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ABSTRACT

Differential evolution (DE) is easy to trap into local optima. In this paper, a modified differential evolution
algorithm (MDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The MDE
employed a new mutation operation and modified crossover operation. The former can rapidly enhance the
convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively.
In this work, firstly, we employed a new strategy to dynamic adjust mutation rate (MR) and crossover rate (CR),
which is aimed at further improving algorithm performance. Secondly, the MDE algorithms are used for data
clustering on several benchmark data sets. The performance of the algorithm based on MDE is compared with DE
algorithms on clustering problem. The simulation results show that the proposed MDE outperforms the other two
algorithms in terms of accuracy, robustness and convergence speed.
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INTRODUCTION

Standard Many real-life optimization problems ammplex and difficult to solve in an exact mannethivi a
reasonable amount of time. The classical optinorathethods applied are highly sensitive to thetispoint and
frequently converge to a local optimum solutiondiverge altogether. Due to the computational drakbeof
existing numerical methods, researchers have yoomlmeta- heuristic intelligence optimization aigjoms based
on simulations to solve some complex optimizatiosbfems. In 1995, a new floating point encoded\arigionary
algorithm for global optimization; called Differéat Evolution (DE)[1] was proposed. Differential &ution,
inspired by the natural evolution of species, hesnbsuccessfully applied to solve numerous optitoizgroblems
in diverse fields. However, when implementing thie, Ddisers not only need to determine the appropeateding
schemes and evolutionary operators, but also neathdose the suitable parameter settings to rensihe

success of the algorithm, which may lead tdemanding computational costs due to the

time-consuming trial-and-error parameter and oper&tning process. To overcome such inconvemienc

researchers have actively investigated the ptatlan of parameters and operators in DE. Litemaf2],[3]

divided the parameter adaptation techniques inteeticategories: deterministic, adaptive, and siptive control
rules. Deterministic rules modify the parametersoading to certain predetermined rationales withailizing any

feedback from the search process. Adaptive rulesrporate some form of the feedback from the seprobedure
to guide the parameter adaptation. Self-adaptilesrdirectly encode parameters into the individwald evolve
them together with the encoded solutions. Parametieles involved in individuals with better fitnegalues will

survive, which fully utilize the feedback from tlsearch process. Generally speaking, self-adapties can also
refer to those rules that mainly utilize the feeddbérom the search process such as fitness vatuggiitle the
updating of parameters. Differential Evolution usespecial kind of differential operator, and rebert has been
applied in different fields of engineering and scie [4],[5].

The performance of the conventional DE algorithmhhi depends on the chosen trial vector generatimategy

and associated parameter values used. Inappropotaigee of strategies and parameters may lead
premature convergence or stagnation, which ehaween extensively demonstrated in some pap@if7],
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In this paper, we propose a modified differentiablation (MDE) algorithm to avoid the expensive quutational
costs spent on searching for the most appropridéé tvector generation strategy, as well dts
associated parameter values by a trial-am-gorocedure. Instead, both strategies and theiocited
parameters are adjusted adaptively to preventighgotrapped into local optima.[9]

The paper is organized as follows. Differential letion algorithm would be reviewed in Section 2.3ection 3,
modified differential evolution algorithm (MDE) algthm is described in detail. Afterward, severtdnslard
benchmark optimization problems are carried outet and compare the performance of the MDE andther
three algorithms in section 4. Finally, conclusiavese given in Section 5.

DIFFERENTIAL EVOLUTION ALGORITHM

Many In this section, we describe the basic openatiof differential evolution and introduce necegs#otations
and terminologies which facilitate the explanatioh different adaptive DE algorithms later. The ei#ntial
evolution algorithm works as follows: [10], [11]

(1) Initialize the optimization problem and algbrit parameters.
(2) Mutation operation

At each iteration k, this operation creates mutatieectors v, based on the current parent population
=0, X - X% )i =1,2,-- NP .The following are different mutation strategiescdfuently used in the literature:

V, =%, +Fxrand x(x, = X ,) (1)

(3)Crossover operation

j=1,2,3;-- D)

After mutation, a binomial crossover operation ferthe final trial/offspring vectdt = Cy , the
procedure of Crossover works as follow:[12]
" _{uij , if rand<CR orj = jrand
" |x!, otherwise
A )

Where CR is the crossover rate; rand belongs teifarm distribution in the ranges [0,1]; jrand=ramd1,D) is an
integer randomly chosen from 1 to D.

(4)Selection operation
The selection operation selects the better on fitmnparent vectorx, and the trial vectoru, according to their

fitness values f (x) .For example, if we have minimization problem, siséected vector is given by

{x (%) < F(u)

u, , otherwise

®)

Where x,, used as a parent vector in the next generati@. [1
Check the termination criteria

A MODIFIED DIFFERENTIAL EVOLUTION ALGORITHM

A new variant of differential evolution algorithns iproposed in this paper. Similar to all populati@sed
optimization algorithms, two main steps are distispable for DE, namely, population initializatiand crossover.
We will modify these two steps using the MDE scheiftae original DE is chosen as a parent algoritimt dne
proposed opposition-based ideas are embedded to B&celerate its convergence speed.

Although a large number of simulations showed tl@ious metaheuristic methods are insensitive foufadion
initialization value, reasonable and comprehengivgal population is benefit to accelerate conerge speed.
According to our review of optimization literatun@ndom number generation, in absence of a priavivedge, is
the common choice to create an initial populati®herefore, by utilizing MDE, we can obtain fittetading
candidate solutions even when there is no a pkiwsivledge about the solution(s). Of course, in absef any a
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priori knowledge, it is not possible that we carkehe best initial guess. Logically, we shoulde looking
in all directions simultaneously, or more cately, in the opposite direction. If we are seargtfor x, and
if we agree that searching in opposite directionld¢doe beneficial, then calculating the oppositenber x is the
first step.

In DE, the parameter mutation rate (MR) and crossoate (CR) are both influence the optimizatiorfgrenance
of DE. The parameter MR plays an important rol¢him amplification of the differential variation atfe increase
of difference between two individuals in the seasplace. Large MR value may lead to premature cgevee,
whereas low MR value may lead the convergence Toothe best of our knowledge, no optimal choicethef
scaling parameter MR has been suggested in thatiite of DE. This means MR is problem-dependedttha user
should choose MR carefully after some trial andretests. For taking the best values for CR, tlageecertain basic
rules. Large values are effective for all probletmst they are not always the fastest. The probleitis heavy
interaction between design variables generally irega high CR. But, if interaction between desigriables is
lower, a lower CR can be used, which results imiolitg a satisfactory solution with a smaller numdbieiterations.
In original DE, the mentioned CR and MR values epestant. These parameters never change sinceatkey
initialized at the beginning of DE. In this papér, order to improve the balance between the exptoraand
exploitation in DE algorithm we propose a new stggtto adjust the parameters MR and CR. In ourgsitipn, the
parameter MR present a dynamic adaptation usineceedsing linear ofl to 0.1 during the optimizatiycle, and
the parameter CR is generated using a decreasiay lof 0.99 to 0.4.

RESULTSAND DISCUSSION

MDE is compared with classic differential evolutiafgorithm DE/best/1, PSO, as well as recent adadiiE
algorithms JADE. For fair comparison, we set theapeeters of MDE to be fixed, Fmin=0.1, Fmax=0.9 and
CRmin=0.1, CRmax=0.9 in all simulations. We follohre parameter settings in the original paper of HABxcept
that the parameters of DE/rand/1 are set to be5Faaid CR=0.9. The results reported in this sedienbest, worst,
mean and standard deviation (SD) over 30 indepérsiieulations. For each simulation, all the progedwo be run

in computer Inter(R) Pentium(R) 4, CPU 2.93GHz, #rme numerical results using differential evolutaigorithm
are report in Table 1.

1. Maintenance-free benchmark functions

Ten well-knownbenchmark functions are used in #%. fThese functions contain three functions.
The first function is Sphere function whose globahimum value is 0 at (0, O,..., 0). Initializatioange for the
function is [-5.12, 5.12]. It is a unimodal funativith non-separable variables.

f.(x)= if x0[-5.12,5.12 4)

The second function is Rosenbrock function whosdal minimum value is 0 at (1,1,...,1). Initializatioange for
the function is [-15,15]. It is a unimodal functiarith non-separable variables. Its global optimumisde a long,
narrow, parabolic shaped flat valley. So it isidifft to converge to the global optimum.

f,(9 =i100>< &o—X F+EXF xO-33° (5)

The third function is Rastrigin function whose ghblminimum value is 0 at (0,0...0). Initializationnge for the
function is [-15,15]. It is a multimodal functionitv separable variables.

f3(><)=§( X' ~10cos(2z( ) +1C (6)
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Table.1Comparison among PSO, DE, M DE and JADE on 20D problems.

Function PSO DE MDE JADE

Mean 4.90E-10 1.24E-06 3.23E-10 2.46E-03

Std 3.23E-10 1.44E-06 3.23E-10 4.07E-03
fy

Min  3.23E-10 2.36E-07 3.23E-10 8.28E-05

Max  1.62E-09 5.54E-05 3.23E-10 1.22E-02

Mean 4.49E-08 4.94E-03 3.23E-10 1.88E+00

Std 6.02E-08 5.09E-03 3.23E-10 2.11E+00
f2

Min  1.67E-09 5.34E-04 3.23E-10 6.94E-03

Max  2.88E-07 2.16E-02 3.23E-10 7.53E+00

Mean 1.91E-04 1.35E-01 1.10E-08 3.63E-01

Std 1.12E-04 6.32E-02 1.71E-08 2.58E-01
fs

Min  3.35E-05 3.21E-02 5.67E-10 5.13E-02

Max  5.88E-04 2.10E-01 6.57E-08 9.27E-01

To analyses the performanceof the proposed MDEoagprfor clustering algorithm, the results of P$@ BEwith
differentdatasets have been compared in this pdper. algorithm base on MDE algorithms is used fatad
clustering on Iris data sets, which is able to mexthe same partition of the data points in afistuCluttering result
of which sets by DE and the MDE clustering algarittFrom the result, for allreal data sets, the dakistering
algorithm with MDE outperforms the other methods.

g g |
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Fig.1. Convergenceresults of MDE, DE, PSO and JADE on 20-D benchmark function (a) Sphere ;(b) Rosen rock.

CONCLUSION

In this paper, A new simple but effective and édfirt MDE algorithm was proposed for clustering, seenpared it
with those of DE, PSO,JADE optimization algoritharsseveral benchmark functions. Comparison of exymtal
results show, that firstly, the clustering algamitibased on MDE makes similar data gather obviossgondly, the
model is more stable and accurate than the old third}y, it distinguishes samples precisely whidlso improving
the cluster quality and obtaining better centerth wiear division which represents reducing comjateaamount .
However, the convergence speed issue remainsnmbdied and researched.
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