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ABSTRACT

In this study, a new molecular docking method isspnted to improve the docking accuracy. We intedo
docking design a concept of residue groups basedduced-fit and use K Score (a kind of PMF scoffumgction)

to score the docking position. Genetic algorithnthvithe multi-population evolution and entropy-basearching
technique with narrowing down space is used toestihe optimization model for molecular docking. eMaluate
the method, we carried out a numerical experimeith W34 protein—ligand complexes of the publichaitable

GOLD test set. Through the comparison with othepytar docking software, the proposed method shothed
higher accuracy. The average computing time of #higly is 44.1s, that made it has advantages invitigal

screening. Among more than 61% of the complexesjdbked results were within 2.0 A according to tRean-

Square Deviation (RMSD) of the X-ray structure.
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INTRODUCTION

Molecular docking is to simulate the interactiofigveo molecules (such as ligand and receptor)angtédict their

binding mode and affinity. It predicts the confotioa of a ligand within the active site of a reaapand search for
the low-energy binding modes[1]. Molecular dockisgwidely used in virtual screen, and some sucoéssfses
have been reported[2].A fundamental problem witHemwlar docking is that orientation space is vemgé and
grows combinatorially with the number of degreedreédom of the interacting molecules. Therefor@pter and

efficient methods are continuously being researéhted

Over the past two decades, many automated dockipigaches have been developed and can be classifiegid-
docking, flexible ligand-docking and flexible protedocking methods. The rigid-docking methods, sashthe
DOCK program [3], treat both ligands and proteiggigid. In contrast, ligands are considered flex#nd proteins
rigid for flexible ligand-docking methods, includjnevolutionary algorithms [4-5], simulated anneglif6],
fragment based approach[7], and other algorithm®][8The consideration of protein flexibility is mnomportant
than that of ligand flexibility. Protein flexibilithas been ignored inmost docking programs sineetaluation of
protein-ligand interaction energies at all possideking configurations isa prohibitively time caonsing process.
However, it has become increasingly clear thatginoflexibility plays a paramount role in proteigdnd complex
formation and should be considered during the darkrocess [10-11].

The knowledge-based scoring methods that emergee@cent years are in essence designed to repratece
experimental structures (binding poses) of ligdnidsling to receptors. The potential (more accuyateferred to as
potential mean force, PMF) of such a method isctliyederived, according to the inverse Boltzmanm,lfrom the

statistical analysis of different types of atomrpancoded in available crystal complex structufémse methods
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capture every interaction term implicitly (includisalvation and the entropic effect) with an obgiadvantage that
it can be constructed without any knowledge oftiimeling data, and thereby they can be used to seorel ligands

that are different from molecules in the trainimgss K Score[12], a kind of PMF scoring functiomconsidered in
this study.

Molecular docking is a difficult optimization pradh. It contains a large number of design variabliég. objective
function is a highly nonlinear function, and itae implicit function of the design variables. Tdvgoit may involve
a costly computational effort. An iteration scheimeonjunction with the multi-population evoluti@nd entropy-
based searching technique with narrowing down spea® used to solve the optimization model for malsc
docking. In order to evaluate the new optimizatioadel and docking method, we have conducted a ricaher
experiment with 134 protein—ligand complexes fromhe t publicly available GOLD test set
(http://www.ccdc.cam.ac.uk/). Comparisons with aiker docking programs show that docking accuraxgy/ been
significantly improved by this study.

EXPERIMENTAL SECTION

In molecular docking, the process of finding thsthEose is an optimization problem. The problemlzadescribed
as follows:

min F(X)
s.t.g(X)<0,i=1,2;--n

1)

Where, X is a vector of design variables, indicating thiemtation and conformation information of a ligaie to
the computational reasons, it is always assumedhbdigand is flexible and that the receptoriggd: SoX can be
defined as follows:

T
X={T,,T,,T,R.R. R §. G, T} @
Where, T, T, andT, are the position coordinates of the ligaRyJ;R, andR, are the rotational angles of the ligand;
Th1, T2 ---» Tpn @re the torsion angles of the rotatable bondsefligand. The constraintg(X), i=1, 2... n are

shown as follows:

(3)

In the above model, we only consider the ligandlilfidity. However, changes in the receptor struetupon ligand
binding are frequently observed [13], and as sholh) the structure of the ligand and the receptange during the
binding process. We introduced the concept of #stdue groups in the receptor. The residues witienbinding

site are divided into several residue groups, &edcenter coordinates of each residue group intediinto the
optimization process as design variables. Thusstabésh a refined-scale optimization model basethe problem
(1), and added the following design variables:

{Clx’Cly’Clz""’an ’Qﬂy’cﬁlz-r (4)

Wheremis the number of residue groups, a@g,Cy,C,)(i=1,2,...,m) are the positional coordinates of theter for
each residue group. And the constraints addechamadiuced intay(X)as:
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Qix < Clx S ax

C,<C,<GCy i=1..m 5)

C,<C,<C
The knowledge-based scoring function commonly eeferPotential of Mean Force (PMF). Completely efiéint
from force-field scoring, knowledge-based scoringnsiders docking problem from another point of view
According to the inverse Boltzmann law, it can lirectly derived from the statistical analysis offelient types of

atom pairs encoded in available crystal complexcstires. The scoring function K Score is considénettiis study
and defined as follows:

Pheg(F)
Iolgulk

KScore= >, A()= D, —KTn| f o () (6)

I <reut—off I cut off

j

o—corr 1S the ligand volume correction factor,

Where Kg is the Boltzmann constarf;is the absolute temperaturé;

,Ogeg(r) is the number density of atom paithat occurs in a spherical shell with a thicknefsdr ranging fromr

to r+4r; pgu,k expresses the number density when no interactionrs betweenand;.

Eq. (1) is a complex single-objective and multi-staint optimization problem. Because of the hugarching
space, it is very difficult to get the best solatidgsenetic algorithms (GA) provide such a capabiit adaptation
and searching in many optimal design problemshigdtudy, an improved adaptive GA is adopted[idyyhich an
entropy-based searching technique with multi-papartaand the quasi-exactness penalty function ieldped to
ensure rapid and steady convergence.

For multi-population genetic strategy, the genatgorithm begins from generating arbitrarity populations with
all the same searching space, i.e. design spaceh&amproved genetic algorithm with narrowingthé search
space, we need only to know efficient narrowingficients for the searched space. Shannon’s thedvasnwide-
ranging applications in both communications andadstiorage applications. This theorem is of fouraaheaii
importance to the modern field of information thedrhere are similarities between the process tfrépation and
communication of information theory. Informationterpy or Shannon entropy of a discrete set of probabilities
P1, ---, @ is defined by:

H=->pinp
st>. p=1p0[0,1]

To evaluate the method, we performed the numeggakeriment with 134 protein—ligand complexes frdme t
publicly available GOLD test set. This set was imadly proposed by Jones[15].The hardware enviramnig
IntelE5620, quad-core CPU, 2.4GHz, 8GB RAM. Dockauguracy is the primary criterion to evaluate dogk
methods[16]. It is based on the RMSD values ofltleations of all of the heavy atoms in the crystalicture. In
general, the docking accuracy is acceptable iRRESD value between the docked pose and X-ray drgstacture
is less than 2.0 A. To date, many docking progranesavailable. Glide[17], GOLD[15], Surflex[16],eX X[18]
and Dock6[19] are the commonly used docking progtarhe above programs are based on the assumjtigido
receptor for the assumption is conducive to cutcofhputing time largely. Docking results of flexebdeceptor are
often better than rigid receptor’s. In the studyg selected Dock6 (with flexible default parameters)a flexible
receptor program. Table 1 presents the ratiosffareint RMSD ranges of these programs.

(7)

Table-1RM SD ratios of this study and 6 commonly used docking programs.

Percent (%)

RMSD This study Glide GOLD Surflex FlexX DOCK6 Dock6-F
<0.5 0.20 0.29 0.08 0.16 0.03 0.15 0.09
>0.5,<1.0 0.23 0.19 0.27 0.32 0.18 0.15 0.32
>1.0,<2.0 0.18 0.23 0.31 0.29 0.28 0.32 0.39
>2.0,<3.0 0.16 0.09 0.05 0.06 0.10 0.12 0.10
>3.0 0.23 0.20 0.28 0.17 0.40 0.27 0.09
Avg. RMSD 2.27 1.98 3.19 2.15 3.69 2.13 1.46
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CONCLUSION

With the method proposed in this study, we obtai@@&{0%) excellent docking solutions with a RMSDOuea
below 0.5 A, 55 (41%) good predictions with RMSCivaeen 0.5 and 2.0 A and only 31 (23%) wrong préatist
(RMSD value larger than 3.0 A). And the average RMibtained in this study is 2.27. In the view of BB, the
method proposed in this study is good among thesgrams.

Computing time is another important evaluationeei@n for a docking method, especially in virtugjththroughput
screening. GA can find the optimum solution undex probability of 1 if the iteration number becomase
enough. The docking accurate of this study coulBétter if it has more computing time. However, giyrimprove
the docking accurate is pointless, without consmdecalculation efficiency. The minimum computingé with the
method proposed in this study is 6.7s, maximum agmg time is 171.8s. The average computing timehaf
study is 44.1s, while the average computing tinieook6 (with flexible default parameters) is 590.6amputing
time is so good that made it has advantages inith&l screening.
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