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ABSTRACT

In real life, there are a lot of Multi-objective @mization Problem, which is shorted for MOP in thmcess of
people working in production and economic and eegiing activities. These problems are often verpmex and
nonlinear, and even conflicted with each other. Whelving these problems, Multi-objective Optiniaat shorted
for MOO should be done on these issues. For exargula project, people always want to spend mimmnand get
maximum efficiency. And here the cost and effigiesn® two objectives of this project. In 1896, fheench
economist Vilfredo Pareto explained the MOP from plerspective of economics, which is now commafigrred
as Pareto Optimization. In order to optimize theem goal, it is necessary to consider the subgoal
comprehensively which are conflicted with each ntligat is to say that compromise on multiple objess is
needed, so it has multiple solutions. Multi-objeetoptimization algorithm based on Pareto just ubesalgorithm
to find the optimal solution to the multiple objees.
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INTRODUCTION

The basic concepts of multi-objective optimization

Multi objective optimization is usually called Payeoptimization. Vilfredo Pareto first generalizéius concept
from perspective of multi-objective optimizationsAn economist, he changed the uncomparable nijéctive
problem into a single-objective problem in econoigw it has become a complete theory system [1].

Definition 1 Search Space

Search space is also called decision space, whiahspace with all decisive variables. If all de€issariables in
search space are real numbers, it can be refesre@&Rn  (n is the number of the decisive variablesk Tdasible
region of search space S is the zone where altr@dmisconditions are satisfied in search space.

Definition 2 M ulti-objective Optimization Problem, MOP:
Multi-objective problem is composed of, n variablksobjective functions, and n constraint condisioBelow is
function relationship among objective function, swaint condition and decisive variable.

Maximize F(x) = (f1 (x) ,f2 (x) ,f3 (x) ...tk (xD ) (1)
Subject to C(x) (cl (x) ,c2(x),c3(x) ...ck(x))><0 (2

InX= (x1,x2,x3...xn €S)Y = (yl,y2,y3...yp €0, x means search vector, and y means objective vector
which is in the data range of constraint conditdi€ (x> <O.Therefore, the multi-objective problem can bencjeal
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into a mapping process from search vector to obgeector.

Definition 3 Feasible Solution, FS

Feasible solution Xf meets the constraint conditioix) which is Xf={x €S | C(x) <0}. For all Xf in search space,
the graph of Xf can be referred as feasible satutegion. Through objective function mapping toemljve space,
the search vectors of this subspace all belongttoffeasible solution.

Definition 4 Domination Criteria, DC
For two vectors in search space X', X, there lareet situations:

X' > X (X’ controls strictly x) st. F(X) >F (x)
X > X (X' controls x) st Ex) =F 0O
X <X (x" and x are incomparable) st. (®) ~F (x)

Definition 5 Non-dominated Set, NdS
Supposing A&Xfp (A) ={a€ A| a is non-domination vector in A}, pA) is set of non-domination search vectors
in A. In this set, all vectors are not dominatedollyer vectors.

Definition 6 Pareto Optimal Front, POF
The corresponding target vector function f (P (i&)¢alled a non-dominated front-end. For Xf, Xp>f)(is called
Pareto optimal set, while Yp=f (Xp) is called Pareptimal front.

Definition 7 Globle Optimal Solution, GOS and L ocal Optimal Solution, LOS

For search vectok €X;,

(1)The set Ais called optimal solution for loca@rBto, VacA:A x eXf: x> aA||xa|l<cAllf (x) -f (a) ||<5, and the ||.||
is distanceg >0, 8 >0.

(2)The set Ais called the optimal global solutisaEA A xeX x> a.

Par eto Optimization
Definition 1 Control:

A decisive vector can control another decisive @gathich is referred as, if and only ¥;is no worse thai, on alll
targets. That is to sayf, (x) < f, (%), Uk =1,...,n, and at least, is better thanX, on one target, that is to
say, [k=1,...,n.: £ (%)< f, (%) Apparently, one objectivef, vector controls another ond, . If f, is

no worse than f2 on all targets, and at least better on one tatigen, the objective vector control is referred as

f,<f,.

Definition 2 Weak control
A decisive vector weakly dominates another decis®aetor, which can be referred§s< X,: if and only ifX, is no

worse tharx, on all targets, that is to sayf, (X)) < f (%) Ok =1,....,n..

Definition 3: Pareto optimization
One decisive vectorx" [ F is Pareto optimal. If there is no decision vagabt 2 X’ F control it, that is to

say,[K: f.(X) < f.(X).If X is Pareto optimal, objective vectof *(X) is Pareto optima.

Definition 4 Pareto optimal set
All Pareto optimal decisive vectors consist Paggitmal set P, thatis: P”={x’0 F| Ox0 F: x< x}

Definition 5 Pareto optimal front
give an optimal sdPto target vector f (X) and the Pareto , and the Pareto optimal frc|i)i’t_-D [ o is defined
as:pF”={f =(f {x J,f {x Y,....f (x )| x "OP} .The aim to solve the multi-objective problem isetimate

the real Pareto optimal front, then choose the brasie-off result. But is is usually infeasible filod an exact
Pareto optimal front computationally. Therefores H#ttual application is to find an estimate abare® front-end
which must meet the condition that, the distancé#&peto front-end must be minimum distance, andntbee
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dispersed the solutions in Pareto optimal settheebetter; and at last keep the non-dominatedisoluObjectives:
the first goal is to make sure the estimation isesurate as possible, the second goal is to eisate¢he entire
Pareto is covered.

EXPERIMENTAL SECTION

Division of multi-objective evolutionary algorithm

Since Schaffer first proposed multi-objective etiolnary algorithm [1] in 1985, there has come @danumber of
research results about multi-objective evolutioragorithm (MOEAs :Multi-Objective Evolutionary Atgithms).
VanVeldhuizen[2], divided MOEAs into 3 categories:

A priori decision method That decision makers widlmbine multi-objective into one objective functibrst, and
then to search the optimal solution by algoritfithe advantage of this method is convenient andkguaied can
be solved by the traditional genetic algorithm,hwat complete theoretical system. The disadvantagf@somethod
is that a lot of optimal solutions may be lost.

Adaptative method. Decision makers and the algoritlre interactive. Decision makers provide the arimand
secondary relation of the objectives. The algorifimovides better target priority for decision makerhis method
is a better method, and the disadvantage is teaddékign process is relatively complex.

A posteriori decision method. Through calculatihg algorithm can get a better solution set; andigeoa set of
candidate solutions for decision makers to choeserding to the preference information of decisiakers. The
advantage of this method is that the algorithnelatively simple, and the information provided ismmflexible.

According to the characteristics of the above ma@shoabove to divide multi-objective evolutionatgaithm,
most multi-objective evolutionary algorithms areedisa posteriori decision method to solve the nubjective
optimization problem.

Literaturereview of multi-objective evolutionary algorithm
At present, study on multi-objective evolutionatgaithm mainly focus on experiment, and researsloeeated a
variety of multi-objective evolutionary algorithnased on different genetic strategies[3].

Schaffer was first invented VEGA (Vector Evaluateenetic Algorithm, VEGA) [4], after this, the reselaers used
many simple methods to solve the multi-objectivebpem. The most commonly used method is the metfod
linear polymerization equation[5]. In this methadiltiple objective functions are changed into carget and take
it as the fitness. Then the evolutionary algoritterused to get the optimal solution. Nonlinear padyization
method at this time is also very popular[6]. Diagoy order method is often used more. That is ¥ faat select a
target (considered one of the most important) asotstimization object, and does not consider otiigectives.
Then, the second objectives are optimized, anditienized result will not reduce the quality of tfiest results.
This process will continue until all goals are cddted over [7].

David E Gokdberg[8] first used the Pareto genelijprithm theory to summarize these algorithms. Whe
guoted Schaffer's VEGA, Goldberg recommended tonsedominated ranking and selection to keep thection
of evolutionary population toward the Pareto frentd. The basic idea is: find a set of solutionghi population,
and the solution set for the other individual p@pioin is non-dominated. Notably, these solutionslma assigned as
a higher level or to be eliminated in the compeititiThen, the Pareto non-dominated set is assignadollection
of second high. Before finding the right individutie process will continued. Goldberg also recemded the
GA(genetic algorithm) take a certain mechanism revent the whole algorithm set finally gatheredate@ertain
point in front of the Pareto solution. Although thds no specific feasible way to give from Goldhea lot of
multi-objective evolutionary algorithms use thistight in his book.

From 1989 to 1998, there are a large number ofi+objective evolutionary algorithm with the efficiey as
characteristics during this period. The represargstare: Non-dominated Sorting Genetic AlgorittdgGA [9],
Niched-Pareto Genetic Algorithm, NPGA[10], Multi-@btive Algorithm,MOGA[11].

Few people compare the advantages and disadvarteg@sen the multi-objective evolutionary algorithnThe
algorithm mainly emphasizes simplicity, and lack tlorrect method to test them. Because there iestdunction,
people usually validate them just by observatioasthiro Tanaka[12] has done important work, anfirsteput the
user's preference information in the multi-objeetevolutionary algorithm. Because the people inréad world
often don’t need the whole Pareto set but only reeeery small component (probably only one solytidinerefore,
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the users can reduce the search range accordsmnte preference information and can enlarge thaingpart of
the Pareto front-end. Fonseca and Fleming alsepted a method to measure the performance of gugithimin
evolutionary on computation magazine[13]. This rédtldoes not depend on the Pareto front actual @mabin
short, the early algorithm can select the non-dateith individuals (possible, but is not requiredyl &eep the
diversity of population in a certain extent.

Since then, scholars have done a lot of researclthenmulti-objective evolutionary algorithm perfaance.
Multi-objective evolutionary algorithms which emgize the performance began to appear. These dlgarit
appeared with the elitist strategy as a symbdh&lgh many early researchers have consideredtieept of the
elite strategy, the first person who introducedoitmulti-objective evolutionary algorithms is Eckafitzler. He
invented Strength Pareto Evolutionary AlgrotithnRE3\[14]. This is a milestone of multi-objective éwtionary
algorithms. Since SPEA was proposed, most researdiegan to study the external population (saveethe
population). In the multi-objective optimizatiorjtist strategy usually involves the external padidn (or second
population). In this population, non-dominated induals can be preserved with the process of elesluT he basis
of this idea mainly lies: the current populationnwin-dominated individuals with evolution, may mmder be the
non-dominated individuals. Therefore, the simplesthod is to preserve the non-dominated solutionshe
external preservation. If this individual dominatgker individuals, and isn't controlled by the extal population,
the individual will be a part of the external pogiton as elitist.

The the typical algorithms with elitist strategyeaiStrength Pareto Evolutionary Algorithm, SPEA[1Bhreto
Archived, Evolution Strategy, PAES[16], Non-domieétSorting Genetic Algorithm Il, [17] NSGAIIl. Zhedinhua
and Shi Zhongzhi also proposed a DMOEA[17] .

Among these objective evolutionary algorithms, flieess is no longer the only method to change [adjmun
diversity. Researchers not only consider the dlyorlevel, but also the data structure level.

Initialization of chaotic sequence based on Pareto Optimality

In order to overcome the non-uniformrandom gendrétem the traditional method of initialization pbpulation,

real coded chaotic initialization based on Paptimality is used in this paper. Zhang Xi and scanalized real
number coding method [17]and summarized the chenigtits. In general, first, by using real numbeitize initial

population, the encoding process is simple. Segonehl coding can eliminate the cliff problem hetprocess of
"Hamming" of common binary code. Finally, real aaglis easy to control, especially for chaos irig&tion and
chaotic mutation.Population initialization is based the scope of the problem and constraints. Tgerithm

proposed in this paper is based on the triangatarmap:

2p(k)0< p(k)<1/2

plle+1) = {2—2p(k),1/2s p(k) <1

(1)
mapping directly to [0,1], and consists Pareto @ptity chaos initialization.

Par eto Optimality chaotic mutation
The variation based on Pareto Optimality multi-ahijee evolutionary algorithm is achieved by Tentactic

mapping.

Set the mutation step size a, O also has Tent chaotic mapping.

25(k),0< 3(k) < 1/2

olk+1) = {2—25(k)1/25 5(k) <1

)

Chaotic mutation:

Ck:pk+(pt_d<)5k (3)

Here, G, stands for the offspring arfg, stands for parent, ancp;' is the upper bound of the parent component.

p'k is the lower bound.d, is a small step on chaotic sequences.
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RESULTSAND DISCUSSION

Improved computation of crowding distance

In the multi-objective evolutionary algorithm, théjective function is optimized with a plurality.df is an urgent
problem to be solved how to use the objective foncscore of the individual, . In this paper, crowidistance is
used to choose the individual. Suppose a multiativje optimization problem with two objectives ammlpowding
distance of one individual is quadrilateral longtdince and wide range, the crowding distance \ejphesentatives

of individuals here, P[] jiiance Me@NS the crowding distanc®[i].m means the target value of individual:

Pli] gstance = (PLi +1]. f, =P[i =1]. f,) +(P[i +1]. f, = P[i -1].f,) @

Like the original thoughts, first calculate the wding distance of the front of each one individaald then,
calculate the crowding distance in front of theiwidlual.
popsize

d = > Plilysuance/ POPSIZE
= ©)

The distance can be defined as:

di‘ = F)[i]distance/a (6)

Dynamic mutation probability

The mutation operator is the most important parPafeto Optimality evolutionary algorithm. The gomdtation
operator can directly affect the performance ofatgorithm. Therefore, the introduction of dynamariation can
better regulate the mutation (fine turning) roldisI mutation was proposed by Srinvivas. In his oeét® can
change with the fitness of the change. The algorifibllows [15]:

_ k( fmax_ f)I( fmax_ favg)’ f = favg
P K, f<f

avg

(7)

Here,fnax is the maximum fitness value of the populatibis, the individual fitness valué,q is the average fitness
value. The mutation probability is adjustediyy.

This method is a good method of mutation, but duentthe multi-objective evolutionary algorithm &fareto

Optimality, comparison between individuals is notaccordance with the fitness function size to camapbut

according to dominant fashion, so this method da@'tised well in the multi-objective evolutionatgaithm.

This is a dynamic mutation probability based onnatimg distance, described as follows:

) /(davg - dmin
k',d>d,,

min )’ d < davg

k(d-d
p:

(8)

Among themd is the crowding distance needs of individual vasigtd,, is the minimum crowding distance of
population, andd.,g is the average crowding distance of populations Expression means when the crowding
distance is less than the average crowding distaacite according to the dynamic mutation prolitgbiWhen the
crowding distance is greater than the mean crowdisignce, in order to prevent the discrete indisldexcessive,
mutation probability’ should be set appropriately

Mutation probability based on iterative times
Hashem also presented an algorithm which can vgnamic mutation with the running time [16]. Methodf
mutation probability based on iterative times dse proposed in this pape.

Fitness scaling should solve two problems:
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Probability of using chaotic mutation in the egplpcess is very highsing the stochastic property and ergodicity
of chaos mutation and searching in the decisiogesjraa wide range of search can avoid local optsohution.
This can better maintain the diversity of populatio

When the evolutionary algorithm process reachesrtaio stage and the algorithm converge to theagloptimal
solution, with the reason that the individual fésevalues are very close, in order to preventriifividual swings in
larger range , probability of mutation should eeluced and rely on binary crossover slowly closegtmal
Pareto surface.

The mutation algorithm is proposed in this paper:
p=(n-i)/nxk ©)

Heren means the iterative times of the multi-objectivelationary algorithmj means the current iteratidhmeans
the mutation probability parameters.

Evolutionary algorithm of optimal problem based on multi-objective Pareto

The method mentioned in this paper mainly usedoteesthe multi-objective optimization problems. Withaos
initialization, dynamic chaotic mutation, as we#l aew crowding distance computation, the specifjorithm is
described as follows:

Input: Num (size of the initial population)
F (objective function)
T (the largest genetic algebra)

pFD(Pareto optimal front-end)
Output: Nd_Set (non-dominated set)
P" (Pareto optimal set)

The first step, create the initial population: gete B by chaos mutation, t = 0.
The second step, cross selection: use tournangmritaim into the mating pool, its size is equivalEnNum.

The third step, gene operation: cross and dynahao< variation in the mating pool, and the newnidldial enters
the Que_t.

The fourth step, calculating the degree of adagaliy crowding distance: the calculation individeabwding
distance of Por_t and Que_ttwo.

The fifth step, select individual based on the ofiye function: copy Por_t and Que_t to the non-olamt set
Nd_Set. If the number of individuals in the Nd_$egreater than Num, use crowding distance to gortl the

crowding distance low individual access to Porrgtfuntil the scale is equal to Num; if its sizegieater than or
equal to Num, copy Nds crowding distance largeiividdals into the Por_t+1, and so on. What needpap

attention to is, the part whose size is less thamNselect the dominance high part into Por _t.

The sixth step, end: if t <Times, t = t+1, for #econd step, and output the individuals in the dominated set.R
get P"

Summary

This paper first analyzes the significance of optimulti-objective evolutionary algorithms based Pareto. The
Pareto optimization method can select local optinguitkly, and have a good ability of global optiatibn, and
introduce chaotic mutation and Pareto optimizatiwa multi-objective evolutionary algorithm.

Then the thesis introduces Pareto optimal and chhesry and optimization method, and explains some
characteristics of Tent sequences. Through somgsimand argumentation, compared with other cha®guences,
the Tent sequence has better uniformity and ergedich is better to search as the mutation operafor
multi-objective evolutionary algorithm and chadatiarch.

At the end of this paper, multi objective evolutioy algorithms based on Pareto optimal is desigmedcarried out.
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And then analysis is carried out to the practigaditthe algorithm.
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