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ABSTRACT

In this paper, we propose a On-line kernel-PLS approach to improving both the robustness and accuracy of object
tracking which is appropriate for real-time video surveillance. Typical tracking with color histogram matching
provides robustness but has insufficient accuracy, because it does not involve spatial information. On the other hand,
tracking with pixel-wise matching achieves accurate performance but is not robust against deformation of a target
object. To tackle these problems, this paper presents a tracking method that combine histogram-wise matching and
pixel-wise template matching via leans a robust object representation by Kernel-PLS analysis and adapts to
appearance change of the target. In this paper, we propose a novel On-line Kernel-PLS analysis, for generating a
low-dimensional discriminative feature subspace. As object appearance is temporally correlated and likely to repeat
over time, we learn and adapt multiple appearance models with On-line Kernel-PLS analysis for robust tracking.
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INTRODUCTION

Target tracking has been an important topic in asepvision for several years. Recent years haea gnificant
progress in tracking. To distinguish targets witlchkgrounds and with each other, most visual trackiethods focus
on tracking target appearance separately; thegllystry to find proper appearance models thatmtsiish object
with all other targets or backgrounds, and adopamsakift or particle filtering like approach to awdi adjust target
appearance models, and use updated models to wously track targets.

The most tracking methods reported to handle fifiiewlty, thus far, is to adaptively update theget appearance
model at each frame: learn a new appearance moitkeltiwie invariant characteristics extracted fromstdric
observed target samples, and adopt the model wutinent frame. Such as, IVT [1] algorithm usesilaspace model
by adding adaptively modify the appearance of tleeleh Tracking-Learning-Detection (TLD) [2] methiml track
task is decomposed into three sub-processes: tigadkiarning and learning, each sub- task as aaepiask , each
sub-task can be performed s tracking will fail .)(the target disappeared, detection operator moesi . (3 ) less
real-time tracking and other issues . In ordeptaesthe above problems , Kalal [3] analyze a wgrd information in
video images and proposed a new learning framewalled P-N Learning for training a binary classiffrom
labeled and unlabeled examples. The learning psaseguided by positive experts and negative égpenstraints
which restrict the labeling of the unlabeled seN Rarning evaluates the classifier on the unkathelata, identifies
examples that have been classified in contradiatitin structural constraints and augments the itngiset with the
corrected samples in an iterative process. Legrpicesses for any errors exist , the expert epeRaN due to
mutual compensation of the error probability isited within a certain range in order to achievéiity. Based on
P-N learning method, Saigo [4] proposed PLS methaxbtain a better target tracking. The Fragmesiekl tracker
[11] aims to solve partial occlusion with a repreaéion based on histograms of local patches. fdeking task is
carried out by combing votes of matching local patcusing a template. There are some sparse esmt@mbined
with particle filter for target tracking applicatis L1 [5].

Kernel-based pattern recognition methods [14] sashSupport Vector Machines (SVMs) [15], Kernel-PCA
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(KPCA)[16] and Kernel-Partial Least Squares anal{i&PLS) [17,18] have previously been applied mutitude of
contexts for exploratory analysis and classifiaatiacluding biological applications [19].

Target tracking problem is challenging as trackimgcessing needs to deal with appearance variatiaused by
many factors such as illumination, pose deformatmmelusion, background clutter, and camera mofldms paper
focuses on the issue of nonlinear K PLS analysitafget tracking. To tackle these challengespresent a tracking
method that learns a robust object representatjodonel partial least squares analysis and adapsppearance
change of the target. Firstly, we extend theseezanbrks[4] by embedding nonlinear kernel analysisPLS tracking.
To improve the existing work, we perform the colastogram probability density function for the ottjecolor
constraint is modeled as a smooth function thaicatds how well the candidate set images and tasgaiet. To
improve stability for standard belief propagatitime color constraint function node is connectedotor gradient
variable nodes.

Although detection results can be improved byaitilj overlapping blocks for low-level feature extian within the
detection window, the dimensionality of the featueztor becomes extremely high. As a result, theedpof the
human detector decreases significantly due toithe heeded to extract features and project thenav@ocome this
problem, we employ a On-line learning approachalfast first stage, based on a small number ofifes} the
majority of detection windows (those with low prdlidy of containing humans) are discarded. The agrimg

windows are evaluated during a second stage wheredmplete set of features allows challenging $esnjp be
correctly classified.

ON-LINE KERNEL-PLSANALYSIS(KPLS)

The PLS method employs the descriptor matrix] RNXK, where N denotes the number of samples and K the

number of variables in X, to predict the responsérix YOR™ , where M denotes the number of variables in Y.
The unique property of the PLS method comparedttierdinear regression methods is its ability tpasate the
modeling of covariation from structured noise, defl as systematic Y-orthogonal variation, whilewtemeously
maxim the covariance between X and Y.

The K-PLS algorithm follows the principles of thedar PLS algorithm while it is written in dual for This implies

. . . . . L
that all expressions have been rewritten so thatrthut matrix X is expressed as the outer proM in all

instances. The outer produéﬁxT is subsequently replaced by the kernel matrix khim K-PLS algorithm. K is
deflated for the Y-orthogonal components. In sintplens, in the algorithm for model estimation, Knsists of two
instances of the transformed data matrix. One egdlinstances represents the predictive weightad¢laould thus
be retained throughout the calculations, whereasoather should be deflated accordingly by the Yiagbnal

variation. Subsequently,XXT
Ki,j :k()ﬁixj)

. : _ _ _ K(x, X, :

and j-th row vector in the descriptor matrix X, pestively, and ()ﬂ J) represents the kernel function. Hence, one
can avoid explicitly mapping X to higher-dimensibepaces as well as computing dot products in¢htufe space,
which is computationally beneficial. The transfotioa to higher dimensional spaces is performed iicitpyl by the
kernel

is substituted for the kernel Gram matrix K withrées , Where X and ! corresponds to the i-th

o k(x,x ) . .
function ()ﬂ ') : where common kernel functions use Gaussian fonstas follow:

k(x,y)=exp(-|Ix-yIf /&) 0.1)

The kernel functions in Equations (1.1) dependmzrnarameterg, which influences the predictive ability of the
kernel-based method. The traditional approach toéigparameter selection is to perform an exhaegnd search
over the entire parameter space based on pregfiaeeter. The generalization properties of theeha evaluated
using e.g. cross-validation [19] to identify thergraeter setting yielding the lowest possible gdigation error,
which can result in a large number of calculatiod aun times. The projection direction in the featspace at each
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stage is given by the vector!, which is in the primal space while we must warklual space,and express a multiple

u.
of ! as

au; = X[ B, 0.2)

which is clearly consistent with the derivation gf in the primal PLS algorithm. For the dual PLS aiton we
must implement the deflation of Y. This redundatgpsfor the primal will be needed to get the regdidual

. Y. . :
representations. We us€ to denote the j-th deflation.

BEYYX X[ B=YY[K,B

(0.3)
p=b5_

with the normalization ,then compute a rescaled and /.

_ — T —

G =a XU =X X 5, =K 5
T T
Ny Xy ¢
J T Ty T
Lt au XXy g (0.4)

where ! denotes the same weight vectors c in PLS algorlthmcan be consider as a rescaled dual representation
C.
of the output vector /.

T

Let Ui"Vi9i pe the first singular vector of |~ the deflation ofXj as
_q LY
Xj+1 =(l _W)X,‘
it (0.5)
with an equivalent deflation of the kernel matrix
D %7 oq L Lt
Kj+1 - Xj+1Xj+1_ (1 _W)K]’ (1 _W)
it 171 (0.6)

In this paper, we formulate object tracking asassiffication problem with On-line Kernel PLS an#yt® learn a
low-dimensional and discriminative feature subsp&#Vold et al. [12,13]were the first to extend timear PLS
model to its nonlinear form. They have done thisdplacing the linear inner relation between ttwswectors t and
u by a nonlinear model.

u=k(t)+e=k(X,w)+e 07

where k represents a continuous nonlinear functfordenotes a vector of residuals. The relation betveaeh pair
of latent variables is modeled separately. We ad@&l basis function to model k. It can be obsetthad the vector of

weights of W, computed in the first step of the NIPALS algamithrepresents the sample covariance between the
output space score vectdt and the input space data matr% . However, the use of a nonlinear model to relage t

score vectors in the inner relation affects the matation of W. Although w represents the association among
variables of X and u also in nonlinear PLS, thisoasation will be closely related to covarianceues only if the
nonlinear mapping between latent variables is mamiotand slightly nonlinear.

In our model, a kernel function modeling the inneation is used to update an initial KPLS estinaitéhe weight
vector w. S.Wold [12,13] proposed to update w byanseof a Newton-Raphson linearization of g. Thepdore thus

consists of a first-order Taylor series expansibg, dollowed by the calculation of the correctitmmm UW which is
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used to update w. So, consider the nonlinear irelation, Wherek(t) =k(X,w) is continuous and differentiable

with respect to w. The second-order Taylor expansio has the form

. ok
u=u,+—w
ow (0.8)
ok
where Uo = k(t) is the value of g at the known value of t. SinijlaraW stands for the partial derivatives of g

numerically evaluated at the same known value Bii¢ second term of 12 can be written element-asgse

ok X
K o5 Ky,
ow i 0w (0.9)

At this point several different methods to compilie correction W were proposed. To simplify further notation

consider the matrix form of the linear approximatib|

u=2v (0.10)
ok
Z= [uo _]

— T
where oW and V= W] . The following variants to compuIQW were suggested:

k(x,y) = Z a, X)) = P(x) D(y)

=<®(x),d(y) > (0.11)

Where{@ is a sequence of linearly independent functio{n%,} are positive numbers anP <N s the
dimension of the space H. Following this relatiba feature map(D can be written as

®:X - F (0.12)
X = (9 = ({ag().Vae0.-ar ©) gy

Thus, if we are only interested in the computatbdot products in F, it does not matter how F wasstructed and
simply all dot products can be replaced by a unikgmel function associated with F . This is impattto note
because different feature spaces associated wattsdime kernel function can be constructed. Inalitee, this
replacement of a dot product with the kernel fumttvalue is known as the kernel trick method.

A modified version of the NIPALS algorithm wheregs 1 and 3 are merged and the score vectoratamdscaled to
unit norm instead of scaling the weight vectorsnd & The obtained kernel form of the NIPALS algun is as
follows

Step2.”t I+ 1
Step3C = Y't
Stepal =YC
Step5.IIu b 1

Although step 2 guarantee orthogonality of the sa@ctors can be rescaled to follow the standaehti NIPALS
algorithm with the unit norm weight vectors vectoiStep 3 and 4 can be further merged which magrbeaseful in
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applications where an analogous kernel mappﬁﬁgof the Y-space data is considered; that is, thenGmatrix

K, =o'
y of the cross dot products between all mapped outpta is constructed. Then, the kernel NIPALS
algorithm consists of the following four steps. (Bt and 4 can be further merged which may becore@ulum

applications where an analogous kernel mapp‘ﬂgof the Y-space data is considered; that is thenGmaatrix

K,=®p"
y of the cross dot products between all mapped outpta is constructed. Then, the kernel NIPALS
algorithm consists of the following four steps

step1t =Ku

Step2:IIt Ik 1
Step3: u= Kyt
Step4.”u -1

The On-line KPLS algorithm learns a threshold imedr function in a kernel-defined feature space.

h(x) = sgn <w, ¢(x) > (0.14)
If the weight vector after t updates is denoted “r‘)’y then the update rule for the (t+1) update whersample
()ﬁ ! yi) is misclassified is given by
Wy =W+ Y@(X) (0.15)
Hence, the corresponding dual update rule is simple
g =g+l (0.16)

if we assume that the weight vector is expressed as

W = aye(x)

(0.17)

Once the weight matrisz[Wl""’Wk] is computed, the initial appearance model can berotd by

A ={x], % W}

m
, where P is the mean of the positive samples. A test sa,m%SI@ R , can be projected onto the

AT (v O
learned latent feature space specified @yto get a latent feature vect(%_w (x=%) . Using Z \ith lower
dimensionality, a target object can be more eakdgriminated from the background than in the odgfeature space
X.
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Algorithm 1 Pseudo-code for the On-line K-PLS algo-

rithm
I: Estimate the predictive Y-weights (c1) by eigen-
vector decomposition of YT KY

: Project Y onto ¢; to achieve the predictive score
matrix of ¥ : 1y + Yy

3: Calculate the kernel matrix of K;; = k(x;, z;)

=1

4 Ki=K

5: for =2:k do

6: 3, = }"1

7 normalization ||| — 1
8: repeat

9: By = }’}’Tffjﬁj

10: normalization ||3;| — 1

11:  until convergence
12: t; = I\'J'ﬁj
13: ¢ =YTt;/|lt;]
14: ¥o=¥ = ?LJ(’J
. T . ;17
15: Iit+1=(f—ﬁ-;J—_)Rf(I—ﬁ-lf;}
16: end for ! !
17: A= [;’31,....}3},-_],T= [f’-l.....l‘.k]
18: w=A(TTKA)-'TTY

Figure 1.Pseudo-code for the On-line KPL S algorithm

TARGET APPEARANCE MODEL

Since the appearance change of an object durimggaderiod of time may be quite nonlinear and cexypbne linear
appearance model is not likely to suffice. Howeappearance of a target object may be temporatigleded and
may repeat over time. We therefore learn multiplpesrance models for more effective object reptaten.

Video sequence of a target over a long period @amlibided into multiple sets. Within the i-th séte object
appearance dosed not change much and we use KPdlgsianto learn a discriminative appearance model

={xP x, W
A {X' ’ X’\M} . Therefore, the appearance of a target objecbearepresented by multiple appearance models
A:{A”'"’ A<} , wWhere k is the number of appearance models. Thpoped representation scheme is more

effective than existing methods base on singlalim@pearance model.

m
In this paper, the distance between a test sar?&@eR and the learned appearance model set A is defised

k
Dist = Y| W' (x-%)-W' X" -%) I}
i= (0.18)
where ;p is the mean of the positive samples used in tngin'ia}, % is the mean of all the samples in trainiﬁaﬁ,

and ” ) u is Euclidean norm.

The target and background appearances may chamgedactors such as illumination, pose, occluseamera
motion, and so on. To deal with this problem, wepmse an adaptive object representation methodhéeeturrent set

of appearance models bé:{Al 1=1...kks K}.

When the tracking result at time t is obtained use the corresponding target observat?énto update A Since we
have computed the distances from the target obmnvg\(f to all the appearance models i for determining the
tracking result, we select the appearance mo%ielwith the smallest distancéjs and the appearance mod@'

with the largest distanc8 . If dS is less than a predefined threshofé!, is utilized to update'%.
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P
The update process includes three components: #am rof the positive samplé ,the mean of all the training

samplesi, and the weight matriZ/V . X can be updated by using a random update profyabili

Both X and W can be updated by KPLS method with the positive r@gative samples. III] A-A I is larger
than the predefined threshold aﬁ<d< K , @ Nnew appearance modé“‘1 is added to A. h‘II A-A I is larger

than the predefined threshold allﬁjl: K , a new appearance model is initialized to repIéA&ein A. The proposed
adaptive appearance model is summarized as follow:

Algorithm 2 Adaptive Appearance Model Based on K-

PLS analysis
1: Initalize A with KPLS analysis when t=1.
2. for t=2:T do
3 Find A, = argmin, o ,,;n(pisty {25, i, Wi }
4 Find A; = argmax, o (pisp) {25, i, Wi}
5. if ||A; — Aj|| < Threshold then
6: Get a random update probability ¢ € [0, 1]
7: ! qrl 4 (1 — q)xy;
8 Update x, and W, using KPLS analysis
9: else
10: if £ < K then
11 Learn a new appearance model A1, and add
it to A
12: else
13: Learn a new appearance model and use it to
update A; in A
14: end if
15:  end if
16: end for

Figure 2.Adaptive Appear ance Model Based on KPL Sanalysis

ON-LINE KPLSTRACKING METHOD VIAMAP

Given the observation set of the targ)é{ = [Xl’ X‘] up to time t, the tracking resuﬁt can be determined by the
Maximum A Posteriori (MAP) estimation,

% = argrnax p(s |X]_1) (0_19)

where p(St IXl-")is inferred by the Bayes
theorem recursively with follow equation.

P(s ) O P& ISIPE X)) (29

P(S 1%s-1) = | P(S—t18.) (81 1Xe- )OS, (0.21)

665



Yi Ouyang et al J. Chem. Pharm. Res., 2014, 6(7):659-669

This inference is governed by the dynamic motE’e(IS |Sﬁi‘1) which describes the temporal correlation of the
tracking results in consecutive frames, and thelihlood function (i.e., observation modeH(Xf |St) which

denotes the likelihood oﬁ observingxt .

The main issue for any adaptive appearance modbhtsit is likely to use noisy or mis-aligned obssions for
update, thereby causing tracking drift gradualbr. énline tracking, the only ground truth at owspmlisal is the labeled
target object in the first frame.

:{ I-(x,y)’ S[}

. . L X L .
Let X as random variable of a video sequence, bhgfitne state vector .where —) s the target

center Iocation,Sf is the scale factoP(yt 1X) denotes the probability of cliques belongs togariylotion model

p(X[ l X“l) generate a predict x, which denotes the correlaticdarget's temporal structure in the video. \&&uane
that the motion model obeys Gaussian distribution:

PG 1%) = NMXX)A) g0

where A\ is the diagonal covariance matrri;r(],(xt 1% denotes the means of two random variable. We ased8
filtering method to track target .

Prediction stage:

Bel () = [ P(% | %,)Bel (%)X,

Update stage:
Bel(x) Oa p(y, | % )Be ()

Observation Markov assumptions: Observation depemnly on the state of the current observations, i.e
PO %) = PO 1% )P (2 |X‘) the filtering process is mainly determined bye tdynamic model

p(X[ | X“l), which describes the state temporal correlatiotheftarget between frames .

EXPERIMENTAL ANALYSIS

To evaluate On-line KPLS, we compile a set of 18lleimging tracking sequences (e.g. car4, womatgitespublicly
available online. Due to space constraints, we @illy show results on 4 of these sequences. Thee®s are
recorded in indoor and outdoor environments antidecchallenging appearance variations due to @wmigpose,
illumination, scale, and the presence of occlusidre center distance error results of proposeditrganethod are
compared with that of current state-of-the-art mdth VT [1], TLD [2], LOT [7] and ROT [8]. Experiantal video
sequences singerl and basketball from VTDI[9], lemgnaind liquor from PROST[10], woman from FragTrddf[
and girl_mov from SPT [6]. Implemented in MATLAB1@n Intel Core 2.26 GHz computer with 4GB RAM auad
code optimization.

Table 1. The mean of Center D denote average errorsof center position

Seg\Method| IVT| TLD| SPT| LOT ROT OUH
Basketball 94 7 5 6 6 7
Girl_mov 216 | 128 26 36 105 31

Bolt 83 7 12 150 25
Liquor 54 30 8 9 34 12
Woman 161 - 11 119 113 20
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girl_mov adhketball liquor

Figure 3. Tracking results comparison during tracking process

350
LD
300 Lot
VT
s e o BT
230 s e e BT
KPLS ke
200 + 2 :
/
USJ ¥ ‘ v

0 50 100 150 200 250 300
(1) Woman—300frames, Tracking Frame Number

Figure 4. CDE results comparison during tracking process

Fig 3 woman and liquor subsequence occurred witltéimera movement, IVT tracking will fail. The keyason is no
full use of the target and background appearanademoand making the tracking accuracy is limite@n-line KPLS
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tracking method considers local and environmengatures surrounding, and adaptively adjusting torget

appearance model, which can more accurately disshgarget and improve tracking accuracy.

In Figure3 basketball sequence, because the tafgle¢ block is not serious, the proposed methad ST almost
unanimously, in girl_mov, when traced to 115. tubbr object appears in a similar situation, theoped method with
SPT similar. The presence of the target under samh, the proposed method is superior to other oaksth

In Table-1and Figure 4, the paper uses Center mist&rror (CDE)to analysis the tracking performandaere -

indicates partial frame detection failure trackipgcess.CDE represents the center position codegdinarrors
between the tracking results and the referencelatdr(ground truth) , where$||.||$ is the Euletadise, '-' indicates
some frames tracking failure in the tracking preces

The target objects are partially occluded in thenan sequences, which has a partially occlusiongrhenon. Using
On-line KPLS method can eliminate the target begaishanges in background appearance model fanpact,
and the adaptive appearance learning approachgihmbgnamic update appearance models, target tigekicuracy
of better than TLD, IVT, LOT and ROT methods toat#tand deal with serious obscured targets.

The results (Figure 4) show that it is normal ctindiin the center and the ground truth detectiamg error is
basically the same, when there is heavy occlusionmethod is significantly better than other tiagkalgorithms.

CONCLUSION

This paper presents a novel On-line Kernel PLSyaamethod for object tracking, and utilizes tlsifive samples
and negative samples for adaptively updated infaoman the target - background appearance modedoiving the
these problems, such as occlusion, illuminatiomghay, and the shape changing during the processedarget
tracking. We employ the image KPLS weight scores@¥idence response map to determine the targatitm
information. Although traditional tracking methaddking detection results can be improved by utiizoverlapping
blocks for low-level feature extraction within tHetection window, the dimensionality of the featueetor becomes
extremely high. As a result, the speed of the hudetactor decreases significantly due to the tiseded to extract
features and project them.

To overcome this problem, we employ a On-line lesgrapproach. In a fast first stage, based on d smaber of
features, the majority of detection windows (th@sth low probability of containing humans) are disged. The
remaining windows are evaluated during a secorgkstdere the complete set of features allows amgithgy samples
to be correctly classified.
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