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ABSTRACT 
 
In this paper, we propose a novel mathematical expression of signal peptide that can truly reflect the intrinsic 
attributes of the sequence. To deal with every signal peptide that displays diverse length, we first transformed the 
original sequence into Markov transition matrix with a unified size. Next we obtained the expansion sparse vector on 
a unit orthogonal basis, and finally utilized random projection of compressive sensing (CS) to obtain an accurate 
feature expression. Analyzing from the perspective of traditional mathematical theory, we determined that the feature 
vector abstracted by CS was the optimal combination of the original information (amino acid composition, sequence 
order, and so on). Thus, the new method can be regarded as a comprehensive development of high-density 
discriminative information extraction. The experimental results suggested that the CS feature expression has the 
approving determinant and has the potential for future research and applications in the development of feature 
extraction. 
 
Key words: Compressive sensing, Sparse representation, Markov transfer matrix, Signal peptide, Feature extraction, 
Secretory proteins. 
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INTRODUCTION 
 

Many proteins of model organisms can be found released into the culture medium supernatant by a number of different 
secretory pathways. In this process, the signal peptide is a functionally special segment that guides newly synthesized 
proteins through the secretory pathway. A growing application of signal peptides in the biotechnological industries  
concerns the expression and secretion of proteins [1].  
 
Feature analysis and identification of signal peptides has the potential to increase our understanding of protein 
transport mechanisms, and could contribute to the industrial-scale production of important natural proteins. However, 
the amino acid composition and the length of the signal peptide vary significantly according to the specific species. In 
addition, many signal peptides from the same species are also different, which has caused considerable difficulties and 
challenges in attempts to identify the signal peptide [2]. 
 
The original signal peptide sequence is represented by amino acid symbols, which cannot be directly calculated by the 
analysis algorithms. To facilitate data representation and processing, the sequence of symbols must be converted to 
numerical data expressed as a feature vector prior to calculation. The main purpose to feature extraction methodology 
is to obtain a set of numerical features that are most effective for identification, and that reflect the intrinsic properties 
of the investigated object from several aspects or in the context of a particular aspect. So, feature extraction plays a key 
role in an intelligent algorithm for signal peptide identification.  
 
Compressive sensing/sampling theory (CS) [3-5], as an abstract mathematical idea concerning sparse representation, 
was proposed by Donoho and Candès et al. in 2006. CS has breach traditional thinking in linear sampling methods of 
information theory, and established a new theoretical framework for signal sampling and processing based on sparse 
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representation and optimization theory. Past studies of CS theory demonstrated that as long as the high-dimensional 
signal is compressible on a transform basis, the signal could be projected onto a low-dimensional space by a 
measurement matrix, which is irrelevant to the transform basis. Further, if the signal expression is sparse enough, the 
sparsest representation has an acceptable discriminating effect. CS theory performs very well in the context of 
acquiring high-density information, and has now been developed and applied in various areas where researchers have 
exploited it for feature extraction and recognition, including sparse representation-based classification algorithm for 
medical images [6], mathematical framework of cost-effective genotyping protocols to detect severe genetic diseases 
[7], and techniques applied to spectrum hole identification for wideband cognitive radios [8], etc.  
 
In this paper, we have developed a new technique of feature extraction for signal peptides using the effective 
representation of sparse signals. The objective is to quantify and transform some important attributes of signal peptide 
sequence, such as amino acid composition, sequence order, etc., into sparse representations, and to use CS technology 
to extract high-density discriminatory information as the feature vector. 
 

MATERIALS AND METHODS 
 

Since the symbol sequence of a signal peptide cannot be directly used as computational data, generally, the first and 
necessary step of an analysis is to pre-process the original sequence to form a numerical feature vector. The task of 
feature extraction requires us to formulate an effective mathematical expression of sequences that can truly reflect the 
intrinsic attribute of the signal peptide. Fortunately, CS is present as a promising theory to satisfy our demands. 
 
The projection process of CS is the dimensional conversion, which can preserve such important information as 
composition or structure of the signal and in the meantime has the potential of reducing data redundancy. So CS is 
considered a potential effective method of feature extraction.  
 
2.1 Compressive Sensing (CS) Theory 
Compressive sensing uses transformed space to describe the signal sampling, in which the mass sampling of sparse 
signals is compressed into projected information with less data (referred to as observation values). A commonly used 
approach for obtaining effective observation values is random linear projection. Conversely, the original signal can be 
faithfully reconstructed with the observations by solving a series of optimization problems or approximation problems 
[9, 10]. 
 

Supposing a discrete-time signal Nx R∈ of length N can be expanded by a set of orthogonal basis vectors 

1 2[ , ,..., ]NΨ = Ψ Ψ Ψ , that is: 

ψθθψ ==∑
=

N

i
ii

1

x                                                                                                                                                            (1) 

 
WhereΨ is an orthogonal matrix with each column ( 1,2,..., )i i NΨ =  corresponding to a basis function of sparse 

transform, which can be Wavelet transform, Discrete-Cosine transform, or Fourier transform, depending on the 
application. Then, θ=[θ1 ,…,θN]T is the transformed vector consisting of the N coefficient expression defined as 

ii ,θ ψx= (i=1,2 ,…, N). Assuming that the sampling signal x only contains ( )K K N<<  non-zero coefficients on the 

orthogonal basis Ψ , signal x is then generally considered to be sparse or compressible. 
 
Then signal x can be compressed by an M×N (M<N) measurement matrix Φ, which obtains a low-dimensional vector, 
and is expressed as the following: 
 

xs Φ=                                                                                                                                                                            (2) 

 

Where MR∈s indicates the projected vector of M linear measurement components. Substitute equation (1) into 
equation (2), so that we have  
 

θψθ Θ=Φ=s                                                                                                                                                                  (3) 

 
Now, the original signal x has been reduced with the ratio M/N. It is worthwhile realizing that the measured signal s is 
not the exact value of signal x, but is essentially the projected value from high-dimension to low-dimension. Analysis 
from the perspective of traditional mathematical theory, informs us that the measurement vector projected by CS is the 
optimal combination value of the original signal. In other words, the measurement value is a less volume of 
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high-density information including all of the signals in the original sampling.  
 
Here the measurement matrix needs to satisfy the condition called Restricted Isometry Property (RIP) [4]: That is 

εε +≤Φ≤ 1-1
22

vv . Thus, the linear measurement should have stable energy properties. The restricted 

isometry of the observation matrix furnished a theoretical guarantee for faithfully reconstructing the compressible 
signal from observation values. An equivalent condition of RIP is Incoherence, which means that the measure 
matrix Φ and the sparse matrix Ψ cannot be representation each other. According to previous studies, the 
measurement matrix selected as a Gaussian random matrix will has a high probability of incoherence with an arbitrary 
sparse base, and also allows the conditions of restricted isometry to be satisfied [11, 12]. 
 
2.2 Markov Transition Matrix of the Signal Peptide 
Markov chain is a widely applied mathematic model that reveals the collection of state distribution on a sequence [13]. 
Typically, the signal peptides are described using limited symbols to denote 20 kinds of natural amino acids. Should 
these residues on the chain be regarded as state parameters, it follows that the sequences of the amino acids will 
express a series of transition of state. In this way, a finite stationary Markov model can be constructed based on symbol 
distribution to reflect the intrinsic relationship and further permits detection of the comprehensive information of 
signal peptide sequences. 
 
In order to quantitatively describe the state transition behavior on a given signal peptide, we defined a 20×20 Markov 
matrix whose rows and columns were denoted by amino acids to represent the frequency of occurrence of each 
dipeptide. Assume that U(i, j)={(Ri, Rj), z}, that is to say in the frequency matrix U, the element value located in the 
i-th row (denoted by amino acid Ri), j-th column (denoted by amino acid Rj) is numerical z. Wherein Ri is the previous 
residue of a dipeptide and Rj is the latter, z is the transition frequency from Ri to Rj through the full sequence. Thus, we 
find that the pair-wise residues (Ri,Rj) in matrix U correspond to their respective denotation, and give the assignment 
U(i, j)=z. Thus, the Markov matrix that reflects the composition of the dipeptide and the series of state relations on a 
sequence can be constructed.  
 
For example, the signal peptide of the secreted protein AIDA_ECOLI from Gram-negative bacteria is as follows: 
“MNKAYSIIWSHSRQAWIVASELARGHGFVLAKNTLLVLAVV”. After we successively process the pair-wise 
residues from the beginning terminal to the end, this symbol sequence converted into a unified Markov matrix has the 
following design:  
 

Table 1. Markov transfer frequency matrix of signal peptide AIDA_ECOLI 
 

 C S T P A G N D E Q H R K M I L V F Y W 

C                     

S         1  1 1   1      

T                1     

P                     

A  1          1 1    1  1 1 

G           1       1   

N   1          1        

D                     

E                1     

Q     1                

H  1    1               

R      1    1           

K     1  1              

M       1              

I               1  1   1 

L     3           1 1    

V     1           2     

F                 1    

Y  1                   

W  1             1      

 
Obviously, the frequency of occurrence of all dipeptides are included in the matrix, wherein the numerical cell implies 
that the dipeptide was present in the sequence, whereas the blank cell means that the dipeptide never occurred and had 
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a default value of zero. In the rest part of this paper, the Markov Matrix in shortened form will refer to the Markov 
transfer frequency matrix. 
 
2.3 Feature Extraction by Compressive Sensing 
According to the construction principle of the Markov Matrix, it is reasonable to understand that the number of digits 
in matrix U is not more than L-1 (where L is the length of a given signal peptide), because the maximum number of 
dipeptides in the full sequence is L-1. In view of the facts that the signal peptide is generally composed of 15 to 60 
amino acids [2], L is dramatically smaller than the size of the Markov matrix (i.e. 400L << ). One could perceive that 
an important characteristic of the matrix U is that the non-zero elements are very sparse and the remaining elements 
are zero. 
 
For subsequent analysis and recognition, only small portions of these data in matrix U are needed. However, most of 
the useless redundancy will be discarded when permitted. Such property is consistent with that of sparse signals 
(wherein only very few coefficients are non-zero relative to the signal length). Therefore it is most applicable for the 
spare matrix U to exploit the randomly projected method by CS technique. 
 
We can obtain a 400-dimensional digital signal by row expansion of the Markov Matrix. In virtue of the sparse 
property of the expansion signal, we can directly use the unit orthogonal basis as the sparse base. Besides, in order to 
satisfy the RIP condition mentioned in Section 2 above, (as a high probability is possible), the independent and 
identically distributed Gaussian random matrix is selected as the measurement matrix.  
 
Under these conditions, then we can perform the operation of random projection according to equation (3). The result 
of the inner product expressed by a low dimensional observed signal is essentially the extracted feature vector of the 
signal peptide. Figure 1 shows the key steps of feature extraction.  
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.  Key steps involved in the feature extraction by compressive sensing 
 
The inputs are symbol sequences of signal peptides and the final outputs are the feature vectors. Expatiations of the 
denotations in fig. 1 are as follows: 
Q：：：： denotes the original signal peptide sequence expressed by amino acid symbols; 
U：：：： is a 20×20 Markov transition frequency matrix; 
x：：：： is a 400-dimensional expansion signal of matrix U; 
ψ：：：： is a 400×400 sparse basis, unit orthogonal basis E is selected in this paper; 
θ：：：： denotes the conversion signal of x on the sparse basis ψ, if ψ = E, then θ = x; 
Φ：：：： is a M×400 measurement matrix, here Gaussian random matrix obeys the uniform distribution on [5, 0.1] is 
selected;  
Θ：：：： is a M×400 filter matrix, Θ = Φ×ψ. 
s：：：： denotes the m-demensional measurement signal after compression, which is the expected feature vector of Q; 
 
Remarkable advantages of the processing sensor theory including an ability to maintain sufficiently important 
information when sparse signals are compressed. Consequently, the fundamental nature of our method, and its main 
properties are also vested in maintaining the dipeptide composition and transition behavior of the Markov matrix U, 
which are finally combined in the optimal low-dimensional observed signal (vector s). This vector is the desired 
effective information that reflects the intrinsic properties of the signal peptide, and the subsequent identification of the 
secretory protein can be successfully performed using this high-density information. 
 
The Markov matrix in our method contains the occurrence frequency of amino acid residues, and at the same time 
reflects the sequence order of amino acids and the inherent structural information of the dipeptide. Essentially, it can 
be regarded as a comprehensive method of multiple feature extraction, including amino acid composition [14], 

Q              U             x                 ψ.θ                                  Φ.ψ.θ                                  Θ.θ                  s 
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sequence order method [15] and sequence wavelet decomposition [16, 17]. 
 
 
NUMERICAL EXPERIMENTS AND RESULTS DISCUSSION 
Benchmark datasets used in our experiments were obtained from the following website: 
http://www.cbs.dtu.dk/ftp/signalp [18], which was released by Nielsen et al. We chose three different species: (1) 
Eukaryotes; (2) Gram +ve bacteria; and (3) Gram -ve bacteria. For the secretory proteins, the extended sequences of 
the signal peptides were given in the dataset, which included the sequence of the signal peptide plus the nearest 30 
amino acids of the mature protein.  
 
Such simplified fragments are reasonable because they maintain the characteristics of signal peptides without 
neglecting the effect of neighboring sequences. But for the non-secretory proteins of negative sample, since no signal 
peptide exists, the data sets gives the first 70 amino acids of each sequence. Detailed information of the datasets is 
(Table 2) below: 
 

Table 2. Numbers of protein sequences in three datasets 
 

Species Secreted proteins Non-secreted proteins Total 
Eukaryotes 1009 269 1278 
Gram- bacteria 265 186 451 
Gram+ bacteria 140 64 204 
Total 1414 519 1933 

 
Since a few entries in the original dataset were found to contain uncertain residues denoted as “X” that were included 
in the sequence, X might be glutamic acid, proline, or glycine. In order to improve the quality of the data and to obtain 
a result without bias, such sequences were removed manually. Therefore protein sequences listed in Table 2 excluded 
four entries: KV4A_MOUSE and CAS1_SHEEP (Eukaryotes), GUN5_THEFU (Gram +ve bacteria), 
OMPH_YEREN (Gram -ve bacteria). 
 
3.1 Effectiveness of the CS Feature Vector 
We extracted 20D (M = 20) numerical feature vectors of the protein sequences (Table 2) using new methods that we 
proposed in Section 2. Further, in order to properly and objectively examine the effectiveness of the CS features (for 
comparisons with other features, we named ours as the CS feature), we evaluated the new features according to the 
following indices: that is the trace of intra-class scatter matrix tr(Sw) and the trace of the inter-cluster scatter matrix 
tr(Sb).  
 
A small intra-cluster distance and a large inter-cluster distance will induce an acceptable recognition result. Therefore 
the smaller the ratio of tr(Sw)/tr(Sb), the better the recognition performance. The indices are defined as: 
 

( ) ( )

1 1

( )( )
kNC

k k T
w k ki i

k i

S
= =

= − −∑∑ x m x m
                                                                                                                                (4) 

1

( )( )
C

T
b k k k

k

S N
=

= − −∑ m m m m
                                                                                                                                         (5) 

 
Where denotes the feature vectors of proteins, C is the number of clusters, Nk is the number of samples belonging to 
class k, 

1 2
[ ,   , , ]T

k k k kL
m m m=m L is the mean vector of class k, and m is the mean vector of all samples in one dataset. 

Table 3 shows the values of this performance index. As compared with the traditional features of amino acid 
composition and scaled wavelet energy, the compressive sensing features have the best anticipated separability of the 
three types of datasets. 
 

Table 3. Indicators of different feature vectors 
 

Species 
tr(Sw)/tr(Sb) 

Amino acid composition features Scale wavelet energy features Compressive sensing features 
Eukaryotes 20.7469 7.6608 0.5180 
Gram -ve bacteria 12.7370 4.9372 0.5758 
Gram +ve bacteria 11.8218 6.6286 1.9722 

 
In order to visualize the distribution of CS feature vectors, and at the same time, keep their distance relationship 
among original samples as far as possible, we project the CS features onto 2D space using a linear mapping method 
[19], from which we can get 2D data from the 20D input; the projected results are shown in Figure 2. We can see that 
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the secretory and the non- secretory proteins can be substantially distinguished. The separability of Eukaryotes is the 
best example of the three species. However, Gram -ve and Gram +ve datasets are somewhat overlapping, and such 
visual phenomena are consistent with the separability indicators in Table 3. 
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(a)                                                       (b)                                                              (c) 

Figure 2. Two-dimensional mapped distribution of the CS features, (a) Eukaryotes, (b) Gram -ve bacteria, (c) Gram +ve bacteria 
 
3.2 Recognition Effect of CS Feature Vector 
We employ the popular fuzzy clustering algorithms (FCM) which has been increasingly and widely used by 
investigators in theoretical and practical applications to accomplish the task of recognition. Here we used two indices; 
(1) Identification accuracy and (2) Partition entropy to evaluate the clustering performance based on different features. 
 
Accuracy gives the percentage of all true identifications. Partition entropy criterion is based on entropy function, 
which is defined in Equation (6): 

∑∑
= =

=⋅
C

k

n

i
ikik uu

n 1 1
2 )(log

1
-)J(                                                                                                                                    (6) 

 
Where n is the number of protein samples in a given dataset, C is the number of clusters, and uik denotes the 
membership degree of the i-th samples belonging to the k-th cluster. The clustering performance is improved if the 
value of the function J(·) is smaller. 
 
The discrimination of CS features is examined and compared with previous features including amino acid 
compositions and scale wavelet energy. Proteins should be partitioned into two categories of secreted and 
non-secreted types, which are regularly separated among the three species. The identification results on three datasets 
are shown in Table 4.  
 

Table 4. Clustering performance based on different features 
 

Feature Vectors 
Eukaryotes Gram -ve bacteria Gram +ve bacteria 

accuracy J(·) accuracy J(·) Accuracy J(·) 
Amino acid composition features 66% 1.0000 75% 1.0204 64% 0.9999 
Scale wavelet energy features 76% 0.6210 70% 0.6299 62% 0.6810 
CS features 94% 0.2197 90% 0.1488 84% 0.2286 

 
Most of the current published prediction algorithms need specific training samples, and relatively, the recognition 
accuracy for unsupervised learning is generally low. Owing much to the advantage of CS theory in capturing 
important information, the proposed new CS features can achieve a high degress of recognition, and in the case of 
unsupervision the performance of CS is much better than the other two features in Table 4. 
 

CONCLUSION 
 

Appropriate feature expression is an important factor that influences the effectiveness of recognition. In this paper, we 
have described a novel technique to extract the feature vector of signal peptides by introducing the powerful theory of 
CS. Previous studies have shown that CS has excellent performance features in the context of acquiring high-density 
and important information when compressing sparse signals. Therefore, CS feature vectors as optimal high-density 
information, includes all of the original signals. In the numerical experiments, high recognition accuracy has been 
achieved based on CS feature vectors even in the case of unsupervised leaning without training samples. In addition, 
the Markov transfer frequency matrix used in our method is not the only way to quantifiably represent signal peptide 
information. Alternatives with meaningful formulations are desirable and should be exploited in the future. 
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