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ABSTRACT 
 
In this study, a new molecular docking method is presented to improve the docking accuracy. We introduce to 
docking design a concept of residue groups based on induced-fit and use K Score (a kind of PMF scoring function) 
to score the docking position. Genetic algorithm with the multi-population evolution and entropy-based searching 
technique with narrowing down space is used to solve the optimization model for molecular docking. To evaluate 
the method, we carried out a numerical experiment with 134 protein–ligand complexes of the publicly available 
GOLD test set. Through the comparison with other popular docking software, the proposed method showed the 
higher accuracy. The average computing time of this study is 44.1s, that made it has advantages in the virtual 
screening. Among more than 61% of the complexes, the docked results were within 2.0 Å according to Root-Mean-
Square Deviation (RMSD) of the X-ray structure.  
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INTRODUCTION 
 

Molecular docking is to simulate the interactions of two molecules (such as ligand and receptor)and to predict their 
binding mode and affinity. It predicts the conformation of a ligand within the active site of a receptor and search for 
the low-energy binding modes[1]. Molecular docking is widely used in virtual screen, and some successful cases 
have been reported[2].A fundamental problem with molecular docking is that orientation space is very large and 
grows combinatorially with the number of degrees of freedom of the interacting molecules. Therefore, simpler and 
efficient methods are continuously being researched into. 
 
Over the past two decades, many automated docking approaches have been developed and can be classified as rigid-
docking, flexible ligand-docking and flexible protein-docking methods. The rigid-docking methods, such as the 
DOCK program [3], treat both ligands and proteins as rigid. In contrast, ligands are considered flexible and proteins 
rigid for flexible ligand-docking methods, including evolutionary algorithms [4-5], simulated annealing [6], 
fragment based approach[7], and other algorithms [8–9]. The consideration of protein flexibility is not important 
than that of ligand flexibility. Protein flexibility has been ignored inmost docking programs since the evaluation of 
protein-ligand interaction energies at all possible docking configurations isa prohibitively time consuming process. 
However, it has become increasingly clear that protein flexibility plays a paramount role in protein-ligand complex 
formation and should be considered during the docking process [10-11]. 
 
The knowledge-based scoring methods that emerged in recent years are in essence designed to reproduce the 
experimental structures (binding poses) of ligands binding to receptors. The potential (more accurately referred to as 
potential mean force, PMF) of such a method is directly derived, according to the inverse Boltzmann law, from the 
statistical analysis of different types of atom pairs encoded in available crystal complex structures. These methods 
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capture every interaction term implicitly (including salvation and the entropic effect) with an obvious advantage that 
it can be constructed without any knowledge of the binding data, and thereby they can be used to score novel ligands 
that are different from molecules in the training sets. K Score[12], a kind of PMF scoring function, is considered in 
this study. 
 
Molecular docking is a difficult optimization problem. It contains a large number of design variables. The objective 
function is a highly nonlinear function, and it is an implicit function of the design variables. To solve it may involve 
a costly computational effort. An iteration scheme in conjunction with the multi-population evolution and entropy-
based searching technique with narrowing down space was used to solve the optimization model for molecular 
docking. In order to evaluate the new optimization model and docking method, we have conducted a numerical 
experiment with 134 protein–ligand complexes from the publicly available GOLD test set 
(http://www.ccdc.cam.ac.uk/). Comparisons with six other docking programs show that docking accuracy has been 
significantly improved by this study. 
 

EXPERIMENTAL SECTION 
 
In molecular docking, the process of finding the best pose is an optimization problem. The problem can be described 
as follows: 
 
min 

 ( ) 0, 1, 2,i

F(X)

s.t. g X i n< = L

                                                                                                                             (1) 

 
Where, X is a vector of design variables, indicating the orientation and conformation information of a ligand. Due to 
the computational reasons, it is always assumed that the ligand is flexible and that the receptor is rigid. So X can be 
defined as follows: 
 

{ }1 2, , , , , , , , ,
T

x y z x y z b b bnX T T T R R R T T T= L                                                                                           (2) 

 
Where, Tx, Ty and Tz are the position coordinates of the ligand; Rx, Ry and Rz are the rotational angles of the ligand; 
Tb1, Tb2, …, Tbn are the torsion angles of the rotatable bonds of the ligand. The constraints gi(X), i=1, 2… n are 
shown as follows: 
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(3) 

 
In the above model, we only consider the ligand flexibility. However, changes in the receptor structure upon ligand 
binding are frequently observed [13], and as such, both the structure of the ligand and the receptor change during the 
binding process. We introduced the concept of the residue groups in the receptor. The residues within the binding 
site are divided into several residue groups, and the center coordinates of each residue group introduced into the 
optimization process as design variables. Thus we establish a refined-scale optimization model based on the problem 
(1), and added the following design variables: 
 

{ } T
1x 1y 1z mx my mzC ,C ,C ,...,C ,C ,C                                                                                                                            (4) 

 
Where m is the number of residue groups, and (Cix,Ciy,Ciz)(i=1,2,...,m) are the positional coordinates of the center for 
each residue group. And the constraints added are introduced into g(X)as: 
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The knowledge-based scoring function commonly refers to Potential of Mean Force (PMF). Completely different 
from force-field scoring, knowledge-based scoring considers docking problem from another point of view. 
According to the inverse Boltzmann law, it can be directly derived from the statistical analysis of different types of 
atom pairs encoded in available crystal complex structures. The scoring function K Score is considered in this study 
and defined as follows: 
 

( )
( ) ln ( )

cut off cut off

ij
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pl pl bulk
r r r r

r
KScore A r K T f r

ρ
ρ

− −

−
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Where, KB is the Boltzmann constant; T is the absolute temperature; jvol corrf −  is the ligand volume correction factor; 

( )ij
seg rρ  is the number density of atom pair ij  that occurs in a spherical shell with a thickness of ∆r ranging from r 

to r+∆r; ij
bulkρ  expresses the number density when no interaction occurs between i and j. 

 
Eq. (1) is a complex single-objective and multi-constraint optimization problem. Because of the huge searching 
space, it is very difficult to get the best solution. Genetic algorithms (GA) provide such a capability of adaptation 
and searching in many optimal design problems. In this study, an improved adaptive GA is adopted[14], in which an 
entropy-based searching technique with multi-population and the quasi-exactness penalty function is developed to 
ensure rapid and steady convergence. 
 
For multi-population genetic strategy, the genetic algorithm begins from generating arbitrarily m populations with 
all the same searching space, i.e. design space. For the improved genetic algorithm with narrowing of the search 
space, we need only to know efficient narrowing coefficients for the searched space. Shannon’s theorem has wide-
ranging applications in both communications and data storage applications. This theorem is of foundational 
importance to the modern field of information theory. There are similarities between the process of optimization and 
communication of information theory. Information entropy or Shannon entropy H of a discrete set of probabilities 
p1, …, pn is defined by: 
 

ln
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= ∈
∑

∑
                                                                                                                                           (7) 

 
To evaluate the method, we performed the numerical experiment with 134 protein–ligand complexes from the 
publicly available GOLD test set. This set was originally proposed by Jones[15].The hardware environment is: 
IntelE5620, quad-core CPU, 2.4GHz, 8GB RAM. Docking accuracy is the primary criterion to evaluate docking 
methods[16]. It is based on the RMSD values of the locations of all of the heavy atoms in the crystal structure. In 
general, the docking accuracy is acceptable if the RMSD value between the docked pose and X-ray crystal structure 
is less than 2.0 Å. To date, many docking programs are available. Glide[17], GOLD[15], Surflex[16], Flex X[18] 
and Dock6[19] are the commonly used docking programs. The above programs are based on the assumption of rigid 
receptor for the assumption is conducive to cut off computing time largely. Docking results of flexible receptor are 
often better than rigid receptor’s. In the study, we selected Dock6 (with flexible default parameters) as a flexible 
receptor program. Table 1 presents the ratios at different RMSD ranges of these programs. 
 

Table-1RMSD ratios of this study and 6 commonly used docking programs. 
 

RMSD 
Percent (%) 

This study Glide GOLD Surflex Flex X DOCK6 Dock6-F 
≤0.5 0.20 0.29  0.08  0.16  0.03  0.15  0.09 

>0.5, ≤1.0 0.23 0.19  0.27  0.32  0.18  0.15  0.32 
>1.0, ≤2.0 0.18 0.23 0.31 0.29 0.28 0.32 0.39 
>2.0, ≤3.0 0.16 0.09 0.05 0.06 0.10 0.12 0.10 
≥3.0 0.23 0.20  0.28  0.17  0.40  0.27  0.09 

Avg. RMSD 2.27 1.98 3.19 2.15 3.69 2.13 1.46 
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CONCLUSION 

 
With the method proposed in this study, we obtained 27(20%) excellent docking solutions with a RMSD value 
below 0.5 Å, 55 (41%) good predictions with RMSD between 0.5 and 2.0 Å and only 31 (23%) wrong predictions 
(RMSD value larger than 3.0 Å). And the average RMSD obtained in this study is 2.27. In the view of RMSD, the 
method proposed in this study is good among these programs.  
 
Computing time is another important evaluation criterion for a docking method, especially in virtual high throughput 
screening. GA can find the optimum solution under the probability of 1 if the iteration number becomes large 
enough. The docking accurate of this study could be better if it has more computing time. However, simply improve 
the docking accurate is pointless, without considering calculation efficiency. The minimum computing time with the 
method proposed in this study is 6.7s, maximum computing time is 171.8s. The average computing time of this 
study is 44.1s, while the average computing time ofDock6 (with flexible default parameters) is 590.6s. Computing 
time is so good that made it has advantages in the virtual screening. 
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