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ABSTRACT 
 
Traditional Internet architecture is far too rigid for use with large numbers of network applications with different 
quality of service requirements. One new and promising approach to overcome the rigidity is network virtualization 
(NV), which allows multiple heterogeneous virtual networks to coexist on a shared substrate network (SN). However, 
one of the key problems for NV is the virtual network embedding (VNE) problem, which concerns the efficient 
mapping of virtual nodes and links to SN nodes and paths. The VNE problem has proven to be nondeterministic 
polynomial-time hard and approximation algorithms are needed to address it. In this paper, we define the VNE 
problem based on the multiple-choice knapsack model and propose a modified ant colony optimization algorithm to 
solve the problem. The combination of revenue and acceptance ratio of an SN is used as an important component 
when designing the fitness function to evaluate iterative solutions obtained by ants, and pheromone update rules are 
designed based on the fitness function. The cost of a candidate network is defined as the selection heuristic 
information. Simulation results show that this algorithm performs well with various numbers of VN requests. The 
algorithm also provides better optimization performance than existing algorithms. 
 
Key words: Network virtualization; virtual network embedding; multi-choice knapsack problem; ant colony 
optimization; greedy algorithm 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Numerous network applications that provide different levels of quality of service over the Internet have been 
developed in the past decades. These applications have various resource requirements and resource usage methods. 
Traditional Internet architecture is too rigid to adequately support these applications. Network virtualization (NV) [1] 
is a promising scheme that separates the roles of Internet infrastructure providers (InPs) and service providers (SPs). 
SPs are then allowed to construct their own virtual networks (VNs) by leasing resources from substrate networks 
(SNs) of the InPs. Due to their different resource requirements and different operation protocols, these VNs are 
heterogeneous. Thus, multiple heterogeneous VNs coexist on a shared SN, and the InP needs to allocate VN nodes 
and links on its SN efficiently to increase revenue. This is referred to as the virtual network embedding (VNE) 
problem. The VNE problem has proven to be nondeterministic polynomial-time hard (NP-hard) [2]. The NVE 
problem must be addressed before NV can be viably deployed over the Internet. 
 
There have been many attempts to address the VNE problem [1-11]. Most methods, such as [10] and [11], divide the 
VNE problem into two stages: first solve node mapping using greedy algorithms, and then search for physical paths 
for link mapping. These methods ignore the relationship between node mapping and link mapping in order to reduce 
the complexity of the problem, but provide only poor performance due to the restriction of the solution space. 
 
To solve node mapping and link mapping simultaneously and get better performance, Chowdhury et al. [2] proposed 
ViNEYard—virtual network embedding algorithms with coordinated node and link mapping. In their algorithms, a 
mixed integer programming model is formulated, and a corresponding relaxed linear programming problem is 
solved for node mapping (deterministic or randomized), and another iteration of the linear programming problem is 
solved for link mapping. Simulation results showed that ViNEYard achieved better performance than existing 
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solutions to the VNE problem. 
 
The above algorithms focus on online VN requests, trying to minimize the cost of each VN request to make an SN 
accept more VN requests, and thus maximize the revenue of the InP accordingly. These online algorithms are lack of 
knowledge of successive requests, and greedy ideas are used to address the current request, and result in poor 
performance in some situations. Therefore, mapping migration [11] and time window algorithms [2] have been 
proposed. Using a batch process and a simple selection strategy, better performance can be obtained, but there is 
much room for improving the optimization performance. 
 
This paper focuses on processing multiple VN requests simultaneously. Based on the multiple-choice knapsack 
problem (MCKP) model, we propose a modified ant colony optimization (ACO) algorithm. In our algorithm, a set 
of candidate physical networks are first found for each VN request, and the VNE problem is converted to an MCKP 
problem. The optimization goal is to maximize revenue and achieve optimal load-balancing characteristics, so that 
the SN can support more VN requests. We designed a fitness function to evaluate the solutions obtained by ants in 
each iteration. To hasten convergence, the cost of a physical network is used as the heuristic information for 
selecting one candidate physical network. According to the characteristics of MCKP model, two types of pheromone 
are defined and the corresponding pheromone update rules are proposed. Simulation results show that our proposed 
algorithm has better optimization performance than the greedy algorithms in literature [2]. 
 
This paper is organized as follows: Section 2 describes the background of the VNE problem and defines the 
optimization problem to be addressed; Section 3 proposes the modified ACO algorithm to solve the optimization 
problem; Section 4 provides simulation results and analysis; and Section 5 provides a conclusion. 
 
BACKGROUND AND DEFINITIONS 
In this section we first describe the VNE problem by an example, then model the SN and VN request as undirected 
graphs, finally give a mathematical model based on some definitions. 
 

 
 

Fig. 1: Illustration of virtual network embedding [2, 11] 
 

Fig. 1 [2, 11] illustrates one SN (right) of an InP, and two VN requests (left) to be embedded in it. For a VN request, 
each VN node is mapped to an SN node that satisfies the resource constraints of the VN node, and each VN link is 
mapped to an SN loop-free path that also satisfies the bandwidth constraints of the VN link. For VN request 1, the 
VN nodes (a, b, c) are mapped to the SN nodes (C, H, B), respectively, and VN links ((a, b), (a, c), (b, c)) are 
mapped to the SN paths ((C, D, G, H), (C, A, B), (H, F, E, B)). Because all SN nodes and paths can satisfy the 
resource requirements of all VN nodes and links, VN request 1 can be accepted. For the same reason, VN request 2 
is also accepted. These accepted VN requests can bring revenue for the InP (the owner of the SN) as they consume 
SN resources. If no SN nodes or paths satisfy the resource requirements, the VN request will be rejected. When 
many VN requests are made, different mapping methods accept and reject different VN requests, which influences 
the usage of the SN and results in different amounts of revenue for the InP. This is the essence of the VNE problem. 
The optimization goal of the VNE problem is to sufficiently use the SN resources by selecting an appropriate 
mapping (or embedding) for each VN request so as to maximize the entire revenue of the InP. 
 

The SN is modeled as an undirected weighted graph ( , )S S SG V E= , where SV  is the set of SN nodes and SE  

is the set of SN links. Each node Sv V∈  has an attribute set , ( )S V
attrC v  to describe its capacity. In this paper, 

, ( )S V
cpuC v  is used to describe the CPU capacity of node v , which is in a rectangle near it, and , ( )S V

locC v  is used 
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for the location information. Each edge Se E∈  also has an attribute set , ( )S E
attrC e ; in this paper, , ( )S E

bwC e  is 

used to describe the bandwidth of the link, which is a real value near the link. The VN request is also modeled as an 

undirected weighted graph ( , )R R RG V E= , and the upper character S  is replaced with R for each attribute 

donation. 
 
For a VN request iR , the revenue of the InP is fixed if it is accepted. The revenue can be defined as follows: 

 

, ,Re( ) ( ) ( )     (1)i i

R Ri i

R V R E
i cpu bw

v V e E

R C v C eα β
∈ ∈

= +∑ ∑  

 
where ,α β   reflect the relative importance of CPU capacity and link bandwidth, respectively. 

 

The cost of a VN request iR  will differ for different mappings. Assume that there are K mappings 

, ( 1,2,..., )i jM j K=  for iR . ( )P e  is the SN path for VN link e , and ( )P e  is the length of ( )P e . For 

each mapping , ( 1,2,..., )i jM j K= , the cost of iR  is defined as: 

 

,

, ,( ) ( ) ( ) ( )    (2)i i

i j
R Ri i

R V R E
M i cpu bw

v V e E

C R C v C e P eα β
∈ ∈

= +∑ ∑  

 
where ,α β  have the same meaning with (1). 

 

For a VN request iR , let the K mappings , ( 1,2,..., )i jM j K= be the candidate physical networks (or, for brevity, 

“candidate networks”) for it.  
 

Given RN  VN requests, due to resource constraints, only some requests can be accepted. The optimization goal is 

to maximize the revenues of the InP. If a VN request iR  is accepted, only one candidate network is used. A binary 

variable 1( 1,2,..., )j
ix j K= =  denotes that the thj  candidate network is selected for iR , and 

1

1
K

j
i

j

x
=

=∑  

guarantees that only the thj  candidate network is selected. If this VN iR  is rejected, then 
1

0
K

j
i

j

x
=

=∑ . 

 

The thj candidate network ,i jM  of a VN request iR is a sub-graph of SN, and it contains information of node 

mapping and link mapping. For an SN node Sv V∈ , if it is used by ,i jM , then a binary variable , ( ) 1i jM v = . 

Assumed its corresponding virtual node is ' iRv V∈ , then , , ,( ) ( ')i j i
M V R V
cpu cpuC v C v= . For an SN edge Se E∈ , if it 

is used by ,i jM , then a binary variable , ( ) 1i jM e = . Assumed its corresponding virtual edge is ' iRe E∈ , then 

, , ,( ) ( ')i j i
M E R E
bw bwC e C e= . Therefore, the optimization problem is defined by the following mathematical model: 

 

1 0

  (Re( ) )                      (3)
RN K

j
i i

i j

Max R x
= =

×∑ ∑  

. .s t  

, , ,
,

1 1

 ( ) ( ) ( ),     (4)
R

i j

N K
M Vj S V S

i i j cpu cpu
i j

x M v C v C v v V
= =

≤ ∀ ∈∑∑  
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,

1,   if   is used by 
( )      (5)

0,  else

S
i, j

i j

v V M
M v

 ∈= 


 

, , ,
,( ) ( '),  : '    (6)i j i i

M V R V R S
cpu cpu i jC v C v M v V v V= ∈ → ∈  

, , ,
,

1 1

( ) ( ) ( ),      (7)
R

i j

N K
M Ej S E S

i i j bw bw
i j

x M e C e C e  e E
= =

≤ ∀ ∈∑∑  

,

1,  if  is used by 
( )        (8)

0,  else

S
i, j

i j

e E M
M e

 ∈= 


 

, , ,
,( ) ( '),  : '    (9)i j i i

M E R E R S
bw bw i jC e C e M e E e E= ∈ → ∈  

1

1,   1,2,...,                 (10)
K

j
i R

j

x i N
=

≤ ∀ =∑  

{0,1},  1,2,..., ,  1,2,...,    (11)j
i Rx i N j K∈ ∀ = ∀ =  

 
where (3) is the optimization goal, (4), (5) and (6) together describe the node resource constraints of the SN, (7), (8) 
and (9) together describe the edge resource constraints of the SN, and (10) and (11) reflect whether a VN request is 
accepted or rejected in the VNE problem. 
 
The above mathematical model indicates that each accepted request has K  choices (candidate networks) and only 
one choice is selected; furthermore, only some requests can be accepted due to resource constraints. Which requests 
are accepted and which candidate network is selected for an accepted request is the essence of the VNE problem. So 

a request has 1K + choices (rejected, or one of K  candidate networks is selected), and there are ( 1) RNK +  

solutions for our VNE problem. The time complexity of enumerating all solutions and selecting the best one is 

exponential and it is unlikely to address it when the number of request RN  becomes larger. This problem is a 

multiple choice knapsack problem and has proven to be NP-hard [12]. Approximation algorithms are needed to 
tackle this optimization problem. The research works [2-11] adapted various greedy algorithms, however, the 
optimization performance are poor in some cases through only one iteration process. In our paper, more random 
iteration processes are adapted and the knowledge gained by one iteration process can be used in following iterations 
so that better optimization performance can be obtained. 
 
To evaluate a solution s of one random iteration process and guide the following iteration processes, a fitness 
function is needed. A fitness function represents our greedy ideas to get better results. According to the optimization 
goal of the VNE problem, a solution with more revenue and higher acceptance rate is preferred. So we designed a 
fitness function that considers both the revenue and the number of accepted VN requests: 
 

1 0

 ( ) (Re( ) )+             (12)
R RN NK K

j j
i i i

i j i=0 j=0

f s R x xφ ϕ
= =

= ×∑ ∑ ∑∑  

 
where ,φ ϕ  reflects the relative importance of revenue and the acceptance ratio. Simulation results show that our 

fitness function also introduces better network load balance. 
 

A MODIFIED ACO ALGORITHM 
Based on the above mathematical model of the VNE optimization problem and our analysis, an algorithm with more 
random iteration processes is needed. The ACO algorithm, first proposed by Dorigo [13], is a meta-heuristic 
algorithm and has been successfully used in many combinational optimization problems. In our paper, the process of 
searching for candidate networks is first given, and then a modified ACO algorithm is proposed to tackle the VNE 
problem based on the MCKP model. 
 
 
1. Process of searching for candidate networks for a VN request 
In our algorithm K  candidate networks are pre-computed for each VN request. Many researchers have proposed 
ways to embed a VN request [1, 2, 10, 11]. We can use these algorithms to construct K  candidate networks 
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separately for each request. In our paper, we use the idea from the ViNEYard solution of Chowdhury et al. [2] to 
search for candidate networks for a VN request. In the ViNEYard solution, multiple paths are selected for a pair of 
nodes and the data is split to transfer through these paths. This couples the VNE solution with the bottom data 
transmission protocols strongly and brings some other problems such as out of sequence. To overcome these 
shortcomings, we use only one path for a pair of nodes, and use their intermediate results to construct K  candidate 
networks. 
 
First, a linear programming model is solved, for which the optimization goal is relevant to both minimizing the cost 
of a VN request and providing load balancing for the SN. Each SN node is given a probabilistic selection value for a 
VN node, and multiple SN paths with their probabilities are obtained for each pair of the corresponding SN nodes. 
 
Second, an SN node is randomly selected for each VN node, and each VN link is checked to see if an SN path 
satisfies its bandwidth constraints. If all VN links are mapped to SN paths successfully, a candidate network is found. 
The process is repeated until K candidate networks are found for a VN request. 
 
2. Solution construction process of an ant 
Each ant constructs an entire solution of the VNE problem based on the MCKP model individually. It first selects a 
VN request according to the probability defined in (15) and then selects a candidate network of this VN request 
according to the probability defined in (16). If the candidate network can be embedded in the SN, i.e., the residual 
CPU capacities of the SN nodes and the residual bandwidth resources of the SN edges can satisfy with the resource 
requirements of the candidate network, the VN request is accepted and the candidate network is used as its mapping; 
otherwise the VN request is rejected. If a VN request is accepted, the corresponding resources of its selected 
candidate network are reduced in the SN. The process is repeated until all requests are processed; a solution is then 
obtained by the ant. After each ant finishes its solution construction process, updates the pheromone trail, and starts 
the next iteration, until the terminal condition of the algorithm is reached. The probabilities of selection are 
determined by pheromone and heuristic information. Pheromone is defined as follows: 
 

Pheromone: Based on the idea of MCKP, two types of pheromones are defined: ( 1,2,..., )i Ri Nρ =  is defined as 

the expectation that a VN request ( 1,2,..., )i RR i N= will be accepted, and 

( 1,2,..., , 1,2,..., )ij Ri N j Kρ = = is defined as the expectation that the thj  candidate network of iR  is 

selected for the mapping of iR .  

 
Based on the characteristics of MCKP, at most one candidate network will be selected for a VN request, which 
indicates that when one candidate network of a VN request has higher probability to be selected (has higher 
pheromone value), this VN request also has higher probability to be accepted (also has higher pheromone value); 
therefore, the relation between these two types of pheromone can be defined as follows: 
 

( ) max ,  1,2,..., ,   1,2,...,    (13)i ij Ri N j Kρ ρ= = =  

 
Heuristic information for selecting a candidate network: Because the entire optimization goal is to accept as many 
VN requests as possible, a candidate network with less cost is preferred. Thus, the heuristic information for selecting 
a candidate network is defined as the inverse of its cost to overcome the initial blindness of the ACO algorithm, 
which indicates that the candidate network with less cost should be selected with higher probability: 
 

,
1/ ( ),  =1,2,..., ,  =1,2,...          (14)

i jij M i RC R i N j Kτ =  

 
Probabilities of two selection operations: The solution construction process includes two selection operations. The 
first operation selects a VN request and the second selects a candidate network for the VN request. The probability 

that a VN request iR  will be selected is defined as follows: 

 

1

 ,     1,2,...,                (15)
R

i
i RN

i
i

p i N
ρ

ρ
=

= =

∑
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As defined in (13), a request iR  which has higher pheromone value iρ  indicates that at least one of its candidate 

networks resulted in better performance in last iteration processes, and is selected with higher probability in current 
iteration process. 
 

The probability that the thj  candidate network will be selected for iR  is defined as follows: 

 

1

,  1,2,..., ,   1,2,...,   (16)ij ij
ij RK

ij ij
j

p i N j K
ψ ζ

ψ ζ

ρ τ

ρ τ
=

= = =
∑

 

 
where ,ψ ζ  reflect the relative importance of pheromone and heuristic information, respectively, in the selection 

of the candidate network. A candidate network has higher pheromone value when it was selected in the last iteration 
processes and better results have been obtained, so it will be selected in current iteration process with higher 
probability. To accept more requests, a candidate network with less cost is preferred, and this is reflected in the 
definition of heuristic information (14). So a candidate network with higher pheromone value and higher heuristic 
information value will be selected with higher probability as (16).  
 
3. Pheromone update rules 
After all ants finish their solution construction processes, the fitness function (12) is used to evaluate their solutions, 
and the best one—the one with the largest fitness value—is selected to update the candidate network selection 
pheromone. The pheromone is increased for all candidate networks embedded in the SN. The pheromone update rule 
for each candidate network is defined as follows: 
 

(1 ) ( ) ,  

          1,2,..., ,   1,2,...,                (17)

j
ij ij i

R

f s x

i N j K

ρ λ ρ= − + ×

= =
 

 
where 0 1λ< <  is the evaporation ratio of the pheromone. The first part of (17) indicates that the past knowledge 

will decrease their influence on the future iteration processes in an exponential manner, and the value of λ  decides 
their decrement ratio. The second part of (17) indicates that at most one candidate network of a request will get 
increment of pheromone value. According to an ant’s solution construction process, when a request is accepted, one 
of its candidate networks is selected and the selected candidate network will get pheromone increment if it is in the 
best solution. Otherwise, none of its candidate networks will get pheromone increment. 
 
After the pheromones of all candidate networks are updated, the pheromones of all VN requests are updated 
according to (13). Through updating the pheromone values, the knowledge of last iteration processes are 
accumulated to guide the next iteration process to get better results. 
 
4. Terminal conditions 
The ACO algorithm is an evolutionary algorithm and requires multiple iterations. Given a suitable window size, the 
most optimal (maximal) values obtained in each iteration process are recorded in this window. The variance of these 
values is used to define the terminal condition. When variance is less than a given threshold, the algorithm is 
assumed to have reached convergence. 
 
Based on the above definitions, the ACO algorithm, VM-ACO (VNE based on MCKP), which is used to address the 
optimization problem, is given below: 
 
Step 1. Initialize parameters and search for K candidate networks for each VN request. 
Step 2. If the terminal condition is reached, go to step 7; otherwise, start the next iteration. 
Step 3. For each ant, select a VN request based on the probability defined in (15) and select a candidate network for 
the selected VN request according to the probability defined in (16). 
Step 4. If the selected candidate network can be embedded in the SN, the VN request is accepted and the candidate 
network is used as the SN mapping, and the resources are reduced in the SN; otherwise, the selected VN request is 
rejected. 
Step 5. Repeat the selection process until all VN requests are processed, and then obtain a solution. 
Step 6. Evaluate all solutions obtained by the ants and select the best solution using (12), update pheromone based 
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on the rules defined in (17), and proceed to Step 2. 
Step 7. Select the best solution as the final VNE solution, output the mapping between the VN request and candidate 
network, and calculate the acceptance ratio and the entire revenue of SN (InP). 

 
SIMULATION AND ANALYSIS 
In this section we describe the simulation environment followed by the main evaluation results. To compare our 
algorithms and the existing ones fairly, we use the same simulation settings as [2], and select the window-based 
batch process algorithm WiNE proposed in [2] because it has better optimization performance than other pure online 
algorithms. 
 
1. Simulation settings 
The SN topologies used in our algorithm are generated by the Georgia Tech Internetwork Topology Models 
(GT-ITM) tool [14] with 50 nodes in a 25 × 25 grid. Each pair of SN nodes is connected randomly with a probability 
of 0.5. The CPU capacity value of each SN node and the bandwidth value of each SN link are uniformly distributed 
between 50 and 100. The VN request topologies are also generated by the same tool with 2–10 nodes in the same 
grid. Each pair of VN nodes is connected randomly with a probability of 0.5, and the CPU and bandwidth resources 
of VN nodes and VN links are uniformly distributed in the ranges 0–20 and 0–50, respectively. 
 
The VN requests arrive according to a Poisson process and we adjust the average rate from 4 to 8 each 100 time 
units to change the numbers of VN requests in the network. The lifespan of a VN request is exponentially distributed 
and the average is 1000 time units. The simulation time is fixed at 50000 time units. We suppose that after 30000 
time units, VN requests become stable, and conduct request sampling every 1000 time units. When the simulation 
time reaches 50000 time units, 20 samples can be obtained. 
 
The algorithm WiNE [2] is a window-based batch process algorithm for the VNE problem, and uses a greedy idea to 
batch process the requests in descending order of revenue. We use the requests obtained in each sample as the input 
for WiNE and our algorithm, and compare the average acceptance ratio, the average revenue, the average cost, and 
the average resource utilization ratio of these two algorithms. 
 
2. Performance metrics 
We define six performance metrics to examine the performance of our algorithm and the WiNE algorithm [2]. All 
these metrics are firstly defined and calculated in each sample, and the average of the 20 samples as the final results 
to be compared. 
 
The acceptance rate measures the percentage of VN requests accepted by the algorithms. 
 
The generated revenue measures the total revenue of all accepted requests in a sample (the revenue of an accepted 
request is defined in (1)). 
 
The provision cost measures the provisioning cost of embedding a VN request (defined in (2)). 
The node (link) utilization rate measures the CPU (bandwidth) usage percentage of an SN node (link) when the 
algorithms embed some VN requests in the SN. 
 
To evaluate the characteristics of load balancing of embedding algorithms, we define the load balancing factor as 
the variance of utilization ratios of all nodes and links. This load balancing factor can reflect the fluctuation degree 
of the resource usage of nodes and links, and lower value of this metric means more balancing that also implies 
more VN requests can be accepted and more revenue can be obtained. 
 
Because the batch process algorithm WiNE proposed by Chowdhury et al. [2] uses a greedy idea, it is called greedy 
algorithm in this paper, compared with  our VM-ACO algorithm. 
 
3. Optimization performance 
Fig. 2 gives the average acceptance rates of the two algorithms when the VN request arrival rate changes from 4 to 8 
per 100 time units. Higher VN request arrival rate means more VN requests to be embedded in the SN. 
 
As fig. 2 shows, the acceptance rates of the two algorithms become lower when there are more VN requests. The 
reason behind is that the nodes and links of the SN have resource constraints and only some of the VN requests can 
be accepted. However, the numbers of accepted requests become larger with the increment of the arrival rate due to 
the uniformly requests distribution. 
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For each VN request arrival rate, the VN requests in each sample are the same and as the input of the two algorithms. 
The proposed VM-ACO algorithm obtains a higher average acceptance rate than the greedy algorithm of 
Chowdhury et al. This is because the greedy algorithm only accepts VN requests according to a simple greedy idea: 
it accepts VN requests starting with those that provide the highest revenue to those that provide the lowest one. 
However, the VM-ACO algorithm randomly selects VM requests according to pheromone and heuristic information, 
and then uses an iterative process to optimize performance. Because K candidate networks are preselected, the more 
VN requests in the network, the higher the acceptance rate of the VM-ACO algorithm. 
 

 
 

Fig. 2: Average acceptance rate with different VN arrival rates 
 

 
 

Fig. 3: Average generated revenue with different VN arrival rates 
 

Fig. 3 gives the average generated revenue of the two algorithms when the VN request arrival rate changes from 4 to 
8 per 100 time units. For each sample, the generated revenue is the total revenue of all accepted requests, and the 
average generated revenue is the average of 20 samples. 
 
As fig. 3 shows, the two compared algorithms obtain more average generated revenue with more VN requests. This 
is because more VN requests give the algorithms more opportunities to embed these requests efficiently. More 
revenue along with higher acceptance rate imply that the two algorithms can actually embedded requests that 
generate more revenue, instead of embedding smaller requests just to increase the acceptance rate. 
 
The proposed VM-ACO algorithm obtains more average generated revenue than the greedy algorithm. The reason is 
that K candidate mappings for each request enlarge the solution space than only one mapping selected in the greedy 
algorithm. 
 
Fig. 4 provides the average cost of a VN request when the arrival rate of VN requests changes from 4 to 8 per 100 
time units. 
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Fig. 4: Average provisioning cost with different VN arrival rates 
 

As fig. 4 shows, the proposed VM-ACO algorithm achieves a similar provisioning cost as the greedy algorithm at 
different arrival rates for VN requests. In some cases, the provision cost of the proposed algorithm is a little larger 
than that of the greedy algorithm, because the proposed algorithm seeks a higher acceptance ratio by selecting a 
candidate network with some slightly longer SN paths. More revenue along with a little longer paths reflects the 
trade-off between the resource utilization and shortestness of provision paths [15]. 
 

 
 

Fig. 5: Average node utilization rate with different VN arrival rates 
 

 
 

Fig. 6: Average link utilization rate with different VN arrival rates 
 

To evaluate the resource utilization, fig. 5 and fig. 6 give the average node utilization rate and the average link 
utilization rate respectively when the arrival rate of VN requests change from 4 to 8 per 100 time units. 
 
As fig. 5 and fig. 6 show, the average node and link utilization rate have the same tendency of becoming higher with 
more VN requests. This is because that more VN were accepted when the VN arrival rate changed from 4 to 8 per 
100 time units. Moreover, the average node and link utilization rate of our proposed VM-ACO algorithm are both 
higher than ones of the greedy algorithm. The reason is our proposed algorithm embedded more requests than the 
greedy algorithm. 
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There are differences between the node and link utilization rate: the node utilization rate increased rapidly and the 
link utilization rate increased slowly. This indicates that the nodes of the SN are used more efficiently. The reason is 
that in the greedy algorithm more virtual links shared the same physical links. The physical nodes connecting them 
lost the capacity of embedding other requests. Because our proposed algorithm has K candidate networks for each 
request and has more chances to avoid the sheerness of virtual links, each SN node has more opportunities to embed 
more requests. 
 

 
 

Fig. 7: Load balancing factor with different VN arrival rates 
 

Fig. 7 provides the variance of resource utilization rate which is the combination of link and node utilization rate 
(load balancing factor defined in this paper) with different VN arrival rates. The variance is used to reflect the 
different usage of the nodes and links of the SN. As fig. 7 shows, the variance has lower values with more VN 
requests. This is true because that when more VN requests are needed to embed in the SN, there are more 
opportunities to gain the load balance. 
 
Fig. 7 also shows that our proposed algorithm has lower variance values than the greedy algorithm. This is also 
because K candidate networks give the algorithm more chances to embed the VN requests efficiently. 

 
CONCLUSION 

 
In this paper, a batch process version of the VNE problem was defined based on the MCKP model. The goal of the 
batch process version of the problem is to take a given set of VN requests and embed the requests in the SN based 
on resource constraints in a way that maximizes the revenue of the InP. This is an NP-hard problem, for which we 
propose a modified ACO algorithm. In our algorithm, K candidate networks are first found for each request, and two 
types of pheromones are defined for a VN request and its candidate networks according to the characteristic of 
MCKP. To evaluate a solution, we introduce a load-balancing factor as a component of the fitness function and 
define the corresponding pheromone update rules. To overcome the initial blindness of the ACO algorithm, we 
define the cost of each candidate network as heuristic information. Our modified ACO algorithm provides better 
optimization performance than a greedy algorithm. 
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