-TDR) phenotypicaityeened around 5000 compoundsand identified a
pyrrolone with remarkable activity agairatfalciparum. Further SAR studies on pyrrolone-decorated camgs
have demonstrated potential therapeutic applicatfdhese compounds against malaria [12]. Howeawere effort
must be continually exerted in identifyingkey bieafical processesin host parasites and developingdnegs
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against putative targets to combatdrug resistatanag13-15].

One biochemical pathway that is crucial for thevauad of the parasite is thepyrimidine-based bidbgsis, an
essential process for nucleotide production andl pelliferation [16,17].The key enzyme in this paty is
dihydroorotate dehydrogenase (DHODH), which mediatge fourth and rate-determining step in pyrimadin
biosynthesis [18]. DHODH catalyzes the conversiéribydroorotate (DHO) to orotate (ORO) [18,19].&rP.
falciparum could not produce pyrimidine bases from other watifs, its dihydroorotate dehydrogenase (PfDHODH)
has been regarded as an attractive drug targanfonalarial agents [20,21].

Recently, Xu and coworkers prepared a series ofdddthiophenone derivatives and demonstratedinthétro
inhibitory ability of these compounds against DHODBk well as the chloroquine- sensitive (Pf3D7) and
resistantPfDd2) strains [22]. With these valuable structurévity data at hand, it is very encouraging to bbth a
guantitative model of antiplasmodial activity oe#le dihydrothiophenone variants. In this work, peeformed a
univariate analysis to derive a QSAR model basedD&AGON®-type molecular descriptors [23] in order to
uncover the relevant molecular parameters thaaidiche observed antimalarial activity of dihydroffhenones.

EXPERIMENTAL SECTION

The biological datalCsg) of dihydrothiophenone derivatives included inststudy were obtained from literature
[22]. ICs represents the concentration of the compoungiii that affords 50% of the desired inhibitory adfv
The 3D structures of all compounds were obtaineshgu®nline program CORINA (http://www.molecular-
networks.com).The molecular electrostatic potermialps were generated based on structures optiraizedmi-
empirical AM1 level using Spartan 'f4(Wavefunction, Inc.) software. The molecular dgstors were calculated
using the online program E-Dragon developed by Miano Chemometrics and Todeschini QSAR Research
Group(http://www.vcclab.org/lab/edragon/).  Over 0Q2 classical descriptors were calculated that dexdu
constitutional (OD) properties, 1D descriptor®.(functional groups, atom centered fragments, inféionaand
properties descriptors, 2D descriptois. (topological, molecular walk counts, Burden eigdngsa, eigenvalue
based indices,topological charge indices, conniggtigdge adjacency and 2D autocorrelation desmsptand 3D
descriptors namely, charge, Randic molecular @efilgeometry, RDF, 3D-MoRSE, WHIM, and GETAWAY
descriptors [23].

To establish a predictive structure—activity relaship, a multiple linear regression (MLR) equat@nthe QSAR
model was obtained using the forward stepping pait§24]in SPS$ version 20, which ran on Mac OS 10.8
system. A linear function with parametexsand g; was generated that relates tkiadependent variables or
descriptors X;) to the response variab¥@n the form:

EY|X) = a+ Xy + -+ BiXx (Equation 1)

The quality of thefitted equation was initially éwated by calculating the squared correlation ¢oiefft(r), which
indicates the proportion of the variation in theeedent variable that is explained by the regressiuation [25].
Additionally, the multicollinearity among the prethrs was examined using the bivariate correlagostocol in
SPSS.

Subsequently, the QSAR model was cross-validatéug useave-One-Out (LOO) and Leave-Group-Out (LGO)
methods. In LOO technique [26], a single data vakees removed from the dataset, then a new equatem
derived based on remainimg- 1 dataset, and that equation was employed tagbitheé value of the datum that had
been omitted.This process was repeated for epemjuein the dataset. In the LGO approach [27]raug of 8
compounds (20% ofi) called test set was removed at each instanceaamddel was generated basedmon 8
dataset, also called as training set. After refittitheyvalues for the excluded compounds were calculasatithe
fitted model. This process was repeated untilreltvalues have been calculated. Four more roundalo@ilations
were carried out so that the predicted activitgaéh compound is an average of five values.

The statistical validity of the model was assesaedtl on cross-validated, commonly known asf’. While the

r’measures the goodness-of-fit, ifemeasures the goodness of prediction [25]. Ghealues for the LOO- and
LGO-validated model were calculated from the mddBIESS(prediction error sum of the squares) acogrttin
equations 2 and 3, respectively.

PRESS 2 .
Afoo = 1— oo PRESS = 3121 (Vi — Yprea,i) (Equation 2)
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PRESS 2 .
Afgo =1— S Er— PRESS = Y18H(yi — Yprea,r) (Equation 3)

RESULTS AND DISCUSSION

Most drug discoveries today are outcome of antitexayclic, three-stage process that includesgiesynthesis,
and evaluation [25]. A routine approach in theiglestage is the generation of QSAR models, whalhte the
observed bioactivity to the molecular propertieSuch models are mathematical in nature and aretrootesd
through application of appropriate statistical noeth One commonly employed statistical techniqu€®5AR
studies is multiple linear regression (MLR), a supsed univariate method of analysis. MLR seeksntudel the
relationship between the independent variables doubhr descriptors) and the dependent variable. (
bioactivity)by fitting a linear equation to obsedvdata.

In this study, the text file of molecular descrigt@btained from E-Dragon were exported to Microgoicef’ and
the resulting organized data were imported by SR8%ct as the independent variables. Since higrelation has
been demonstrated between the inhibitory activifgimst PFDHODH and antimalarial potency in both P3(r =
0.87) and PfDd2r(= 0.86) cells [22], only the observed half-maxinrgiibitory concentrationlCsg) against the
PfDd2 strain was chosen to serve as the dependeable. After removing the entries with high andefinitel Cso
values, only 39 dihydrothiophenones/dihydrofurarsomesre left and included in the MLR analysis. Willis
sample sizern( = 39), the rule-of-thumb in model development iszgithat the MLR equation should contain no
more than 8 descriptors.&€ 5 samples per 1 independent variable) [25,28]..Thns8-descriptor QSAR model of
PfDd2 activity was generated by the use of forwsegpping regression method (equation 4).

|Cso = 53.34HATS7p + 5.644Hy— 3.45Morl7e + 6.210RDF 145m
+31.941G1u- 51.306HATS8v — 4.873H5e + 2.13Mor22m — 4.714
n=39, r?=0.910, F=37.885, ¢’ oo = 0.831, %o = 0.849 (Equation 4)

In forward stepping regression, the descriptor fitavides the greatest contribution to the variatiothe response
variable is included first in the MLR model. Thehet descriptors were added next in order of detrgas
importance, that is, according to their ability égplain the variability in the regressand.Equatibishows that
HATS/p, a 3D GETAWAY (GEometry, Topology, and Atom-WeighissemblY) [29] descriptor, has the greatest
contribution to the PfDd2 activity of the compoundwler study. It single-handedly explains onedttgif = 0.33)

of the variation in PfDd2 activity. The positiveefficient of HATS7p indicates that a lower value for this predictor
enhances antiplasmodial activityHATS/p denotes leverage-weighted autocorrelation of lagwv@ighted by
polarizability. It is based on a geometric distantrixH and takes the form:

HATSkw = Z?:l Z;l:l(wlhu)(wjh”)(s(k, dl]) (Equat|0n 5)

wherew, in this case, is a measure of polarizabilityandh;; are diagonal entries corresponding to the atioamsl]
in theH Matrix, andd(k, d;) is Kronecker delta and equals unity if iffeentry in the Topological Level Matrix is
equal tok, and zero otherwise [29]. Equation 5 implies tingdecreasing the polarizabilitw) of the inner atoms
and the overall size of the molecule tkk, value would decreased. enhanced potency).

When the empirical indeidy was combined witht{ATS7p, more than halfré = 0.55) of the variation in activity was
accounted for.Hy is expressed largely in terms of number of hydilagpgroups (-OH, SH, NH) in the molecule.
The QSAR model indicates that a molecule with fetwadrophilic groups tend to be more potent agaifftd2
cells.Moreover, almost two-thirds of the variationy (> = 0.65) was explained by a 3-predictor combinathmat
includedMori17e as third descriptor.3D MoRSE descriptors (3D MalecRepresentation of Structures based on
Electron diffraction), likeMor17e, are derived from IR spectra simulation using aegalized scattering function
[30]. The MoRSE descriptor is defined as follows:

Mor(s,w) = ¥, X5l ww;sin(sry;)/ (smij) (Equation 6)
where, s is a scatteringparametar; is the Euclidean distance between the atdrasdj, andw is an atomic
propertyMor17e represents signal 17, weighted by atomic Sanderlsmtronegativities. The negative coefficient of
Mor17e indicates that highlyelectronegative atoms in demue confer antiplasmodial activity.Taken togettee
more potent antimalarial compound is electronicatiynpact and contains highly electronegative ataiit the
hydrophilicity must be modulated.

A simple comparison of the molecular electrostptitential mapsfor the most active compouf@, (Cso = 0.018
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pUM) and the least potent derivativ4d8, 1Cso = 7.944uM) illustrates outhesis (Figure .. Obviously, compoun80
is less polarizable.e. more dense) and contaihighly polar {.e. moreelectronegative) hydrophilic functionaliti
compared to48. Ourfindings are consistent withu’s [22] observation that a more compact ethoxycarbon
more favored over cyclopropylaminocarb¢, which contains less electronegatide atom (relative to O) and
bulkier alkyl group, at the Besition of the pentagonal cc Furthermore, dihydrothiophenone ringa less potent
backbone compared to dihydrofaome as indicated by ttHATS and 3DMoRSE predictor:

Compound 50 Compound 48
T o ST 5N
h = =0 ! o
LI o g VJ\HJ'--L-{
H ) ' b1
L

A)

B)

Figure 1.Molecular electrostatic potential map of 50 (column 1) and 4&olumn 2). A) Electrostatic potential mapped ordg molecular
density isosurface, B) Electrostatic potential mappd onto bond density isosurface. The red spots ldesthe most ngative portions in the
molecule

Interestingly, the next fivelescriptor addedto the model were all 3D paramet&R3F145m (radial distribution
function descriptor),Glu (WHIM (Weighted Holistic Invariant Molecularjiescripto [31]), HATS8v and H5e
(GETAWAY descriptors), andvior22m (3D-MoRSE descriptor). In combination, these descriptors furred
roughly 26% additional contribution to the variatién the observed PfDd2 activi The coefficients of these
descriptors also suggest that a less massive thmmpk consisting ofhighly electronegative atoms is likely
exhibit greater antimalarial activit

To evaluate the ability of the model for predictilCs, values for a set of molecules, le-one-out (LOO) and
leave-groupsut (LGO) cross validation procedures were cardai (vide supra). The experimental and fdicted
inhibitory activities ofdinydrothiophenor derivatives against PfDd2 strain are présérin Table !

Table 1.Experimental [22and Calculatedl Cso values (iM) for the inhibitory action of dihydrothiophene derivatives against chloroquin-
resistant strain of P. falciparum (PfDd2)

No. | LitID Structur Expt'l ICscagainstPfDd2 | Calc’'dICso(LOO) | Calc'd1Cso(LGO)

1 12 Q % 6.556+ 0.889 6.088 6.035

2 13 \©\ ):; 1.040+0.146 0.997 1.080
3 14 \©\ % 0.697+0.101 0.878 0.907

4| 15 §\©\ /‘jﬁ? 0.767+ 0.367 -0.083 0.195
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36 53 OCI\ % 0.076+ 0.008 -0.520 -0.626
37 54 C(j\ % 0.373+0.105 1.045 0.900

38 | 55 \CL % 1.063+ 0.414 1.214 1.063
39 | 56 \O\ % 0.867+0.179 2.068 1.960

The plot of LOO-predictediCs, values versus the observed activities (Figure darty demonstrates the predict
power of the QSAR moddlhe cros-validated squared correlation coefficienf, of 0.87 indicates highly
remarkable predictive ability, the normally reconmded cut off being only 0.3 for a model to be cdaestd
statistically sound [32]. The’ valueeven surpassed the commonly considemptable value of 0.'in QSAR
studies [33]. Moreover, the scatteplot of the studentized residual (Figure 3) displegndom distribution of erro
around zero and shows no distipettern r? = 0.0001) and outlierg<+3.0).

8.0 - ®

Calculated ICg,
N oA o
[} o [}

o
o
1

-2.0 T T T T T

-2.0 0.0 2.0 4.0 6.0 8.0
Experimental IC;,

Figure 2. Calculatedl Cs values by the use of Leav-One-Out (LOO) crossvalidation approach vs. experimental Cs, data M)
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1.00 - o® ° o
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-2.00 A

-3.00 -
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Figure 3. Studentized residul based on Leave-One-Out method

The results oLGO cross validation was closely consistent with tHDO method, the obtaineg® value of 0.85
being slightlybetter than that of the latter (Figure 4). Thessults tend to corroboratee contention of Maw and
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Hall [34] on the applicability of LGO technique for small @atet. The highly satisfactory statisticr?, o2 oo,
oLco, absence of outlier ardistinct trend in residug) demonstrate the robustnefthe QSAR model construct
from E-Dragon type descriptors.
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Experimental ICg,

>
o

Figure 4. Calculatedl Cs values by the use of Leav-Group-Out (LGO) cross-validation approach vs. experimental Cso data (uM)
CONCLUSION

Quantitative structurectivity relationship (QSAR) study has been perfedm on dihydrothiophenone
derivativeswith antiplasmodial activ. In particular, multinear regressionanalysis was performed on thesdt
composed of over 1200 Bragon type molecular descriptors, which servethdspendent variabl, and inhibitory
activity (1Cso) of 39 compoundsgainst PfDd2 strain of malaria para that served adependent variable. The 8-
variable MLR model unveils thaaside from 1D hydrophilicity descriptoHy), the 3D parameters namely, two
GETAWAY, two 3D-MoRSEone WHIM, and one RDIdescriptors are essentialdicator: for antiplasmodial
activity. The model points to eelatively lighter andless polarizable molecule containing highly electgative
atoms but with less number of hydrophilic grofor greater potency against malagarasiteP. falciparum. These
instructive results encourage the development ot generation antimalarial agents based on dihydamione
backbone.

Acknowledgement
JBB appreciates theawad Sentenaryo (Centennial Award) 2013 given by UP Mandad the computing facilitie
of the University of the Philippines EIDR Progra®@\PAA EIDR 12-001-121102).

REFERENCES

[1] World Health Organization (WHO). World Malaria Report 2012 WHO Press: Geneva, 2013.
http://www.who.int/malaria/publications/world_mairreport_201. (Accessed Noveber 28, 2013

[2] TS Wu;AK Nagle; AChatterje.Curr. Med. Chem.,2011,18(6), 853-871.

[3] JH McKie; KT Douglas; QChan C;et al. J. Med. Chem., 199841(9), 1367-1370.

[4] JC CraftCurr. Opin. Microbiol., 200811(5), 428-433.

[5] PG Bray; RE Martin; L Tilleyet al.Mol. Microbiol.,2005 56(2), 323-333.

[6] JE Hyde Microbes Infect., 200z, 4(2), 165-174.

[7] E Badawey; SM Rida; FSGoliman;T KappeJ. Heterocyclic Chem., 1989 26, 405-40¢.

[8] RK Haynes; B Fugmann;Stette;et al. Angew. Chem. Int. Ed.,2006 45, 2082-2088

[9] RK Haynes; WY Ho; HWChar;et al. Angew. Chem. Int. Ed.,2004 43, 1381-1385.

[10]AM Dondorp; S Yeung; White;et al.Nat. Rev.Microbiol., 20108(4), 272-280.

[11]AM Dondorp; F Nosten; P Yat al.N. Engl. J. Med., 2009361(5), 455-467.

[12] D Murugesan;A Mital;M Kise;et al.J. Med. Chem., 2013 56, 7911-2990.

[13]H Li; J Huang; L Chermt al.J. Med. Chem., 2009 52(15), 4936-4940.

[14] M SchlitzerChemMedChem., 2007, 2, 944-986.

[15] MA Biamonte; J Wanner; K&Ge Roct.Bioorg. Med. Chem. Lett., 2013 23, 2829284

[16]M Loffler; LD Fairbanks; EZameitat;AM Marinaki; HA SimmondsTrendsMol. Med., 200511(9), 430-437.
[17]1P Reyes; PK Rathod; [®hnche;et al. Mol. Biochem. Parasit., 19825(5), 275-290.

[18] RL Fagan; MN Nelson; PNtaganoBA Palfey.Biochemistry,200645(50),149261493..

216



Liza T. Billonesand Junie B. Billones J. Chem. Pharm. Res,, 2014, 6(8):209-217

[19] NA Malmquist; R Guijjar; PK Rathod; MA Phillip8iochemistry, 200847(8), 2466—2475.

[20]IM Coteron; M Marco; J Esquiviasal.J. Med. Chem.,2011], 54(15), 5540-5561.

[21] H Munier-Lehmann; PO Vidalain; F Tangy; YL JanJ. Med. Chem., 2013 56(8), 3148-3167.

[22] M Xu;J Zhu;Y Diaoet al.J. Med. Chem., 2013 56,2975-7924.

[23]R Todeschini; V Consonni.Molecular Descriptorfor Chemoinformatics, WILEY-VCH,Weinheim
(Germany)2009 1257.

[24]MA Efroymson. Multiple Regression Analysis.: lA Ralston;HS Wilf, Eds. Mathematical Methods foigital
Computers, New York: Wiley196Q 191-203.

[25]AR Leach;VJ Gillet. Computational Models. Irn introduction to Cheminformatics, Revised Edition
Springer, The Netherland2007, 75—-97.

[26] G Gong.J Am. Sat. Assoc.,1986 81(393), 108-113.

[27]DW OstenChemom. 1988 2, 39-48.

[28]BG Tabachnick;LS Fidell. Multiple Regressiom: Using Multivariate Statistics. 5th Edition, Ldon:
Pearson/Allyn & Bacor2007, 123.

[29]V Consonni;R Todeschini;M PavdnChem. Inf. Comput. <ci., 2002 42, 682-692.

[30]LJ Soltzberg;CL WilkinsJ. Am. Chem. Soc., 1977, 99, 439-443.

[31]R Todeschini;M Lasagni;E Marengtheory J. Chemometrics, 1994 8, 263-273.

[32]U Norinder. Calculated Molecular Propertiesl aultivariate Statistical Analysis. In: H van deaférbeemd;B
Testa, Eds. Drug Bioavailability. 2nd Edition. VdD. Weinheim: Wiley-VCH Verlag GmbF2009 399.

[33] S WoldQuant. Struct. Act. Relat., 1991, 10(3),191-193.

[34] HH Maw; LH HallJ. Chem. Inf. Comput. <ci.,2001, 41,1248-1254.

217



