Available online www.jocpr.com

Journal of Chemical and Pharmaceutical Research, 2013, 5(11):212-218

ISSN : 0975-7384

Research Article CODEN(USA) : JCPRC5

A novel feature extraction method by compressive sensing for signal peptide
Cui-Fang Gao', Qiang Guan®, Hao Zhang?, Wei Chen? and Feng-Wei Tian®

School of Science, Jiangnan University, Wuxi, China
?School of Food Science and Technology, Jiangnan University, Wuxi, China

ABSTRACT

In this paper, we propose a novel mathematical expression of signal peptide that can truly reflect the intrinsic
attributes of the sequence. To deal with every signal peptide that displays diverse length, we first transformed the
original sequence into Markov transition matrix with a unified size. Next we obtained the expansion sparse vector on
a unit orthogonal basis, and finally utilized random projection of compressive sensing (CS) to obtain an accurate
feature expression. Analyzing from the perspective of traditional mathematical theory, we determined that the feature
vector abstracted by CSwas the optimal combination of the original information (amino acid composition, sequence
order, and so on). Thus, the new method can be regarded as a comprehensive development of high-density
discriminative information extraction. The experimental results suggested that the CS feature expression has the
approving determinant and has the potential for future research and applications in the development of feature
extraction.

Key words. Compressive sensing, Sparse representation, Markosfer matrix, Signal peptide, Feature extragtion
Secretory proteins.

INTRODUCTION

Many proteins of model organisms can be found sgldanto the culture medium supernatant by a nuifidifferent

secretory pathways. In this process, the signaigefs a functionally special segment that guidewly synthesized
proteins through the secretory pathway. A growipgligation of signal peptides in the biotechnolagimdustries
concerns the expression and secretion of protéjns [

Feature analysis and identification of signal pgsti has the potential to increase our understanofingotein
transport mechanisms, and could contribute torttiestrial-scale production of important naturaltpios. However,
the amino acid composition and the length of tyealipeptide vary significantly according to thedific species. In
addition, many signal peptides from the same spexie also different, which has caused considediffieulties and
challenges in attempts to identify the signal pp{P].

The original signal peptide sequence is represditeinino acid symbols, which cannot be directlguaated by the
analysis algorithms. To facilitate data represémaand processing, the sequence of symbols musbipeerted to
numerical data expressed as a feature vectortprizalculation. The main purpose to feature exiwaanethodology
is to obtain a set of numerical features that awstraffective for identification, and that reflélse intrinsic properties
of the investigated object from several aspectis thre context of a particular aspect. So, featuteaction plays a key
role in an intelligent algorithm for signal peptitientification.

Compressive sensing/sampling theory (CS) [3-5graabstract mathematical idea concerning sparsesemtation,

was proposed by Donoho and Candeés et al. in 208®aS breach traditional thinking in linear sangplmnethods of
information theory, and established a new theaaikframework for signal sampling and processingeHamn sparse
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representation and optimization theory. Past studfeCS theory demonstrated that as long as thediigensional
signal is compressible on a transform basis, tigeasicould be projected onto a low-dimensional sphg a
measurement matrix, which is irrelevant to the4farm basis. Further, if the signal expressiorparse enough, the
sparsest representation has an acceptable disatingneffect. CS theory performs very well in thentext of
acquiring high-density information, and has nowrbdeveloped and applied in various areas wheraresers have
exploited it for feature extraction and recognitiorcluding sparse representation-based classuitatigorithm for
medical images [6], mathematical framework of cefictive genotyping protocols to detect severeegemiseases
[7], and techniques applied to spectrum hole idieation for wideband cognitive radios [8], etc.

In this paper, we have developed a new techniquieatiire extraction for signal peptides using tffective
representation of sparse signals. The objectit@gsiantify and transform some important attributesignal peptide
sequence, such as amino acid composition, seqoeder etc., into sparse representations, ande@&stechnology
to extract high-density discriminatory informatias the feature vector.

MATERIALSAND METHODS

Since the symbol sequence of a signal peptide ¢dendirectly used as computational data, generiéyfirst and
necessary step of an analysis is to pre-processrii@al sequence to form a numerical feature ared@he task of
feature extraction requires us to formulate ancéiffe mathematical expression of sequences thatrayreflect the
intrinsic attribute of the signal peptide. Forteigt CS is present as a promising theory to satisfydemands.

The projection process of CS is the dimensionalvemion, which can preserve such important infoiomatis
composition or structure of the signal and in theantime has the potential of reducing data redwnd&o CS is
considered a potential effective method of featxteaction.

2.1 Compressive Sensing (CS) Theory

Compressive sensing uses transformed space talsedoe signal sampling, in which the mass sampbihgparse
signals is compressed into projected informatioth éss data (referred to as observation valuesprmonly used
approach for obtaining effective observation vaiseandom linear projection. Conversely, the oragisignal can be
faithfully reconstructed with the observations biving a series of optimization problems or appnaiion problems
[9, 10].

Supposing a discrete-time signal] R" of length N can be expanded by a set of orthogonal basis ngecto
W=[w,¥,.. W] thatis:

x=Y w6 =46 @
i1

WhereW is an orthogonal matrix with each colum(i =1,2,...N ) corresponding to a basis function of sparse

transform, which can be Wavelet transform, Disc@bsine transform, or Fourier transform, dependimgthe
application. Theng=[0, ,...,0\]" is the transformed vector consisting of tRecoefficient expression defined as

0, = <x,y/i>(i:1,2 ,...,N). Assuming that the sampling sigmabnly containK (K << N) non-zero coefficients on the
orthogonal basisV , signalx is then generally considered to be sparse or cessjirle.

Then signak can be compressed by lsixN (M<N) measurement matrig, which obtains a low-dimensional vector,
and is expressed as the following:

s=Px 2

Where s R indicates the projected vector bf linear measurement components. Substitute equétipinto
equation (2), so that we have

s=dyH =00 ®)
Now, the original signat has been reduced with the ratiéN. It is worthwhile realizing that the measured siggis
not the exact value of signalbut is essentially the projected value from hifgimension to low-dimension. Analysis

from the perspective of traditional mathematicaldty, informs us that the measurement vector ptegday CS is the
optimal combination value of the original signah dther words, the measurement value is a lessmelaf
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high-density information including all of the sidsan the original sampling.

Here the measurement matrix needs to satisfy thditton called Restricted Isometry Property (RIB): [That is
l-¢< ||QJ\/||2/||\/||2 <1+¢&. Thus, the linear measurement should have staidegg properties. The restricted

isometry of the observation matrix furnished a tletioal guarantee for faithfully reconstructing tbempressible
signal from observation values. An equivalent ctadiof RIP is Incoherence, which means that thesuee

matrix @ and the sparse matri¥ cannot be representation each other. According revigus studies, the
measurement matrix selected as a Gaussian randtir midl has a high probability of incoherence tvian arbitrary
sparse base, and also allows the conditions afatest isometry to be satisfied [11, 12].

2.2Markov Transition Matrix of the Signal Peptide

Markov chain is a widely applied mathematic motiat reveals the collection of state distributioracssequence [13].
Typically, the signal peptides are described umged symbols to denote 20 kinds of natural amaeids. Should
these residues on the chain be regarded as statmgtars, it follows that the sequences of the araicids will
express a series of transition of state. In thig wdinite stationary Markomnodel can be constructed based on symbol
distribution to reflect the intrinsic relationshimd further permits detection of the comprehengifermation of
signal peptide sequences.

In order to quantitatively describe the state titeorsbehavior on a given signal peptide, we dafine20x20 Markov
matrix whose rows and columns were denoted by armanids to represent the frequency of occurrenceach
dipeptide. Assume thai(i, j)={(R, R}, Z}, that is to say in the frequency mattixthe element value located in the
i-th row (denoted by amino acid)R-th column (denoted by amino acig) B numericak. Wherein Ris the previous
residue of a dipeptide and iR the latterzis the transition frequency from ® R through the full sequence. Thus, we
find that the pair-wise residu€g;,R;) in matrixU correspond to their respective denotation, and tiie assignment
U(i, j)=z Thus, the Markov matrix that reflects the composiof the dipeptide and the series of state imiaton a
sequence can be constructed.

For example, the signal peptide of the secreteteprddAIDA_ECOLI from Gram-negative bacteria is adldws:
“MNKAYSIIWSHSRQAWIVASELARGHGFVLAKNTLLVLAVV”. After we successively process the pair-wise
residues from the beginning terminal to the end,ghimbol sequence converted into a unified Mamkaérix has the
following design:

Table 1. Markov transfer frequency matrix of signal peptide AIDA_ECOL |

clsl] t]P] Al cg] N|] D] E] o H|] Rl k| ™[] ] | v] f vy|] w
C
s 1 1] 1 1
T 1
P
A 1 1] 1 1 1l 1
G 1 1
N 1 1
D
E 1
Q 1
H 1
R 1
K 1 1
M 1
| 1l | 1 1
L 1
v
F 1
Y
w 1 1

Obviously, the frequency of occurrence of all difiggs are included in the matriwherein the numerical cell implies
that the dipeptide was present in the sequencagab¢he blank cell means that the dipeptide neseurred and had
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a default value of zero. In the rest part of thapgr, the Markov Matrix in shortened form will rete the Markov
transfer frequency matrix.

2.3 Feature Extraction by Compressive Sensing

According to the construction principle of the MavkMatrix, it is reasonable to understand thatrthmber of digits
in matrix U is not more thah-1 (whereL is the length of a given signal peptide), becdbhsemaximum number of
dipeptides in the full sequencelisl. In view of the facts that the signal peptidgémnerally composed of 15 to 60
amino acids [2]L. is dramatically smaller than the size of the Markmatrix (i.e.L << 400). One could perceive that
an important characteristic of tineatrix U is that the non-zero elements are very sparsehencemaining elements
are zero.

For subsequent analysis and recognition, only sprations of these data in matrix U are needed. él@ry most of
the useless redundancy will be discarded when peehiSuch property is consistent with that of spasignals
(wherein only very few coefficients are non-zerltatige to the signal length). Therefore it is mapplicable for the
spare matriXJ to exploit the randomly projected method by CHiégue.

We can obtain a 400-dimensional digital signal bw rexpansion of the Markov Matrix. In virtue of tisparse
property of the expansion signal, we can directlg the unit orthogonal basis as the sparse bas&dein order to
satisfy the RIP condition mentioned in Section 2a) (as a high probability is possible), the iretegent and
identically distributed Gaussian random matrixékested as the measurement matrix.

Under these conditions, then we can perform theatioa of random projection according to equati®n The result
of the inner product expressed by a low dimensiobakrved signal is essentially the extracted featector of the
signal peptide. Figure 1 shows the key steps déifeaxtraction.

— x o i
oo o i o EEE
e _Eﬂi{: ;
Q U X w.0 D.y.0 0.0 S

Figurel. Key stepsinvolved in the feature extraction by compressive sensing

The inputs are symbol sequences of signal peptiddshe final outputs are the feature vectors. fxjans of the
denotations in fig. 1 are as follows:

Q: denotes the original signal peptide sequence es@ddsy amino acid symbols;

U: is a 20x20 Markov transition frequency matrix;

X: is a 400-dimensional expansion signal of mathx

w: is a 400x400 sparse basis, unit orthogonal liagisselected in this paper;

0: denotes the conversion signalodn the sparse basis if w = E, thend =x;

@: is aMx400 measurement matrix, here Gaussian randomxedtelys the uniform distribution on [5, 0.1] is
selected;

0: is aMx400 filter matrix,@ = dxy.

s: denotes then-demensional measurement signal after compressiuinh is the expected feature vectoQf

Remarkable advantages of the processing sensorytlieduding an ability to maintain sufficiently portant
information when sparse signals are compressedseégently, the fundamental nature of our method,i@nmain
properties are also vested in maintaining the digegomposition and transition behavior of the kéar matrixU,
which are finally combined in the optimal low-dingonal observed signal (vectsy. This vector is the desired
effective information that reflects the intrinsioperties of the signal peptide, and the subsedqdentification of the
secretory protein can be successfully performedguttiis high-density information.

The Markov matrix in our method contains the ocence frequency of amino acid residues, and atahegime

reflects the sequence order of amino acids andahtterent structural information of the dipeptidesEntially, it can
be regarded as a comprehensive method of multgdéufe extraction, including amino acid compositjad],
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sequence order method [15] and sequence waveletg@sition [16, 17].

NUMERICAL EXPERIMENTSAND RESULTS DISCUSSION

Benchmark datasets wused in our experiments wereaingot from the following website:
http://www.cbs.dtu.dk/ftp/signalp [18lvhich was released by Nielsen et al. We chose tHiféerent species: (1)
Eukaryotes; (2) Gram +ve bacteria; and (3) Grambaeteria. For the secretory proteins, the extesggdences of
the signal peptides were given in the dataset, lwimnicluded the sequence of the signal peptide thiesiearest 30
amino acids of the mature protein.

Such simplified fragments are reasonable becausg thaintain the characteristics of signal peptidéthout
neglecting the effect of neighboring sequences f@uthe non-secretory proteins of negative sangtee no signal
peptide exists, the data sets gives the first 7i@mcids of each sequence. Detailed informatiothefdatasets is
(Table 2) below:

Table 2. Number s of protein sequencesin three datasets

Species Secreted proteifls  Non-secreted profeins al Tot
Eukaryotes 1009 269 1278
Gram- bacteria 265 186 45]
Gram+ bacterig| 140 64 204
Total 1414 519 1933

Since a few entries in the original dataset wemmndbto contain uncertain residues denoted as “At were included
in the sequence, X might be glutamic acid, prolorgglycine. In order to improve the quality of tti@ta and to obtain
a result without bias, such sequences were remmegdially. Therefore protein sequences listed ideralexcluded
four entries: KV4A MOUSE and CAS1 SHEEP (Eukaryhte$§sSUN5 THEFU (Gram +ve bacteria),
OMPH_YEREN (Gram -ve bacteria).

3.1 Effectiveness of the CS Feature Vector

We extracted 20D = 20) numerical feature vectors of the protein seges (Table 2) using new methods that we
proposed in Section 2. Further, in order to prgpand objectively examine the effectiveness of@isefeatures (for
comparisons with other features, we named ourb@a €86 feature), we evaluated the new features diocpto the
following indices: that is the trace of intra-clexsatter matrixr(S,) and the trace of the inter-cluster scatter matrix

tr(S).

A small intra-cluster distance and a large inteistdr distance will induce an acceptable recogmitgsult. Therefore
the smaller the ratio df(S,)/tr(S,), the better the recognition performance. Thedesliare defined as:

P

k (X =m)(x =my)"
e (4)

SN:

k
S’:

N, (my —m)(m, —m)T

' (®)

Where denotes the feature vectors of proteins,tBeisiumber of clusters, Nk is the number of sampkdonging to
classkm =[m , m, ,---,m ] isthe mean vector of class k, and m is the meatovef all samples in one dataset.
Table 3 shows the values of this performance index.compared with the traditional features of amawd
composition and scaled wavelet energy, the commesensing features have the best anticipatedaigifity of the
three types of datasets.

C
=

Table 3. Indicator s of different feature vectors

Species - - — (S (S) - -
Amino acid composition features  Scale wavelet enfggtures| Compressive sensing features

Eukaryotes 20.7469 7.6608 0.5180

Gram -ve bacteria| 12.7370 4.9372 0.5758

Gram +ve bacterig 11.8218 6.6286 1.9722

In order to visualize the distribution of CS fe&uwrectors, and at the same time, keep their distaglationship
among original samples as far as possible, we grrthie CS features onto 2D space using a lineapmgpnethod
[19], from which we can get 2D data from the 20put) the projected results are shown in Figure .céh see that
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the secretory and the non- secretory proteins easubstantially distinguished. The separabilitEokaryotes is the
best example of the three species. However, Granard Gram +ve datasets are somewhat overlappidgsiuech
visual phenomena are consistent with the sepagsalritiicators in Table 3.

-+

(@ (b) (©
Figure 2. Two-dimensional mapped distribution of the CSfeatures, (a) Eukaryotes, (b) Gram -ve bacteria, (c) Gram +ve bacteria

3.2 Recognition Effect of CS Feature Vector

We employ the popular fuzzy clustering algorithniCi1) which has been increasingly and widely used by
investigators in theoretical and practical applaa to accomplish the task of recognition. Hereused two indices;
(1) Identification accuracy and (2) Partition eplydo evaluate the clustering performance basatlffarent features.

Accuracy gives the percentage of all true iderdifians. Partition entropy criterion is based orragm function,
which is defined in Equation (6):

1 C n
JQ= 'szuik log, (W) 6)

k=1i=1

Wheren is the number of protein samples in a given datases the number of clusters, angl denotes the
membership degree of tireh samples belonging to theth cluster. The clustering performance is improvethé
value of the function J(-) is smaller.

The discrimination of CS features is examined awothgared with previous features including amino acid
compositions and scale wavelet energy. Proteinsildhbe partitioned into two categories of secretedl
non-secreted types, which are regularly separatexhg the three species. The identification restthree datasets
are shown in Table 4.

Table 4. Clustering perfor mance based on different features

Eukaryotes Gram -ve bacteria Gram +ve bacteria
Feature Vectors
accuracy J(+) accurac] J(-) Accuracy J({)
Amino acid composition features 66% 1.00p0 75% @40 64% 0.9999
Scale wavelet energy features 769 0.6210 70% 0.629%2% 0.6810
CS features 94% 0.219¢ 90% 0.14B8 849 0.2P86

Most of the current published prediction algorithmeed specific training samples, and relativelg, thcognition
accuracy for unsupervised learning is generally. |I@wing much to the advantage of CS theory in capgu
important information, the proposed new CS featwaas achieve a high degress of recognition, antiéncase of
unsupervision the performance of CS is much bétter the other two features in Table 4.

CONCLUSION

Appropriate feature expression is an importantifiatttat influences the effectiveness of recognitlarthis paper, we
have described a novel technique to extract therfeaector of signal peptides by introducing tevprful theory of

CS. Previous studies have shown that CS has ertpleformance features in the context of acquihigd-density

and important information when compressing spaigeats. Therefore, CS feature vectors as optingth-aensity

information, includes all of the original signals.the numerical experiments, high recognition aacy has been
achieved based on CS feature vectors even in Seeafaunsupervised leaning without training samgleaddition,

the Markov transfer frequency matrix used in outhrod is not the only way to quantifiably repressighal peptide
information. Alternatives with meaningful formulatis are desirable and should be exploited in thedu
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