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ABSTRACT

Traditional Internet architecture is far too rigid for use with large numbers of network applications with different
quality of service requirements. One new and promising approach to overcome the rigidity is network virtualization
(NV), which allows multiple heterogeneous virtual networks to coexist on a shared substrate network (SN). However,
one of the key problems for NV is the virtual network embedding (VNE) problem, which concerns the efficient
mapping of virtual nodes and links to SN nodes and paths. The VNE problem has proven to be nondeterministic
polynomial-time hard and approximation algorithms are needed to address it. In this paper, we define the VNE
problem based on the multiple-choice knapsack model and propose a modified ant colony optimization algorithm to
solve the problem. The combination of revenue and acceptance ratio of an SN is used as an important component
when designing the fitness function to evaluate iterative solutions obtained by ants, and pheromone update rules are
designed based on the fitness function. The cost of a candidate network is defined as the selection heuristic
information. Smulation results show that this algorithm performs well with various numbers of VN requests. The
algorithm also provides better optimization performance than existing algorithms.

Key words: Network virtualization; virtual network embeddingyulti-choice knapsack problem; ant colony
optimization; greedy algorithm

INTRODUCTION

Numerous network applications that provide differévels of quality of service over the Internetvbabeen
developed in the past decades. These applicataves yarious resource requirements and resource usathods.
Traditional Internet architecture is too rigid teguately support these applications. Network alization (NV) [1]
is a promising scheme that separates the rolast@flet infrastructure providers (InPs) and serpicviders (SPs).
SPs are then allowed to construct their own virtugtlvorks (VNs) by leasing resources from substnatvorks
(SNs) of the InPs. Due to their different resoureguirements and different operation protocolsseh&Ns are
heterogeneous. Thus, multiple heterogeneous VN&staen a shared SN, and the InP needs to allogdt@odes
and links on its SN efficiently to increase reventiis is referred to as the virtual network emhbeddVNE)
problem. The VNE problem has proven to be nondetestic polynomial-time hard (NP-hard) [2]. The NVE
problem must be addressed before NV can be viaploged over the Internet.

There have been many attempts to address the Voliteon [1-11]. Most methods, such as [10] and [tiMide the
VNE problem into two stages: first solve nhode mappising greedy algorithms, and then search fosiphl/paths
for link mapping. These methods ignore the relaiom between node mapping and link mapping in oraleeduce
the complexity of the problem, but provide only pperformance due to the restriction of the soluspace.

To solve node mapping and link mapping simultanoaisd get better performance, Chowdhury et alpf@posed
ViNEYard—virtual network embedding algorithms witbordinated node and link mapping. In their aldons, a
mixed integer programming model is formulated, andorresponding relaxed linear programming probiem
solved for node mapping (deterministic or randomtjzand another iteration of the linear programnpngplem is
solved for link mapping. Simulation results showthat VINEYard achieved better performance than tawgs
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solutions to the VNE problem.

The above algorithms focus on online VN requesying to minimize the cost of each VN request tckenan SN
accept more VN requests, and thus maximize thentevef the InP accordingly. These online algoritfareslack of
knowledge of successive requests, and greedy ideasised to address the current request, and iasptior
performance in some situations. Therefore, mappigyation [11] and time window algorithms [2] habeen
proposed. Using a batch process and a simple isglestrategy, better performance can be obtainet{Here is
much room for improving the optimization performanc

This paper focuses on processing multiple VN reguesnultaneously. Based on the multiple-choicepkaak
problem (MCKP) model, we propose a modified anbogloptimization (ACO) algorithm. In our algorithra,set
of candidate physical networks are first founddach VN request, and the VNE problem is converteaht MCKP
problem. The optimization goal is to maximize rewerand achieve optimal load-balancing charactesisto that
the SN can support more VN requests. We desigrfédess function to evaluate the solutions obtaibgdants in
each iteration. To hasten convergence, the cost physical network is used as the heuristic infaionafor

selecting one candidate physical network. Accordinthe characteristics of MCKP model, two typepléromone
are defined and the corresponding pheromone updkge are proposed. Simulation results show thapoaposed
algorithm has better optimization performance ttrengreedy algorithms in literature [2].

This paper is organized as follows: Section 2 dessrthe background of the VNE problem and defities
optimization problem to be addressed; Section d@ses the modified ACO algorithm to solve the optation
problem; Section 4 provides simulation results andlysis; and Section 5 provides a conclusion.

BACKGROUND AND DEFINITIONS
In this section we first describe the VNE probleynan example, then model the SN and VN requeshdseacted
graphs, finally give a mathematical model basedame definitions.

VN Request 2 Substrate Network

Fig. 1: Illustration of virtual network embedding [2, 11]

Fig. 1 [2, 11] illustrates one SN (right) of an Jraidd two VN requests (left) to be embedded iRat. a VN request,
each VN node is mapped to an SN node that satitfeesesource constraints of the VN node, and &&¢hink is
mapped to an SN loop-free path that also satiffiedandwidth constraints of the VN link. For VNjuest 1, the
VN nodes (a, b, ¢) are mapped to the SN nodes (B)Hrespectively, and VN links ((a, b), (a, d, €)) are
mapped to the SN paths ((C, D, G, H), (C, A, B), B1E, B)). Because all SN nodes and paths casfsahe
resource requirements of all VN nodes and links, rébjuest 1 can be accepted. For the same reasoreqiést 2
is also accepted. These accepted VN requests aganrervenue for the InP (the owner of the SN) &y ttonsume
SN resources. If no SN nodes or paths satisfy ékeurce requirements, the VN request will be reprctWhen
many VN requests are made, different mapping mettaedept and reject different VN requests, whidluémces
the usage of the SN and results in different an®ahtevenue for the InP. This is the essence®MNE problem.
The optimization goal of the VNE problem is to siffntly use the SN resources by selecting an gp@te
mapping (or embedding) for each VN request so asaximize the entire revenue of the InP.

The SN is modeled as an undirected weighted gréph= (V >, E®), where V° is the set of SN nodes anBf®

\Y,

is the set of SN links. Each nod¢[JV° has an attribute seCaS,[;r (V) to describe its capacity. In this paper,

C>Y(v) is used to describe the CPU capacity of natiewhich is in a rectangle near it, af@>. (V) is used

cpu
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for the location information. Each edge(] E® also has an attribute séiastf (€); in this paper, Cb?,\‘,E (e) is

used to describe the bandwidth of the link, which ireal value near the link. The VN request is aiedeled as an

undirected weighted grapﬁ?-R = (VR, ER), and the upper charactés is replaced with Rfor each attribute
donation.

For a VN requestR , the revenue of the InP is fixed if it is acceptélde revenue can be defined as follows:

ReR)=a 2; Cal W+B2 Cife)

eJER

where a, B  reflect the relative importance of CPU capacity &ink bandwidth, respectively.

The cost of a VN requestR will differ for different mappings. Assume thatetie are K mappings
M;;(i=12,..K) for R. P(€) is the SN path for VN linke, and || P(e)|| is the length of P(€). For
each mappingMiyj (] =1,2,...K ), the cost of R is defined as:

Cu,(R)=a Z; Car’ M +8 Z; Ca @|[P@E)| @

where @, have the same meaning with (1).

For a VN requestR, let the K mappingsM , () =1,2,...K )oe the candidate physical networks (or, for brevity
“candidate networks”) for it.

Given N VN requests, due to resource constraints, onlyes@quests can be accepted. The optimization goal i
to maximize the revenues of the InP. If a VN requéd is accepted, only one candidate network is useuinary
K
variable X' =1(j =1,2,...K _ denotes that thej" candidate network is selected fd¥, and ZXi’ =1
=1
K .
guarantees that only thg™ candidate network is selected. If this VR s rejected, thenz x! =0.
=L
The jth candidate networkMi’j of a VN requestR is a sub-graph of SN, and it contains informatiémaode
mapping and link mapping. For an SN notéIV *, if it is used by M, ;, then a binary variableM; ; (v)=1.
Assumed its corresponding virtual nodeV¢V® | then Cv1 (v) = C3Y (v").. For an SN edgeed ES | if it

cpu cpu
is used by M. ., then a binary variablel\/li]j (€) =1. Assumed its corresponding virtual edge@s1E® | then

ij?

Cb'\;'v" F(e) = C.3E(e") . Therefore, the optimization problem is definecthy following mathematical model:

Max Y (Re® <3 ') (

st.

Ng K

22 0M, (C Y (V) <CoY (v), DvOVE (4)
i=1 j=1
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1, if vOV® is used b, |
Mi,j(v = : (5)

0, else
Cc“sl‘;"‘v(v):CciL'lV(v'), M, :v'OVY - vOVE  (6)

K

fZXjMi,j(e)CxJ“'E(e)SCbSV'VE(e),DeDES @)

i=1 j=1
1, if edE® is used bW .

M;;(e) = My
’ 0, else

Co'"(@=C5(e), M, :e'DE" ~ eDE® (9)

(8)

K
> X <1 0i=12,..Nq 1

j=1

x' 0{0,3, 0i=1,2,..,.N,,0j=1,2,..K (11

where (3) is the optimization goal, (4), (5) andl tiether describe the node resource constrafite &SN, (7), (8)
and (9) together describe the edge resource contstif the SN, and (10) and (11) reflect wheth&MNarequest is
accepted or rejected in the VNE problem.

The above mathematical model indicates that eachpaed request ha¥ choices (candidate networks) and only
one choice is selected; furthermore, only someesigucan be accepted due to resource constraihish\Wequests
are accepted and which candidate network is seléotean accepted request is the essence of the prbilem. So

a request hasK +1choices (rejected, or one d candidate networks is selected), and there @fe+1)"
solutions for our VNE problem. The time complexd§ enumerating all solutions and selecting the s is
exponential and it is unlikely to address it whae number of requesN; becomes larger. This problem is a

multiple choice knapsack problem and has provebetdNP-hard [12]. Approximation algorithms are nebde
tackle this optimization problem. The research \wofR-11] adapted various greedy algorithms, howettss
optimization performance are poor in some casesugir only one iteration process. In our paper, narglom
iteration processes are adapted and the knowleigedjby one iteration process can be used inviollp iterations
so that better optimization performance can beiobta

To evaluate a solutiorsof one random iteration process and guide the viaflg iteration processes, a fitness
function is needed. A fitness function represenisgreedy ideas to get better results. Accordiridpéooptimization
goal of the VNE problem, a solution with more rewerand higher acceptance rate is preferred. Soesigried a
fitness function that considers both the revenuktha number of accepted VN requests:

(9= ReR I X WY YK (12

where @, @ reflects the relative importance of revenue ardabceptance ratio. Simulation results show that ou
fitness function also introduces better networldlbalance.

A MODIFIED ACO ALGORITHM

Based on the above mathematical model of the VNEnigation problem and our analysis, an algorithithunore
random iteration processes is needed. The ACO itligur first proposed by Dorigo [13], is a meta-histic
algorithm and has been successfully used in mampgwtional optimization problems. In our papeeg firocess of
searching for candidate networks is first giverg #men a modified ACO algorithm is proposed to ladke VNE
problem based on the MCKP model.

1. Process of searching for candidate networka féN request
In our algorithm K candidate networks are pre-computed for each \(Mest. Many researchers have proposed
ways to embed a VN request [1, 2, 10, 11]. We cse these algorithms to construt¢ candidate networks
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separately for each request. In our paper, we hisédea from the ViNEYard solution of Chowdhuryaét [2] to
search for candidate networks for a VN requesthénViNEYard solution, multiple paths are selecteda pair of
nodes and the data is split to transfer througbkethgaths. This couples the VNE solution with thétdro data
transmission protocols strongly and brings someeroftroblems such as out of sequence. To overcoeee th
shortcomings, we use only one path for a pair afespand use their intermediate results to coristiic candidate
networks.

First, a linear programming model is solved, forichhthe optimization goal is relevant to both miiding the cost
of a VN request and providing load balancing fa 8N. Each SN node is given a probabilistic sedectalue for a
VN node, and multiple SN paths with their probdla are obtained for each pair of the correspan8iN nodes.

Second, an SN node is randomly selected for eacm¥de, and each VN link is checked to see if anpakth
satisfies its bandwidth constraints. If all VN Iskre mapped to SN paths successfully, a candigaterk is found.
The process is repeated until K candidate netwar&g$ound for a VN request.

2. Solution construction process of an ant

Each ant constructs an entire solution of the VN&bjem based on the MCKP model individually. Isfiselects a
VN request according to the probability defined(1%) and then selects a candidate network of tiNsrequest
according to the probability defined in (16). Ietbandidate network can be embedded in the SNtheeresidual
CPU capacities of the SN nodes and the residuaviidih resources of the SN edges can satisfy wighrésource
requirements of the candidate network, the VN retjiseaccepted and the candidate network is uséd ampping;
otherwise the VN request is rejected. If a VN rexjue accepted, the corresponding resources deiscted
candidate network are reduced in the SN. The psoisaepeated until all requests are processedlutian is then
obtained by the ant. After each ant finishes itat&an construction process, updates the pheronmile and starts
the next iteration, until the terminal condition tife algorithm is reached. The probabilities ofestbn are
determined by pheromone and heuristic informatRireromone is defined as follows:

Pheromone: Based on the idea of MCKP, two types of pherorsaare defined: o, (i =1, 2,...N ) is defined as
the  expectaton that a VN request R(1=1,2,...N; ) will be accepted, and

B, (i=12,..N;.,j=12,.K is defined as the expectation that thd" candidate network ofR is

selected for the mapping oR .

Based on the characteristics of MCKP, at most aradiclate network will be selected for a VN requegtich
indicates that when one candidate network of a ¥Nuest has higher probability to be selected (hgkeh
pheromone value), this VN request also has highalogbility to be accepted (also has higher pher@anaiue);
therefore, the relation between these two typgsefomone can be defined as follows:

p=max(p).i=12.N, j= 12K (1

Heuristic information for selecting a candidate network: Because the entire optimization goal is to acesptany
VN requests as possible, a candidate network with tost is preferred. Thus, the heuristic infoionaor selecting
a candidate network is defined as the inverseso€dist to overcome the initial blindness of the A@i@orithm,
which indicates that the candidate network witls lesst should be selected with higher probability:

Z-ij :1/CMi,j (R)’ i:1'2""NR ’j =1’2’K (1

Probabilities of two selection operations. The solution construction process includes twled®n operations. The
first operation selects a VN request and the sesefetts a candidate network for the VN request gitobability

that a VN requestR  will be selected is defined as follows:

p=-_ i=12.N, @
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As defined in (13), a requesR  which has higher pheromone valyg indicates that at least one of its candidate

networks resulted in better performance in lasatien processes, and is selected with higher fibtyain current
iteration process.

The probability that thejth candidate network will be selected fd% is defined as follows:

Yrs
'0'1—'1' i=1,2,..N; ,j=12,.K (L

Pi =%
v ¢
20T

=

where /,{ reflect the relative importance of pheromone aedristic information, respectively, in the selentio

of the candidate network. A candidate network hHghdr pheromone value when it was selected inakeiteration
processes and better results have been obtaineid,vath be selected in current iteration procesghwhigher
probability. To accept more requests, a candidatevark with less cost is preferred, and this ideéd in the
definition of heuristic information (14). So a cashate network with higher pheromone value and hidteuristic
information value will be selected with higher patliity as (16).

3. Pheromone update rules

After all ants finish their solution constructioropesses, the fithess function (12) is used touawaltheir solutions,
and the best one—the one with the largest fithedsev—is selected to update the candidate netwddctien

pheromone. The pheromone is increased for all datelinetworks embedded in the SN. The pheromonatepdie
for each candidate network is defined as follows:

Py =@-A)p; + f(s)x X/,
i=1,2.N, j= 12.K (17)

where 0< A <1 is the evaporation ratio of the pheromone. Ttst fiart of (17) indicates that the past knowledge

will decrease their influence on the future itavatprocesses in an exponential manner, and the wélul decides
their decrement ratio. The second part of (17)datdis that at most one candidate network of a stquil get
increment of pheromone value. According to an asglsition construction process, when a requestdsed, one
of its candidate networks is selected and the saderandidate network will get pheromone increnikitts in the
best solution. Otherwise, none of its candidatevasks will get pheromone increment.

After the pheromones of all candidate networks @pdated, the pheromones of all VN requests are tagda
according to (13). Through updating the pheromomdues, the knowledge of last iteration processes ar
accumulated to guide the next iteration proceggetdetter results.

4. Terminal conditions

The ACO algorithm is an evolutionary algorithm aeduires multiple iterations. Given a suitable vandsize, the
most optimal (maximal) values obtained in eachatien process are recorded in this window. Theavee of these
values is used to define the terminal condition.eWlvariance is less than a given threshold, therighgn is
assumed to have reached convergence.

Based on the above definitions, the ACO algoritkid-ACO (VNE based on MCKP), which is used to addrése
optimization problem, is given below:

Step 1. Initialize parameters and search for K iwhatd networks for each VN request.

Step 2. If the terminal condition is reached, gsti&p 7; otherwise, start the next iteration.

Step 3. For each ant, select a VN request basdidegprobability defined in (15) and select a caatichetwork for
the selected VN request according to the probglukfined in (16).

Step 4. If the selected candidate network can beedded in the SN, the VN request is accepted andahdidate
network is used as the SN mapping, and the respareereduced in the SN; otherwise, the selectededNest is
rejected.

Step 5. Repeat the selection process until all ®\uests are processed, and then obtain a solution.

Step 6. Evaluate all solutions obtained by the ant select the best solution using (12), updagzqvhone based
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on the rules defined in (17), and proceed to Step 2
Step 7. Select the best solution as the final VhlEt®N, output the mapping between the VN reqaest candidate
network, and calculate the acceptance ratio anértiee revenue of SN (InP).

SIMULATION AND ANALYSIS

In this section we describe the simulation envirentnfollowed by the main evaluation results. To pane our
algorithms and the existing ones fairly, we use dhme simulation settings as [2], and select thedew-based
batch process algorithm WIiNE proposed in [2] beedtibas better optimization performance than ophuee online
algorithms.

1. Simulation settings

The SN topologies used in our algorithm are gepdrdily the Georgia Tech Internetwork Topology Models
(GT-ITM) tool [14] with 50 nodes in a 25 x 25 grilach pair of SN nodes is connected randomly withobability

of 0.5. The CPU capacity value of each SN nodethedandwidth value of each SN link are uniformistiibuted
between 50 and 100. The VN request topologies lacegenerated by the same tool with 2-10 nodekarsame
grid. Each pair of VN nodes is connected randonith & probability of 0.5, and the CPU and bandwidtkources

of VN nodes and VN links are uniformly distributedthe ranges 0—20 and 0-50, respectively.

The VN requests arrive according to a Poisson poemd we adjust the average rate from 4 to 8 #@8hime
units to change the numbers of VN requests in #teark. The lifespan of a VN request is exponelytidistributed
and the average is 1000 time units. The simulaiioe is fixed at 50000 time units. We suppose #ftdr 30000
time units, VN requests become stable, and conaupgtest sampling every 1000 time units. When thaikition
time reaches 50000 time units, 20 samples can taénel.

The algorithm WINE [2] is a window-based batch mss algorithm for the VNE problem, and uses a grédsh to
batch process the requests in descending ordewvehue. We use the requests obtained in each sasphe input
for WINE and our algorithm, and compare the averageeptance ratio, the average revenue, the aveosgieand
the average resource utilization ratio of these algorithms.

2. Performance metrics

We define six performance metrics to examine thopmance of our algorithm and the WINE algorithgj. [All
these metrics are firstly defined and calculatedaioh sample, and the average of the 20 samptée éisal results
to be compared.

The acceptance rate measures the percentage of VN requests acceptie laygorithms.

The generated revenue measures the total revenue of all accepted regjuest sample (the revenue of an accepted
request is defined in (1)).

The provision cost measures the provisioning cost of embedding a &juiest (defined in (2)).
The node (link) utilization rate measures the CPdEnfiwidth) usage percentage of an SN node (linkgrmihe
algorithms embed some VN requests in the SN.

To evaluate the characteristics of load balancihgnobedding algorithms, we define thaad balancing factor as
the variance of utilization ratios of all nodes dimits. This load balancing factor can reflect thestuation degree
of the resource usage of nodes and links, and leadere of this metric means more balancing that algplies
more VN requests can be accepted and more revamugecobtained.

Because the batch process algorithm WINE propoge@howdhury et al. [2] uses a greedy idea, it itledagreedy
algorithm in this paper, compared with  our VM-A@@orithm.

3. Optimization performance
Fig. 2 gives the average acceptance rates of thalyorithms when the VN request arrival rate clesfgom 4 to 8
per 100 time units. Higher VN request arrival nateans more VN requests to be embedded in the SN.

As fig. 2 shows, the acceptance rates of the tgordthms become lower when there are more VN requahe

reason behind is that the nodes and links of thdn®M resource constraints and only some of theéfuests can
be accepted. However, the numbers of accepted sexjoecome larger with the increment of the arnigte due to
the uniformly requests distribution.

333



Fangjin Zhu and Hua Wang J. Chem. Pharm. Res,, 2014, 6(7):327-337

For each VN request arrival rate, the VN requastsaich sample are the same and as the input tfithalgorithms.
The proposed VM-ACO algorithm obtains a higher ager acceptance rate than the greedy algorithm of
Chowdhury et al. This is because the greedy algoribnly accepts VN requests according to a simmedy idea:

it accepts VN requests starting with those thawide the highest revenue to those that provideldiaest one.
However, the VM-ACO algorithm randomly selects Vitjuests according to pheromone and heuristic irgtiom,

and then uses an iterative process to optimize@padnce. Because K candidate networks are presd|ebe more

VN requests in the network, the higher the acceptaate of the VM-ACO algorithm.
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Fig. 2: Average acceptancerate with different VN arrival rates
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Fig. 3: Average generated revenuewith different VN arrival rates

Fig. 3 gives the average generated revenue ofvbhalgorithms when the VN request arrival rate gfeanfrom 4 to
8 per 100 time units. For each sample, the gerkerateenue is the total revenue of all acceptedestguand the
average generated revenue is the average of 20esamp

As fig. 3 shows, the two compared algorithms obtaore average generated revenue with more VN résjuBlsis
is because more VN requests give the algorithmsenagportunities to embed these requests efficieMiyre
revenue along with higher acceptance rate imply tha two algorithms can actually embedded requests
generate more revenue, instead of embedding smedjeests just to increase the acceptance rate.

The proposed VM-ACO algorithm obtains more averggerated revenue than the greedy algorithm. Tdsoreis
that K candidate mappings for each request enltiigsolution space than only one mapping seleci¢de greedy
algorithm.

Fig. 4 provides the average cost of a VN requestnathe arrival rate of VN requests changes frorm & per 100
time units.
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Fig. 4: Average provisoning cost with different VN arrival rates

As fig. 4 shows, the proposed VM-ACO algorithm a&sieis a similar provisioning cost as the greedyrélyo at
different arrival rates for VN requests. In someeas the provision cost of the proposed algorithra little larger
than that of the greedy algorithm, because the queg algorithm seeks a higher acceptance raticelegting a
candidate network with some slightly longer SN patklore revenue along with a little longer pathets the
trade-off between the resource utilization and t&sbness of provision paths [15].
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Fig. 5: Average node utilization rate with different VN arrival rates
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Fig. 6: Average link utilization rate with different VN arrival rates

To evaluate the resource utilization, fig. 5 argl % give the average node utilization rate andaberage link
utilization rate respectively when the arrival rafe/N requests change from 4 to 8 per 100 timésuni

As fig. 5 and fig. 6 show, the average node arklitilization rate have the same tendency of bengrhigher with
more VN requests. This is because that more VN wecepted when the VN arrival rate changed frorn 8 per
100 time units. Moreover, the average node and diilkzation rate of our proposed VM-ACO algorithane both
higher than ones of the greedy algorithm. The neasmur proposed algorithm embedded more reqtleatsthe
greedy algorithm.

335



Fangjin Zhu and Hua Wang J. Chem. Pharm. Res,, 2014, 6(7):327-337

There are differences between the node and lidizatton rate: the node utilization rate increasaplidly and the
link utilization rate increased slowly. This indiea that the nodes of the SN are used more effigierhe reason is
that in the greedy algorithm more virtual links idththe same physical links. The physical nodesecting them
lost the capacity of embedding other requests. Bexaur proposed algorithm has K candidate netwimrkeach
request and has more chances to avoid the sheeinégssial links, each SN node has more opportesito embed
more requests.
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Fig. 7: Load balancing factor with different VN arrival rates

Fig. 7 provides the variance of resource utilizatrate which is the combination of link and nod#iaation rate
(load balancing factor defined in this paper) wdifferent VN arrival rates. The variance is usedréflect the
different usage of the nodes and links of the SK.fi§. 7 shows, the variance has lower values witire VN
requests. This is true because that when more \(uests are needed to embed in the SN, there are mor
opportunities to gain the load balance.

Fig. 7 also shows that our proposed algorithm baget variance values than the greedy algorithms Téialso
because K candidate networks give the algorithmembances to embed the VN requests efficiently.

CONCLUSION

In this paper, a batch process version of the ViRiblem was defined based on the MCKP model. Th¢ gfothe
batch process version of the problem is to takev@ngset of VN requests and embed the requestwirsN based
on resource constraints in a way that maximizegdfienue of the InP. This is an NP-hard problemwhich we
propose a modified ACO algorithm. In our algoritih¢andidate networks are first found for each esguand two
types of pheromones are defined for a VN requedtiencandidate networks according to the charetierof
MCKP. To evaluate a solution, we introduce a loathhcing factor as a component of the fitness fancand
define the corresponding pheromone update rulesovBscome the initial blindness of the ACO algarithwe
define the cost of each candidate network as heuiiformation. Our modified ACO algorithm provisidetter
optimization performance than a greedy algorithm.
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