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ABSTRACT

Image segmentation is a fundamental and challengioglem in image processing and often a vital $taphigh

level analysis. The aim of image segmentation divtille an image into different categories basedeatures, such
as intensity, color, histogram or context, wherehepixel in the image should belong to one class anly one
class. For the image segmentation by the histogifarasholds, several methods have been proposedevéow
image segmentation can be two-phase (two categasiemultiphase (more than two categories), the benof

categories becomes an important problem in thisl kihsegmentation. And the segmented results aicgptd the

thresholds whether or not consistent to the imagalso a problem should be considered. In this pape use the
bi-level threshold way to divide the image’s histog step by step until the total variance betwedenhistogram
and the fitting curve match the stop conditionser®these thresholds have been calculated, wehgssttucture and
contour characterization of the image to deal vitib rough result of the segmentation. Experimemgsililts and a
comparative study with the other efficient and knawultilevel threshold methods over synthetic agal images
have shown that the proposed method is consisighetimage contents especially in nature images.

Key words: Image segmentation; multilevel thresholds; Imagacture; Image contour.

INTRODUCTION

Image segmentation has been the subject of intemssearch and a wide variety of segmentation teubs has
been reported in recent decades. In general, irragmentation divides an image into related sectiwnggions,

consisting of image pixels having related datauieabr structure characterization values. It iseagential issue
since it is the first step for image understandamg any other, such as feature extraction, redogniand

matching[1-5], heavily depends on its results. Segfation algorithms are based on two significaiteda: the

homogeneity of a region (threshold) and the didooity between adjacent disjoint regions (conto@iiroage).

Since the segmented image obtained from the honedtgesriterion has the advantage of smaller storgapee, 1-
dimension problems, fasting processing speed asg imamanipulation, threshold techniques are cansid the
most popular.

Among the segmentation approaches, the techniqoesséparating objects from background image
discriminating objects from image that have didtigray-levels has led to the development of neveiefit methods
for segmenting different types of images. The gixslonging to the same object have gray levelsinva specific
range defined by two or several thresholds. To firethresholds which are generally located atvdileys of the
gray-level histogram, one may use parametric orpemametric approaches. In parametric approachesgray-
level distribution of each class has a probabilignsity function that is assumed to obey to a gidistribution
obtained by estimating its parameters, so thatfteb matches up the given histogram data. In roasgés, this
distribution is taken as Gaussian[6-8]. In the cak@on-parametric approaches, the thresholds btained by
optimizing an objective function, such as Otsu'di@jction or the Kapur’'s[10] function, accordinggome criteria,
without estimating the parameters of the two distiibns. Some authors utilized the two approachethéir
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thresholding method. In this method, the histogimagpproximated by a bi-level function for dividiag image into
two regions, and then, the thresholds are detedriyeminimizing the sum of square errors or thaarare of the
two regions. Progressively, the thresholding openahas evolved from the bi-level thresholding he multilevel

stage. In bi-level thresholding, the histogramhaf image is usually assumed to have one valleydstwwo peaks,
which correspond to the background and the objgfatsis image. If the advantage of bi-level thrddimy methods
is to give satisfactory results in cases where itriown a priori that the image contains only twingipal gray
levels, the main drawback is that they are very matationally time consuming when extended to megl

thresholding, since they search thresholds forntiping objective functions. However, in the extemsof these
methods to the multilevel case, some problems baypeared. The first one is the computation timeciwiis still

relatively high depending on the complexity of thage to be processed. The second problem is haletesmine
the threshold number, corresponding to the numbéheoregions constituting the image. Finally, thensitional

boundaries of the image regions can’t be simplgmeined by one or more thresholds.

To overcome the first problem, several fast techesghave been proposed. Some of them are desigpedialy
for computation acceleration of a specific objeetfunction [11-13], while others are designed toubed with a
general purpose. Sequential dichotomization [14-06§ an iterative scheme and meta-heuristic opdiioiz
methods[17, 18] to realize the quickly compute lofeshold. Furthermore, in another approach, irerord
accelerate the calculation of thresholds resedhehresolution of the histogram is first reducethgghe wavelets
transform. After that, the optimal thresholds ae¢edmined faster by optimizing the objective fuootbased on an
exhaustive search [19] or through meta-heuriskos.the same purpose, Chang and Wang [20] use -pds® and
high-pass filter repeatedly for adjusting the peakssalleys to a desired number of classes. Theeyalin the
filtered histogram are then considered as threshaliges. In [21], the authors propose the histogsamothing by
convoluting it with a Gaussian filter for extragirthe peaks and the valleys. In [22], Arifin andaAs use
hierarchical clustering method to solve the multlethresholding problem. Each non-empty gray levklthe
histogram is, initially, considered as a separadelerrepresenting a cluster. Then, the similarbietsveen adjacent
clusters are computed and the most similar pairesged. The estimated thresholds which are defisetie highest
gray levels of the clusters are obtained by itagathis operation until the desired number of @usis found. In
[23], Chen and Wang use the support vector regresas a fitting tool rather than other histogranosthing
techniques and the support vectors on boundary JB®/determined to provide candidate thresholtie. dptimal
threshold values are then obtained by seeking atfttn®SV set where negative to positive transitibthe first-
order derivatives of the fitted histogram is ocingr It can be pointed out that the Otsu’s functismodified by
incorporating a weight in order to ensure that theeshold values will always stand in the valleyith®
histogram[24, 25].

The Gaussian functions curve fitting and other teltisg solutions, as mentioned above, want to fimal correct
clusters which accordance to the histogram. Altlhothg Gaussian mixture model has the inconvenienfichaving

no systematic or analytic solution, slow convergeand high computational cost [26], it representiexible

method of statistical modelling with a wide variaif scientific applications [27]. In general, GMvilves the
model selection, i.e., to determine the number ahgonents in the mixture (also called model ordand the
estimation of the parameters of each componenhénntixture that better adjust the statistical md@gmlissian
mixture model is considered a difficult optimizatitask as above mentioned. As an optimization prablthe
presented here requires an objective function, kvimekes use of Hellinger distance to compare thedaMlidate
and the original histogram. This distance measwesvwith probability density functions, makingaippropriates
to the problem presented in this work, and was shihat this distance is the most suitable to cors@ minimum
distance estimator[28-30].

For the purpose of calculating the thresholds, iptevstudies performed to assess the performano&pPSO, and
ABC algorithms included the work in [31] showingathABC performs better than PSO, and DE on a fite
classical benchmark functions. It was shown thatglrformance of ABC is better or at least simitean DE and
PSO while having a smaller number of parametersute. In [32, 33] several DE variants were empilyca

compared over a benchmark of 13 functions, findirag the versiod€St/ 1/ bir has the best behavior regardless
quality and robustness. A study comparing variaiohPSO over power systems is made, finding ttmenhhanced
general passive congregation PSO shown the befirpance, but also has a high computational cobe T
aforementioned studies suffer from one limitatithe comparisons are based on a set of synthetatidns with
exact and well-known solutions and none of themevegplied to image processing. The proposed studscomes
such drawbacks by assessing the performance dfethef evolutionary algorithms when they are apbbie the
image processing problem of segmentation, partilyubaulti-threshold segmentation, where an exattgm does
not exist.
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Few papers have been published in the literaturesdtving the problems of the threshold number tredimage
structure. In most cases, they focus on the optthmralsholds number, which optimizes a cost functammd then

determined. Y. Zou etc. [8]use the bidirectionatrietion methods automatically calculate the loweund fI and
the upper boundh of the gray level distribution of the transitiorgien. The pixels with gray level in the interval

[ f, fh] are treated as the transition region. The effeciverage gradient (EAG) approach [34] is a repitatign
among the bidirectional restriction methods. TheGE&ethod uses the clip transformation followed bynputing
the effective average gradient to obtain the loeund fI and the upper bounﬂn. The EAG method is fully
automatic, and no limitations in shape and sizelpécts are imposed. This method, however, facesprmary
limitations: (1) for the relatively complex imagefe gray level intervailfl, fh] is often too loose, which will

misclassify many object or background pixels inte transition region; (2) Groenewald et al.[35] i@ the
existence offI > fh. In this case, the transition region cannot beaextd, and this has been experimented in [8],

wheref, > f_occurs 3 times among all 50 real images.

Generally, the threshold segmentation of imagedmiy focus on the calculation of the thresholdsoading to the
histogram of the processing image and then usieghtesholds to divide the image gray into somegmaies. The
authors of[36, 37] have shown the concept of togiokd derivative of image. Inspired by this con¢cd@b] we
propose a fast and efficient method in finding theeshold number and values.And introduce a newtilewel
thresholding method using a multiphase level sehrigue for segmenting complex images with reduced
computation time whatever the number of regionsstituiing these images. This proposed method ctengis
applying the multiphase level set technique ontistogram and not on the image. Considering ofdifferent
phase of the histogram and the image regions, sugr@s that the different region of the image hafediht phase in
the histogram, and segment the image accordirgetodnsistence between these two characters.

The remainder of this work is organized as folldwssection 2, we present the method following Geunss
approximation of the histogram. For the purposecatulating the exact threshold number, we've bgeen
theanalysis and comparison of the performance férdnt algorithms in section 3. In section 4,basedthe
analysis of the section 2 and 3, we modeling tloegss of image segmentation by reducing the cortplekthe
histogram and the image characterization. In seciiopas an example of the proposed framework, vesvghe
features of this model comparing to the otherthwlelhg segmentation algorithms. After the threshmldnber and
threshold values have been detected accordinget@ithposed model, we give the analyzing of theoregiand
edges in section 6. The experimental results asdudsion of this model are presented in sectiofinally, the
main conclusions are drawn in section 8.

2 The Gaussian approximation of the image histogram
In what follows, histograrh( g) represents a gray level distribution of an imagthWigray IeveIs[O,l,. L= ]] ;

it is also summed thhl( g) is normalized, considered as a probability distidrufunction:

n
h(g)=Wg, h(g)=0,
L-1 L-1 (1)
N=>n, and Z H 9=1,
9=0 9-0

Whereng denotes the number of pixels with gray lege| wheread\ represents the total number of pixels
contained in the image. The mix of Gaussian prdibalfinctions:

o(x)=3 Pop(} =3P exg U o

i=1 i=1 \/27TUi 20,

We can approximate the original image histogranalidg with P as the a priori probability of clabs p (X) as

the probability distribution function of gray-leveindom variabl& in clasd , U, andg; asthe mean and standard
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deviation of the i-th probability distribution futiocn andK as the number of classes contained in the image. |

K
addition, the constrairili:l P =1 must be made certain.

The Hellinger distance is used to estimate 8l ( P ,u, ando; 1 =1,...,K) parameters, comparing in such
way the mixture of Gaussian functions (or candidiééeogram) and the original histogram:

E:\/éwp(m—m)f @

Where p(X;) is the histogram formed with the candidate Gausstaxiure, andh(X) is the experimental

histogram that corresponds to the gray level im&geh a formula represents the fithess functionl bgethe three
nature inspired algorithms reported in this workd #rdoes not need extra parameters. Fig.1 shosvemt Gaussian
functions fitting result of the image histogram lwiiellinger distance (the entire following curvtifig results are
using red channel of the image Lena.jpg.)
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Fig.1 The global searching result of the histograrfitting with 2 Gaussian functions

title('Curve fitting of histogram with 2 Gaussiamttions') The global searching results
u(i)=104.074656003080

204.986681817711

P(i)=0.216056706315944

0.783943293684056

Sigma(i)=16.2408028635014

30.5831753655454

ylabel('Normalized count of different gray levet&h(g))")

For the purpose of determining the optimal thredhmmlmber and values, several methods have beerntgdms in
L
[38]. According to Otsu[9], in order to find two résholds, the number of possible combinatiorEszi% .The

combination of nature inspired algorithms [39-4Xdaclassic techniques [9], as a good option to datt
computational cost has been proved in the casmade processing problems. The first and the secmmaf Fig.2
shows thedifferent results of 4-Gaussian functibysusing the particle swarm optimization (PSO) #mel direct
curve fitting algorithms. Seeing from the fittingsults, we may found where the more number of Gauss
functions been used in the histogram fitting, thsuits of different algorithms may causing muclomgistence. In
the following section, we’'ll give the detail analy®sf the threshold number choosing algorithm.
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Fig.2 Curve fitting of histogram with 4 Gaussian functions') The global searching results

title('Curve fitting of histogram with 4 Gaussiamttions’) The global searching results
u(i)=97.4553809762226

174.447200800555

218.164477533569

255.999998854861

P(i)=0.161483103881132

0.407056635859043

0.429992413623962

0.00146784663586275

Sigma(i)=11.1116602966955

34.9198371081020

15.9270299132381

2559.99999977099

xlabel('of gray level 0-255")

ylabel('Normalized count of different gray levet&h(g))")

The 4-Gaussian functions. The 4-Gaussian fitting functions.
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FIG.2 The particle swarm optimization (PSO) and the dect curve fitting results of the image histogram

title('Curve fitting of histogram with 4 Gaussiamttions (another type of result)’) The globakskimg results
u(i)=95.0905071156364

128.240776274058

189.830787688705

222.210231291886

P(i)=0.147565147224805

0.128530943014258

0.354890777576301

0.369013132184636

Sigma(i)=9.29506807161366

22.3433258885996

21.9703186747988

13.8904939163273

xlabel(‘of gray level 0-255")

ylabel('Normalized count of different gray levelth(g))".
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3 The problem of Gaussian function number

3.1 The fitting processing

How many Gaussian functions or parameters should¢Hosen for the optimize algorithm is always theirma
problem need to be solved. Unfortunately, manysimoéling algorithms are not able to automatica#iyedmine the
required number of thresholds, as has been notéd/atmough[42]. [25] using a two-step multiphaseeleset
method to solve this problem: The first step, tlwmplex histogram is approximated by a weighted safm
Heaviside functions using the Chan-Vese segmentatiodel in order to highlight the valleys of thetbgram; In
the second step, the number and the values ohtastolds are extracted by a simple search of thama of these
valleys.

Furthermore, in another approach, in order to acatd the calculation of thresholds research, ékelution of the

histogram is first reduced using the wavelets fians. After that, the optimal thresholds are defieed faster by

optimizing the objective function based on an esltiaa search [19] or through meta-heuristics. CHai0j uses a

lowpass/highpsss filter repeatedly to adjust (cesméncrease) the number of peaks or valleys tesaetl number

of classes and then the valleys in the filteretblgimm are used as thresholds.Inspired by the lsg-pnd high-pass
filter algorithm, we use the two Gaussian functiansl Hellinger distance to fit the histogram of image step by

step like a binary searching processing.

According to the above analysis, the proposed hauétl thresholding method proceeds in two step® fifist step
concerns the histogram approximation and the sedbedthresholds determination that defines thetdiraf the
image gray level classes. In our model, the onlkapeter to introduce is the stop conditédnthe total fitting
variance. The lower the parameter, the better pipeoximated histogram matches the original ones Tieans that
the number of detected valleys is large, sincentiresignificant valleys can also be detected.df\thlue of is too
large, some valleys of the histogram, thereforeestimesholds, may not be detected. Therefore, dhestanent of
threshold number with in a large range where thaber of detected thresholds remains constant dfedetit from
one can considered as a good procedure for optighitie number of thresholds, when nothing is knewpriori
about the distribution of the gray levels. In thregpsed algorithm, we let the iteration processirglarge range
and the large independent variance thresholdsyfirst
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F1G.3 The fitting results of regions without and partally covering. the first row is the 8-Gaussian funtions fitting result; the second row
is the 5-Gaussian functions fitting result (Lena.jg).

841



Cai Boetal J. Chem. Pharm. Res., 2014, 6(7):836-853

Simply dividing the gray levels of the image histmm into some independent regions, the curve offitting
results may change dramatically on the up and doovmdary of the fitted region. For the purposeetfthe fitting
curve more smoothly, we let the regions of grayescpartially covered with each other as:

Region =[T-a,T,+ g (4)

WhereT, andT,, is thei -th and(i +1) -th threshold. In our experiments, we choose thampated=5. Fig.3
shows the results of 5 and 8-Gaussian functiotiaditesults of regions without and partially cangrtExcept the
value of the total variance of fitting result, wensider the changing of fitting variangg, i=12,...p atthe
same time.Fig.4 shows the fitting variance of saesting images with different threshold number. érding to
the changing of the fitting variance, we give aeotstop condition ag,,, > 7, to avoid over-segmentation.

The variance of fitting results.

0.03 T T T T T
® o o o °
L]
0.025[ e I 1
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@ 0.02- B
c
8
g A
% *
S o.015¢ *o* .
+ * *
I *
A %
e PP Lasaent
0005 L L L L L L L L L
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threshold number

FIG.4Thevariance different Gaussian functions’fittingresults (Lena, zebra and liver).

3.2 The relation between threshold number andrtege gray levels

Considering of the discrimination capacity of huneyes, the dividing of the image gray scales shooldbe too
small. In fact, this ability of human is variablecarding to the image contents. When the contratiteoimage is
higher, the vision discrimination ability may becemweak, on contrary, when the contrast is lowes,ahility may
become strong in discriminating the weak edges. dultbors of [43-46] had given the explanation af #inds of
visual characters. In this process, we divide ttag gcales into 32 stages, when the grayscaleeohffut image is

0-255, then we choose the smallest difference ttvtleresholds a$t =8 gray scales, so the biggest number of
thresholds is 31. On this condition, much of thpgra aimed at the adjustment of the histogram daugprto the
local and global characters of the input image. atiaptive histogram equalization (AHE) [46] equalan input

imagel with quantized gray levels (GL) scaled betweél;fZand]/Z. By using the Kronecker delta function
5(i, ] ) , which equals 1 if = J and 0 otherwise, they sift the pixels in the imaggn GL g . But, according to our

experiments, all of the equalization algorithms nwause the histogram change to some extent, anthdet
distribution of the histogram more difficult totfitg. Fig.5 shows the comparison of rough image thedequalized
results.
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FIG.5 The comparison of rough image and the equalizeésult

For the purpose of letting our thresholds keep isterisce with the visual discrimination capacitydavoiding the
influence of noise distribution, we use 95 pera#trthe total pixel number’s distribution as the tast of the image.

AssumeM X N is the input image sizbl,(i),i =0... 255is the histogram of each gray level, the maxiniyis

the chosen threshold of the input image histogramésn distribution. The calculation of this distition is as
follows.

maxft, =h( i)} (3, ()2 0.95MxN i j= 0. 25 )
After getting the maximurt), , we set the minimum randd’ of gray level as
255hr(i) )
Tr=|> > 1i=0...255
o 32
_ 0, if, hii)<t
o-[2 1 0

1, otherwise

(6)

According to the above analysis, we usedhg >0, , 0; < € andthreshold,, — threshold< Tas the stop
condition to get the threshold number.

4The proposed model
Based on the analysis of part 2 and 3, we mod#tiegnulti-threshold searching algorithm as:

(1) Initializing the convergence conditiéh calculating the image’s histogram and normalizings equation (1),
calculating the stop conditiohr as equation (5-6).

(2) Normalizing the chosen region of the histogeshe following equation;

h(=g N=XZi 0, gh(kk1 ™
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Wherel the i-th gray level range is need to be fitté}jis the normalized histogram of this ran@l?,—a,ui + a] is

the lower and upper bounds of this range in grajesin our experimentations, we choose the parar@etes 5.
(3) Using the Hellinger distance and two Gaussiarttions to fit the i-thnormalized region of thatioigram;

(4) Choosing the threshold of this fitting reswtsd calculating the variancg ,departing the rough histogram into
up and low parts;

(5)Choosing the biggest part repeating (2)-(4)luhé following condition matched:
0-i+l > O-I
or g >& (8)
or threshold,, — thresholok T

Wherethreshold,, — threshold< Tis the minimum region between two thresholds?

(6) When all the region matching the stop condgjame can get the number and value ofthe threshbig$ shows
the basic processing of our proposed algorithm.

FI1G.6Theprocessing of the curve fitting.

5Thresholds searching

Multilevel thresholding is a process that segmentgay-level image into several distinct regionkisTtechnique
determines more than one threshold for the givesgenand segments the image into certain brightreggens,
which correspond to one background and severalctshjdhe method works well for objects with colored
complex backgrounds, on which bi-level thresholdmits to produce satisfactory results. Redid ef4a] proposed
an iterative form of Otsu’s method, so as to gdimrat to multilevel thresholding. Ridler and Calwl algorithm
[48] uses an iterative clustering approach. Aniahiestimate of the threshold is made (e.g., mezage intensity),
pixels above and below are assigned to the whidebtatk classes respectively.

Compare to the abovementioned algorithms, V. n.n@denciso, et al. [30] consider that the data elssre
organized such that, < i, <...< /U, , the threshold values can thus be calculated bynatng the overall
probability error for two adjacent Gaussian functipas follows:

E(T) = R, [&(T)+ PUE(,

9
i=1,2,.. K-1 ©)

EM=[" p.(3dx o)
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And
EM=["p(Rd  ay

E,(T) is the probability of mistakenly classifying thexgls in the(i +1) -th class to thé-th class, whild, (T) is

the probability of erroneously classifying the pixin thel -th class to th@l +1)-th class; as was abovementioned,
formulae (9), (10) and (11) states for two cons@euBaussian functions in order to get one threspoint and the
process is repeated for each pair until get allttineshold pointst is the priori probabilities within the combined
probability density function, anf is the threshold value between thth and thdi +1)-th classes. OnE value is
chosen such as the erfa(T) is minimized. By differentiating=(T.) with respect td, and equating the result to

zero, it is possible to use the following equatiomiefine the optimum threshold vallie

AT?+ BT+ C=0(12)

Considering

A:o-iz _Ji%a

B:ZI:Q,uio-izﬂ_Mﬂoi.z) )

C= (0-i1ui+1)2 _(O}H,l{ )2 +2[qai'q-+l)2mn(ai+1l:i)j
a-iFi)+l

When the above quadratic equation has two possdligions, they choose the positive one which faithin the
interval. Fig.7 shows the calculation of each thodd, when the Gaussian function number is 4. $efeom Fig.7,

intuitively, we may found using the algorithm of0[3 whatever the threshold, betweenu, , andu,,, is, it seems

always inconformity. Because some of the threshatddocated on the valleys while others are |latatethe steep
slopes of the histogram.

0.14 T T T T T 0.14

0.12} & i 0120
.

01l
0.08}-
0.06}-
0.04}-

0.02

L L L L e L L L
0 50 100 150 200 250 300 ] 50 100 150 200 250 300

Fig.7 The 4-Gaussian functions fitting result andhie adjacent 2-Gaussian fitting results.
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Our main propose is to segment the image, and bbbpehe thresholds calculated from the Gaussidting

functions may be used to segment the image actyratefortunately, the image regions often are ¢idonal and
these edges can't be segmented simply by one eraethresholds. Seeing from Fig.8(a), the fittiregult of the
input image histogram, we may easily found theeetlaree kinds of thresholds, the mean of peak-tipihe valley
of the fitted curve, and the cross point of the @aussian functions (the result has been showini8 kb), (c), and
(d)).About this problem, many researchers have lggem discussions in detail [19,20,22,39,41].

0.14

300

4
(©
Fig.8 The 2-Gaussian curve fitting and segment reffLof different thresholds; (a) is the fitting resut and the two Gaussian distribution;

(b) is the segment result using the cross point; X&s the segment result using the valley as threslp (d) is the segment result by taking
the threshold as the mean of peak-to-peak.

™4

(b

(d)

The thresholds search constitutes the second $tepraalgorithm. The proposed method consists mdlifig the
number and the values of thresholds by considehirgapproximated histogram under its form. When smarch
processing stop with the condition of equation &)the last fitted Gaussian functions are ourc@ag results. For
the purpose of searching the thresholds, we usaltgwrithm of [19]. In this paper, weuse the detiea of the

approximated histogram functidﬁ(i) with respect to the gray-leviel This derivative is as follows:
V(i) =V (i +1) -V (i) (14)

The graph o¥'(i) is a sequence of Dirac peaks of various positiceregative amplitudes as it is depicted in Fig.9,

showing the derivative of the approximated histogrgig.3c. Every negative peak followed by a positpeak
delimits a valley. Each detected valley containlsrashold. The value of this threshold is takeeausal to the gray
level value of the minimum of the original histograncluded in this valley.
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FI1G.9The derivative of the 5-Gaussian functions fittig result

6 The analyzing of the regions and edges

Comparing to the fitting result of the image histy, the effective segment results of the imagadee important.
Many methods have been proposed to determine thicealitomatically over the past decades. Howeymslyang

new ideas and concepts to image thresholding resmaininteresting and challenging research areakéJall

thresholding methods mentioned above, this papesemts an image thresholding approach inspiredcdactive
contour approach[49-51].For a gray level imagehhkbe thresholding result and the contour deteatésult are
actually a finite point set in the 2-D plane.

Seeing from the LCV/LGIF iteration result (Fig.1@ye may easily found that the ACM model is a twagdh
segmentation algorithm. Based on Chan-Vese (CV)ehfidl], the piecewise constant (PC) model for ithage
with several regions by using a multiphase levélfsenulation. However, the CV model and the PC sastill

have some intrinsic limitations. Firstly, if thetémsities in internal and external of evolutionvas are not
homogeneous, it often leads to poor segmentatisnlteedue to the wrong movement of the evolvingvesr
Secondly, the placement of initial contour is sdifl important issue especially for complicated iesad hirdly, the
periodical re-initialization step to get successfgigmentation may become time-consuming in the noaie
iteration.

Comparing to ACM model, the multi-threshold algbnit is a multi-phase segment algorithm. In the fiena
processing, the ACM model use the gradient infoionato estimate the curves. Inspired by the difieseof the
two algorithms, in this paper, we’ll use the mufireshold segmentation algorithm to segmentatienirtrage into
some phases, and then use the image gradient imiomto deal with the regions and edges of tharahimage.

FIG.10 The comparison of the LGIF, LCVand the first threshold segment results (Fig.5.c)
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There exists a wide variety of edge detection nughim the literature, using very different strategifor the
measurement of intensity changes. Most of the naistlawe based on the representation of the inteaksiapge by
means of a vector, usually called gradient. Thiseotation applies to the methods of Canny, SobglE@dman
and Prewitt. The magnitude of the gradient playsagor role in further processing steps. Given & gale image,

a gradient is represented by its horizofdal and verticaGy components. Given a gray level imdgg,,, , we take
the magnitude of the gradient as:

G(m n):\/g(m r)2+ G( m)12, F1,2,.. ,N; mL12.. ,D) (15

[Gx,Gy] = gradient (double (img));

NormGrad = sort (Gx. "2 + Gy. "2);

For the purpose of estimating the stability of tegions after each threshold been achieved, we¢haeseoincidence
degree between the edge of threshold segmentezhragd the gradient as the stability of the segmesuilt. If the
stability is higher, the region would be extracfeasm the image and the histogram, before the nitihd. The

calculation of the normalized stability may be siyngefined as:

L S @ mx Edge( m) 16)

Stab =
Count( Edgg ) m'mo

WhereQ), is the i-th region of present threshold segmentsiilts; G(M N)is the magnitude of the gradient;
Count( Edgg ) is the pixel number ;s edge; théedge, ( m nis defined as a binary function, when the
point(m, n) is on the edge d®; , the value is 1, otherwise 0.

0, if (m,n)0inner(Q,)

) (17)
1, otherwise

Edg%i(ml)={

Fic.11 The gradient of the input image;(a) is the firsthreshold segmented result; (b) is the magnitudef the image; (c) is the stability of
each region after the first segmentation; threshold140.

Seeing from the figure of Fig.11.c, we may easduyrfd the important and unimportant regions of thesent

segmented result. When all the thresholds have bealenlated, the segment results and the regidabilisy may
also be calculated at last. Fig.12 (b-h) shows¢balts of different thresholds.
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g
FiG.12 The rough and the segment result of the 7 thrhslds, threshold=[108,123,142,167,184,200,214].

7Experimental results

In all experiments, each candidate solution of teegment gray level region holds the elements

[Ff, F’Z‘Lll Liz,ojl,a"z}. For the purpose of avoiding the local minimizatigolution, we use the mean of the

range gray value to roughly dividing the gray lexegion, and then using the mean and variance siiapand
downside as the initial value. Except, we use tinectly curve fitting algorithm (DCF), multi-sta(MS) algorithm
and particle swarm optimal (PSO) algorithm to ckdtaithe results.

To verify the effectiveness in the practical apgiions, the proposed method is further comparetl thié direct
multi-thresholds segmentation algorithm. Becausth@fumber of the thresholds is different whenitipeit image
differ from each other, we set all of the input ge& threshold number as 3. It is important rentagt all the
experiments were performed using a desktop compuith Xeon E5-2643 3.3GHz microprocessor, with 4®&B
RAM and programmed in Matlab R2012a.

In the first part of the experiments the main idess to find the correct separation between two aibjand the
background in real images, as well as the timetspgmrach algorithm taking into account the numifefunction

evaluations. In all the multi-thresholds fittinggatithms, the number of functions is very diffictit decide. By
using the stop condition as equation (8), we firigbting the number of Gaussian functions.Thelre$wur testing
images has been shown that the number of thregholthsistence to the input images’ histogram.1B&Bighows the
fitting result of different images.

o

I I I I
0 50 100 150 200 250 300
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FI1G.13 The segment results of Lena, boring and zebr&he thresholds and number of functions: Lena [14082], 3-Gaussian functions
boring [65,106,124], 4-Gaussian functions, zebra72113], 3-Gaussian functions.

For the purpose of comparing the stability, wethetthreshold as aconstant number 3, and then tsangirect

multi-threshold curve fitting and the proposed ailifpon to get the segment result. The results acsvehin Fig.14
and Tab.1. From Tab.1, we may found, the propokgatithm may easily get the set number of threshiotdit the
direct multi-threshold fitting algorithm can’t gite thresholds on some of the testing images. Tatn®'s the detalil

of the fitting result of these two algorithms wittte image Lena.
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FIG.14the rough and the segment results of the 3 thrieslds.The first row is liver image, the second rovis vessel image, the third row is
zebra image, the fourth row is banana image, thefth row is Lena image, and the sixth row is boringmage.

TAB.1 The comparison of different images’ fitting resit (multi-start algorithm)

Image Direct Multi-threshold fitting The proposed agorithm
threshold u sigma threshold u sigma
Liver [26,90] [2.1,12.1,73.8,255] 0.0244  [24,10201 [2.89,67.4,111.8,122] 0.0272
Boring [89] [52.7,129.6,152.1,256]| 0.0097  [65,10%4] | [43.5,86.7,115.3,150.9 0.0111
Vessel [26,89,248] [2.2,67.8,122.7,256] 0.0237 §1205] [59.5,75.2,85.4,96.8] 0.010p
Zebra [37,108] [0,0.58,105.3,156.4] 0.0059 [22,781 [2.6,53.5,94.6,156.3] 0.0107
Banana [64] [45.9,229.1,250.1,251.8] 0.0116 [66,51814] [1,66,173,210] 0.0152
Lena [121,143,206]] [95.1,128.2,189.8,222.2] 0.0051137,167,186]| [104.8,156, 175.4,217.5] 0.01059

TAB.2 The comparison of the proposed algorithm and thdirect multi-threshold fitting

Image Lena | Direct Multi-threshold fitting The proposed algorithm
DCF MS PSO DCF MS PSO
ul 95.098 68.27 3.25 105.01 104.79 104.79
sigmal 9.31 100 256.7¢ 16.91 16.75 16.75
u2 128.29 104.05| 8.77 150.26 156.01 163.12
sigma2 22.35 16.21| 494.45 6.55 9.34 11.28
u3 189.62 204.98 79.84 171.85 175.389 173.47|
sigma3 21.85 30.58| 647.44 5.88 3.69 16.97
u4 222.16 215.38 230.9% 217.53 217.46 217.46
sigma4 13.93 48.26 663.06 15.71 15.76 15.76
thresholds [121,143] 140 NA [136,161,1864] [137,1686] | [137,167,186]
total variance 0.0051 0.0105 0.0374 0.0108 0.0106 .0106

8Conclusion and future work

This paper presents a multi-threshold segmentatigarithm based on two Gaussian functions fittingimed at
the minimizing the Hellinger distance between thiginal and the candidate histogram. Based on tbhblpm of
threshold number, we've been given the detail amiady between the stop condition and the propostihdi
processing. Besides, by using the image contourtladegmentation results, we've been given theutztion of
the stability of the image edges. According to theeriments of different images, the results shbat the
algorithm may easily found the number of multi-streld comparing to the other multi-threshold altjonis.
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Future work includes the comparisons of differenage segmentation algorithms and finding the mtadeles stop
conditions to get the number of thresholds. Our igisegment the image and get the reasonable megfatifferent
objects, so the multi-threshold algorithm shoulddo@nected to the other algorithms, and at the sémmes the
algorithm has the absents of segmenting the tianaitedges when the input image has too much ntsite
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