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ABSTRACT

This study has provided a rational approach for the development of new 3,4-dihydro-2H-benzo[ 1,4] oxazine
derivatives as potential 5-HTg antagonists. The descriptorsidentified in CP-MLR analysis have highlighted the role
of atomic van der Waals volume in terms of BEHV6, path/walk ratio 3 and 4- Randic shape index (PW3 and PW4),
number of rotatable bonds (RBN) and superpendentic index (SPI) to explain the biological actions of 3,4-dihydro-
2H-benzo[ 1,4] oxazine derivatives as potential 5-HTg antagonists. Applicability domain analysis revealed that the
suggested model matches the high quality parameters with good fitting power and the capability of assessing
external data and almost all of the compounds was within the applicability domain of the proposed model and were
evaluated correctly.

Key words: QSAR, 3,4-dihydro-BI-benzo[1,4]oxazines, 5-HTantagonists, binding affinity, combinatorial
protocol in multiple linear regression (CP-MLR).

INTRODUCTION

5-Hydroxytryptamine (5-HT; serotonin) plays a vitale in various central nervous system (CNS) dists [1]. At
present, 14 distinct 5-HT receptor subclasses Heeen reported in the mammalian CNS [2]. On thesbasi
molecular cloning, amino acid sequence, pharmagolagd signal transduction the reported serotosieptors are
grouped into seven subfamilies (5-H;J [3]. In 5-HT receptors, all except the 5-kf€ceptor are G protein-coupled
receptors. The 5-HTreceptor is positively coupled to adenylyl cyclgdes]. It is mainly localized in olfactory
tubercles, striatum, nucleus accumbens, and hippogs. Lower levels have been found in the amygdale,
hypothalamus, substantia nigra, cerebellum, orcateortex. The distribution and high affinity ®HTg receptors
for several tricyclic antipsychotics suggest thiahay be involved in memory disorders, psychosepression and
appetite control [7-9]. Over the past few yearddT; receptor has become an important therapeutic ttgvge
because antagonists of it increase extracellulacextrations of neurotransmitters important forritign. A new
series of 5-HY receptor antagonists, the 3,4-dihydte-Benzo[1l,4]oxazinederivatives have recently been
synthesized and evaluated for binding activities tlee 5-HT6 receptor by Zhao ef. [10]. In view of the
importance of 5-H{ receptor antagonists in the clinical managemergeokral disorders, a quantitative structure-
activity relationship is attempted on the 5-Hfeceptor binding affinity of these benzoxazineidsives. The
present study is aimed at rationalizing the sulpstit variations of these analogues to provide imdigr the future
endeavors.

2422



Brij Kishore Sharma et al J. Chem. Pharm. Res., 2015, 7(3):2422-2433

EXPERIMENTAL SECTION

Chemical structure database and biological activity

This study comprises a chemical structure databfseenty eight 3,4-dihydro+2-benzo[1,4]oxazinelerivatives,
reported by Zhao et al. [10]. The vitro binding activity of these derivatives was detereqdirby displacement of
[*HILSD in HEK293 cells expressing the recombinantman 5-HE receptor. The structural variations and the
binding activities on molar basis of tited compdarhave been given in Table 1. The reported agtolétta has
been used for subsequent QSAR analyses as thensespariables. For the purpose of modeling all 28agues
have been divided into training and test sets.dDthe 28 analogues, one fourth compounds (7) baea placed in
the test set for the validation of derived mode€lse training and test set compounds are also listé@able 1.

Theoretical molecular descriptors

The structures of the compounds under study haga bdeawn in 2D ChemDraw [11]. The drawn structwese
then converted into 3D modules using the defaultvecsion procedure implemented in the CS Chem3aUTlthe
energy of these 3D-structures was minimized in M@PAC module using the AM1 procedure for closedllshe
systems. This will ensure a well defined conformetationship among the compounds of the studythidse energy
minimized structures of respective compounds haenlported to DRAGON software [12] for the compotabf
descriptors for the titled compounds (Table 1).sTébftware offers several hundreds of descriptans fdifferent
perspectives corresponding to 0D-, 1D-, and 2D+@gtec modules. The outlined modules comprised ef t
different classes, namely, the constitutional (CON$he topological (TOPO), the molecular walk ctsu(MwWC),
the BCUT descriptors (BCUT), the Galvez topologichbrge indices (GALVEZ), the 2D autocorrelatio@®{
AUTO), the functional groups (FUNC), the atom-ceatefragments (ACF), the empirical descriptors (Bvihd
the properties describing descriptors (PROP). Baheof these classes the DRAGON software computasge
number of descriptors which are characteristich rholecules under multi-descriptor environment @kefinition
and scope of these descriptor’s classes is givdrle 2. The combinatorial protocol in multipladar regression
(CP-MLR) [13] procedure has been used in the pteserk for developing QSAR models. Before the atiion
of CP-MLR procedure, all those descriptors whiah iatercorrelated beyond 0.90 and showing a cdioel@f less
than 0.1 with the biological endpoints (descriptsr activity, r < 0.1) were excluded. This has redutesl total
dataset of the compounds from 473 to 109 descs@srelevant ones for the binding activity. A bdescription of
the computational procedure is given below.

Model development

The CP-MLR is a ‘filter’ based variable selectioropedure for model development in QSAR studies .[1i3]
procedural aspects and implementation are discussaame of our recent publications [14-18]. Itahxes selected
subset regressions. In this procedure a combimdtsiriategy with appropriately placed ‘filters’ hlasen interfaced
with MLR to result in the extraction of diverse wtture-activity models, each having unique comixmabf
descriptors from the dataset under study. In this,contents and number of variables to be evaluate mixed
according to the predefined confines. Here théeffd are significance evaluators of the variabtesegression at
different stages of model development. Of thedir{ll is set in terms of inter-parameter correlatcutoff criteria
for variables to stay as a subset (filter-1, ddfsalue 0.3 and upper limi 0.79). In this, if two variables are
correlated higher than a predefined cutoff value thspective variable combination is forbidden avill be
rejected. The second filter is in terms of t-valwégegression coefficients of variables associatéth a subset
(filter-2, default value 2.0). Here, if the ratibregression coefficient and associated standaot ef any variable is
less than a predefined cutoff value then the viigbmbination will be rejected. Since successigditeons of
variables to multiple regression equation will ease successive multiple correlation coefficienvétues, square-
root of adjusted multiple correlation coefficierftregression equation, r-bar, has been used to amrtpe internal
explanatory power of models with different numbérvariables. Accordingly, a filter has been setténms of
predefined threshold level of r-bar (filter-3, defavalue 0.71) to decide the variables’ ‘merit’ the model
formation. Finally, to exclude false or artificiebrrelations, the external consistency of the Ve of the model
have been addressed in terms of cross-validafedr RY criteria from the leave-one-out (LOO) cross-validat
procedure as default option (filter-4, default #iveld value 0.3 @ < 1.0). All these filters make the variable
selection process efficient and lead to uniquetswiuIn order to collect the descriptors with héghinformation
content and explanatory power, the threshold térfiB was successively incremented with increasimgber of
descriptors (per equation) by considering the rvzdne of the preceding optimum model as the newstiold for
next generation.
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M odel validation

In this study, the data set is divided into tragniset for model development and test set for eatgorediction.
Goodness of fit of the models was assessed by ekagnthe multiple correlation coefficient (r), tlstandard
deviation (s), the fatio between the variances of calculated and @bdeactivities (F). A number of additional
statistical parameters such as the Akaike’s inftionacriterion, AIC [19, 20], the Kubinyi functiorkIT [21, 22],
and the Friedman'’s lack of fit, LOF [23], (Egs. LHave also been derived to evaluate the best model

aic = RS> (M p) (1)
(n-p)
_ r’x(n-k-1) @)
(n+k*)x(1-r*)
RS
oF " ®
{1_ k(d+1)}
n

where, RSS is the sum of the squared differencgelea the observed and the estimated activity galkés the

number of variables in the model, p' is the numifeadjustable parameters in the model, and d isstheothing

parameter. The AIC takes into account the statistjoodness of fit and the number of parametershaee to be
estimated to achieve that degree of fit. The Fldsealy related to the F-value (Fisher ratio), wasvpd to be a
useful parameter for assessing the quality of theets. The main disadvantage of the F-value isétssitivity to

changes in k (the number of variables in the eqonatwhich describe the model), if k is small, atsl lower

sensitivity if k is large. The FIT criterion hadav sensitivity toward changes in k-values, as lasghey are small
numbers, and a substantially increasing sensitfeityarge k-values. The model that produces theimim value

of AIC and the highest value of FIT is consideredeptially the most useful and the best. The LOkegainto

account the number of terms used in the equatidrisanot biased, as are other indicators, towaigklaumbers of
parameters. A minimum LOF value infers that thevadel model is statistically sound.

The internal validation of derived model was asaieed through the cross-validated index, ffom leave-one-out
and leave-five-out procedures. The LOO method eseat number of modified data sets by taking away on
compound from the parent data set in such a wayedheh observation has been removed once only. ®hen
model is developed for each reduced data set,tencesponse values of the deleted observationzredécted from
these models. The squared differences betweencpeddind actual values are added to give the piesliesidual
sum of squares, PRESS. In this way, PRESS willaionbne contribution from each observation. Thessro
validated G,oo value may further be calculated as

2 _1_PRES
Qloo =1 /%SY (4)

where, SSY represents the variance of the obsewtdties of molecules around the mean valueeavé-five-out
procedure, a group of five compounds is randomiyt kautside the analysis each time in such a watydhahe

compounds, for once, become the part of the piigdigroups. A value greater than 0.5 dfifdex hints toward a
reasonable robust model.

The external validation or predictive power of ded model is based on test set compounds. The edjuar
correlation coefficient between the observed anetisted values of compounds from test s&tqr has been
calculated as

2
Z (YPred(Test) (Tes% (5)
T t 2
* Z (Y Test) (Trammg)

2424



Brij Kishore Sharma et al J. Chem. Pharm. Res., 2015, 7(3):2422-2433

where, Yereqresy@nd Yresy indicate predicted and observed activity valuespectively of the test-set compounds,
andYrraining indicate mean activity value of the training 38t is the squared correlation coefficient between the

observed and predicted data of the test-set. Aevgteater than 0.5 ofrte; Suggests that the model obtained from
training set has a reliable predictive power.

Y-randomization

Chance correlations, if any, associated with theMLIR models were recognized in randomization tegt 25] by
repeated scrambling of the biological response. ddta sets with scrambled response vector have reassessed
by multiple regression analysis (MRA). The resuytiregression equations, if any, with correlatioreftioients
better than or equal to the one correspondingeaitiscrambled response data were counted. Everglrhad been
subjected to 100 such simulation runs. This has lised as a measure to express the percent chamekation of
the model under scrutiny.

Applicability domain

The utility of a QSAR model is based on its acceiatediction ability for new compounds. A modelvaid only
within its training domain, and new compounds mastassessed as belonging to the domain before ddelris
applied. The applicability domain is assessed lyl¢hverage values for each compound [26]. A Wilkgpiot (the
plot of standardized residuals versus leverageegafy) can then be used for an immediate and simplehigap
detection of both the response outliers (Y outliersd structurally influential chemicals (X outkgin the model. In
this plot, the applicability domain is establishiegide a squared area withix éstandard deviations) and a leverage
thresholdh*. The thresholdh* is generally fixed at 3+1)/n (n is the number of training-set compounds, kiglthe
number of model parameters) whereas 2 or 3. Prediction must be considered unrelidblecompounds with a
high leverage valueh(> h*). On the other hand, when the leverage value adrapound is lower than the threshold
value, the probability of accordance between ptedi@and observed values is as high as that fotréiring set
compounds.

RESULTSAND DISCUSSION

QSAR results

In multi-descriptor class environment, exploring fiest model equation(s) along the descriptor gheesides an
opportunity to unravel the phenomenon under ingagitin. In other words, the concepts embeddedem#scriptor
classes relate the biological actions revealechbycompounds. For the purpose of modeling studygriipounds
have been included in the test set for the validatif the models derived from 21 training set coomats. A total

number of 109 significant descriptors from 0D-, Jdhd 2D-classes have been subjected to CP-MLR sinadgth

default filters’ set in it. Statistical models two and three descriptor(s) have been derived sgoady to achieve
the best relationship correlating 5-giBinding affinity. These models (with 109 descrigjowere identified in CP-
MLR by successively incrementing the filter-3 witicreasing number of descriptors (per equation}. this the

optimum r-bar value of the preceding level modet ha@en used as the new threshold of filter-3 fer tlext

generation. A total number of 70 models in threscdptors were obtained. These models shared 5&iptss.

These descriptors along with their physical meanawgrage regression coefficients and total inaciderare listed
in Table 3.

The selected models in three descriptors are diedmw.

pK; = 5.484(0.413)S2K +3.005(0.289)PW4 -3.337(0.318)BE& +3.943
n=21,r=0.967,s=0.294, F = 81.586,43 = 0.913, B 5o = 0.922,

rranay(sd) = 0.165(0.120), AIC = 0.127, FIT = 8.159, LOB.137, fres= 0.637 (6)

pK; = 5.827(0.564)S2K +3.086(0.424)PW3 -2.926(0.42HBE +3.483

n=21,r=0.940, s = 0.392, F = 43.30%,43 = 0.764, G50 = 0.737,

Frana(sd) = 0.164(0.112), AIC = 0.226, FIT = 4.330, LOB.244, fres= 0.542 (7)
pK; = -2.487(0.349)SPI +5.243(0.555)S2K -2.566(0.4FDB6 +6.237
n=21,r=0.938,s=0.398, F = 41.864,43 = 0.835, B 5, = 0.825,

rranav(Sd) = 0.168(0.113), AIC = 0.233, FIT = 4.186, L&B.251, fres= 0.627 (8)

pK; = -2.649(0.428)RBN +5.179(0.614)S2K -2.669(0.4TE)B6 +6.398

2425



Brij Kishore Sharma et al J. Chem. Pharm. Res., 2015, 7(3):2422-2433

n=21,r=0.924, s = 0.440, F = 33.058,43 = 0.799, B 5o = 0.795,
ranay(sd) = 0.146(0.110), AIC = 0.285, FIT = 3.305, LEPB.308, fres= 0.502 (9)

In above regression equations, the values givethénparentheses are the standard errors of thessign
coefficients. The Faav(sd) is the mean random squared multiple correlatioefficient of the regressions in the
activity (Y) randomization study with its standatdviation from 100 simulations. In the randomizatsiudy (100
simulations per model), none of the identified medwms shown any chance correlation. The signeeofégression
coefficients suggest the direction of influenceegplanatory variables in the models.

The participated descriptors S2K, PW3, PW4 and&@®@lfrom the TOPO class of Dragon descriptors. TB®O
class descriptors are based on a graph representstithe molecule and are numerical quantifiersnofecular
topology obtained by the application of algebrapemtors to matrices representing molecular grapitswhose
values are independent of vertex numbering or liapelThey can be sensitive to one or more strutfeedures of
the molecule such as size, shape, symmetry, bragdmd cyclicity and can also encode chemical médion
concerning atom type and bond multiplicity. Theatggor S2K is 2-path Kier alpha-modified shapeer@nd SPI
is super pendentic index. PW3 (path/walk ratio 8)i #W4 (path/walk ratio 4) are Randic’s moleculhape
descriptor.

The descriptors S2K, PW3 and PW4 contributed pagitito the activity whereas SPI negatively to Hutivity.
Thus, suggesting that a higher positive values-péth Kier alpha-modified shape index (S2K) and diea shape
indices (PW3 and PW4) would be beneficiary to thévay. On the other hand, a lower value of supendentic
index (SPI) would augment the activity.

The descriptor BEHV6, in above models, is lone esentative of BCUT class of Dragon descriptors. BR&JT

descriptors are the first 8 highest and the loveesstolute eigenvalues, BEHwk and BELwk, respectividy the

modified Burden adjacency matrix. Here w refershi atomic property and k to the eigenvalue rarile drdered
sequence of the highest and the lowest eigenvaéflext upon the relevant aspects of molecularcttre, useful
for similarity searching. The negative contributimihdescriptor BEHvV6 to the activity advocates thdtigher value
of this descriptor would be detrimental to the atyi

The other participated descriptor RBN, belong toNSD class of Dragon descriptors. The constitutioriaks
descriptors are based on simple constitutionalsfamtd are independent from molecular connectivitgd a
conformations. Descriptor RBN represents the nurobeotatable bonds in a molecular structure. Tagative sign
of regression coefficient of this descriptor suggeabat less number of rotatable bonds in a modecsiructure
would be favorable to the activity.

These models have accounted for up to 93.51 peveeiaince in the observed activities. The valuestr than 0.5
of Q%index is in accordance to a reasonable robust Q&#fRel. The pKvalues of training set compounds
calculated using Equations (6) to (9) have beeluded in Table 1. These models are validated witkxernal test
set of seven compounds listed in Table 1. The ptiedis of the test set compounds based on exteatidation are
found to be satisfactory as reflected in the tesPsr’res) Values and the predicted activity values are sported
in Table 1. The plot showing goodness of fit betwebserved and calculated activities for the trajrand test set
compounds is given in Figure 1.

Applicability domain

On analyzing the model applicability domain (AD)thre Williams plot (Fig. 2) of the model based be twwhole
data set (Table 4), it has appeared that noneeotdimpounds were identified as an obvious outbeittie 5-HFE
binding affinity if the limit of normal values fdhe Y outliers (response outliers) was set as @&b@srd deviation)
units. Two compounds (23 and 28) were found to Heverage lf) values greater than the threshold leverabes (
and may be treated as structurally influential cicafa. For both the training set and test set,stiggested model
matches the high quality parameters with goodnfittpower and the capability of assessing exterrah.d
Furthermore, almost all of the compounds was withi@ applicability domain of the proposed model avete
evaluated correctly.
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Table 1: Structures, observed and modeled 5-HTs binding affinities 3,4-dihydr o-2H-benzo[1,4] oxazines.
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|
23 | H N S HIH

24 | Me HNJ\‘ H/H

HN ’\
25 Cl &/ H/H
s

6.2 6.24 6.57 6.21 6.07

I

Q

7.4 7.58 7.97 7.88 7.82

8.4 8.49 8.30 9.16 9.19

teSteStetokaity

HN
26 F O\;‘ Me/Me 8.4 8.34 7.93 8.72 8.56
HN
27 F Me/Me 8.3 8.52 8.30 8.13 8.95
H
N
28 H [ \(§ Me/Me 6.9 7.05 7.17 7.11 6.98
/N\

Taken from reference [10}{Compounds included in test set.

Table2: Descriptor classes” used along with their definition and scope for modeling the binding affinity of 3,4-dihydro-2H-
benzo[1,4] oxazine derivatives.

Descriptor class (acronyms) Definition and scope
(ng;tgt;onal Dimensionless or 0D descriptors; independent frasteoular connectivity and conformations
;I'Toopglgg)jlcal 2D-descriptor from molecular graphs and independenformations

Molecular walk counts
(MWC)

Modified Burden eigenvalues 2D-descriptors representing positive and negatiyerwalues of the adjacency matrix, weights thealial
(BCUT) elements and atoms

2D-descriptors representing self-returning walksnts of different lengths

Galvez = topological  charge 2D-descriptors representing the first 10 eigenvabfecorrected adjacency matrix

indices (GALVEZ)
2D-autocorrelations Molecular descriptors calculated from the molecgi@phs by summing the products of atom weighthef
(2D-AUTO) terminal atoms of all the paths of the considertth ength (the lag)

?;Sﬁgnal groups Molecular descriptors based on the counting otthemical functional groups

Atom centered fragments Molecular descriptors based on the counting ofdtd@n centered fragments, as defined by Ghose-Grippe

(ACF)

Empirical 1D-descriptors represent the counts of non-singledb, hydrophilic groups and ratio of the number of
(EMP) aromatic bonds and total bonds in an H-depleteccudé

Properties . . .

(PROP) 1D-descriptors representing molecular properties wilecule

*Reference [12]
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Table 3: Descriptors® identified for modeling the binding affinity of 3,4-dihydr o-2H-benzo[1,4]oxazine derivatives along with the aver age
regression coefficient®, standar d deviation and the total incidence.

Descriptor | Avg reg coeff(sd) total Descriptor | Avg reg coeff(sd) total Descriptor | Avg reg coeff(sd) total
incidence incidence incidence
MW 4.917(0.291)2 Sv 3.506(0.966)2 Ms -1.95840)4
nCIC 1.865(0.271)2 RBN -2.408(0.858)8 noO -1(05000)1
nCl 1.522(0.000)1 nX 1.095(0. 000)1 nR06 1(8489)2
ZM2V 1.607(0.595)2 MSD -1.509(0.000)1 SPI 18(0.523)13
Rww -2.876(0.000)1 JhetZ -3.504(1.022)5 X1Av | -2.416(0.621)11
X2Av -2.538(0.537)11 S2K 3.5697(1.081)21 PW2 886(0.000)1
PW3 3.086(0.000)1 PW4 2.325(0.973)5 PJI2 4(@260)3
SEigm 1.434(0.000)1 T(N..S) -3.163(0.000)1 HBiES 2.511(0.000)1
BELmM3 3.202(0.363)11 BELmM4 3.095(0.674)8 BEHv3| -2.953(0.000)1
BEHv6 -2.744(0.675)6 BELv7 1.817(0.000)1 BEH -1.285(0.000)1
GGI9 -2.383(0.821)10 JGI3 -2.254(0.061)2 150G 2.383(0.000)1
ATS3m 2.950(0.722)5 MATS1v | -2.770(1.413)3 MATS3v | 2.614(0.591)3
MATS4v | 1.336(0.000)1 MATS8v | 1.575(0.000)1 MATS1¢é  -2.40935)4
MATS2e | -2.479(0.376)18 MATS4e| 1.511(0.274)10 MATS2p | 1.419(0.000)1
GATSle | 1.657(0.000)1 GATS2e | 2.728(0.000)1 GATS4e -2.133(0.844)2
GATS6e 1.996(0.746)2 nCrH2 3.097(0.470)5 RCa 1.253(0.000)1
C-005 -1.874(0.899)4 C-006 2.174(0.948)4 28-0 1.839(0.000)1
H-052 2.476(0.000)1

®The descriptors are identified from the three patammodels emerged from CP-MLR protocol with filleas
0.79; filter-2 as 2.0; filter-3 as 0.76; filter-4 8.3< Q?< 1.0; number of compounds in the study are @QDNST:
MW, molecular weight; Sv, sum of atomic van der Wasolumes (scaled on Carbon atom); Ms, mean
electrotopological state; nCIC, number of rings;NRBiumber of rotatable bonds; nO, number of oxygems;
nCl, number of chlorine atoms; nX, number of lgalo atoms; nR06, number of 6-membered rifgOPO:
ZM2V, second Zagreb index by valence vertex degrédSD, mean square distance index (Balaban); SPI,
superpendentic index; Rww, reciprocal hyper-detadex; JhetZ, Balaban-type index from Z weightestatice
matrix (Barysz matrix); X1Av, average valence cartivity index chi-1; X2Av, average valence conneityi index
chi-2; S2K, 2-path Kier alpha-modified shape inde)y2, path/walk 2 - Randic shape index; PW3, patk\8 -
Randic shape index; PW4, path/walk 4 - Randic sliagex; PJI2, 2D Petitiean shape index; SEigm, iEigalue
sum from mass weighted distance matrix; T(N..Sjn f topological distances between N.EBZUT: BEHmM5,
highest eigenvalue n. 5 of Burden matrix / weightgdatomic masses; BELmM3 and BELm4, lowest eigereval 3
and 4 of Burden matrix / weighted by atomic maseespectively; BEHv3 and BEHvV6, highest eigenvalu8 and

6 of Burden matrix / weighted by atomic van der Wamlumes, respectively; BELv7, lowest eigenvatuer of
Burden matrix / weighted by atomic van der Waalkinees; BEHp1, highest eigenvalue n. 1 of Burdenrimat
weighted by atomic polarizabilitiesGALVEZ: GGI9, topological charge index of order 9; JGI®i @GI5, mean
topological charge index of order 3 and 5, respebtj 2D-AUTO: ATS3m, Broto-Moreau autocorrelation of a
topological structure - lag 3 / weighted by atomiasses; MATS1v, MATS3v, MATS4v and MATS8v, Moran
autocorrelation - lag 1, 3, 4 and 8, respectiveleighted by atomic van der Waals volumes; MATSMATS2e
and MATS4e, Moran autocorrelation - lag 1, 2 and rdspectively / weighted by atomic Sanderson
electronegativities; MATS2p, Moran autocorrelatierlag 2 / weighted by atomic polarizabilities; GAT&
GATS2e, GATS4e and GATS6e, Geary autocorrelatidag- 1,2,4 and 6, respectively / weighted by atomic
Sanderson electronegativitieBUNC: nCrH2, number of ring secondary C(sp3); nCaR, lmemof substituted
aromatic C(sp2)ACF: C-005, CH3X; C-006, CH2RX; C-028 R--CR—X; H-032,attached to CO(sp3) with 1X
attached to next C atorfiThe average regression coefficient of the desarigtoresponding to all models and the
total number of its incidences; the arithmetic sigpresents the sign of the regression coeffigietite models.

Table4: Resultant modelsfor thewhole data set (n=28) in descriptorsof training set models.

Model r S F Q_oo QZLso Eq

pK; = 5.389(0.492)S2K +2.716(0.339)PW4 0.939 0.373 59228 0.851 0.845 6a
-3.261(0.355)BEHV6 +4.168

pKi= 5.473(0.587)S2K +2.560(0.413)PW3 0.912 0.443 39.625 0.729 0.607 7a
-2.766(0.429)BEHV6 +4.038

pK; = -2.329(0.368)SPI +5.258(0.576)S2K 0.914 0.437 40.788 0789 0.773 8a
-2.608(0.430)BEHV6 +6.166

pK; = -2.361(0.455)RBN +5.212(0.646)S2K0.891  0.490 30.795 0726 0.711 9a
-2.775(0.477)BEHV6 +6.310
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Fig. 1: Plots between observed ver sus calculated pK; values.
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Fig. 2: Williamsplot for thetraining and test set for the 5-HTgbinding affinity of 3,4-dihydro-2H-benzo[1,4]oxazine derivatives.
CONCLUSION

This study has provided a rational approach for deselopment of new 3,4-dihydrdd2benzo[l,4]oxazine
derivatives as potential 5-H4Bntagonists. The descriptors identified in CP-Malysis have highlighted the role
of atomic van der Waals volume in terms of BEHvéthpwalk ratio 3 and 4- Randic shape index (PW3RWH#),
number of rotatable bonds (RBN) and super pendémdiex (SPI) to explain the biological actions ¢4-8lihydro-
2H-benzo[1,4]oxazine derivatives as potential 5sHifitagonists. Applicability domain analysis reveateat the
suggested model matches the high quality parametiths good fitting power and the capability of assiag
external data and all of the compounds was withia @pplicability domain of the proposed model ansfren
evaluated correctly.
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