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ABSTRACT 
 
A method of distributed mutual information is proposed for selecting secondary variables in a soft sensor. The 
mutual information between the predicted primary variable and the secondary variables is obtained by estimating 
the probability distribution of every secondary variable and the predicted variable. This information indirectly 
reflects the linear or nonlinear correlations between the predicted variable and the secondary variables. A threshold 
value is obtained by t-test approach as a criterion to judge the correlation of variables. Subsequently, the variables 
whose mutual information is greater than the threshold value are further screened to be selected as the relevant 
variables or to be discarded as weakly relevant variables. Finally, a soft sensor model is built based on the support 
vector machine algorithm with the selected secondary variables. 
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INTRODUCTION 
 

Data-driven soft sensors have been developed and implementedfor a long time. They gained on popularity with the 
increasing availabilityof recorded data in the process industries and availabilityof computational power to process 
the data. The collected data,also referred to as historical data, can be exploited by statisticaland machine learning 
techniques to obtain additional informationthat can be used to make decisions towards more efficient andsafe 
process operation. This kind of information can, for instance,be an instant prediction of the variables that are related 
to theproduct quality, which can be achieved using online predictionsoft sensors, or the estimation of current process 
state, which can beachieved using process monitoring and fault detection soft sensors[1-2]. However,this task is not 
trivial because historical data are often data richbut information poor (Dong &McAvoy, 1996) and therefore 
themodel building on its basis is a challenging task. 
 
The first generation of data-driven soft sensors relied on offlinemodelling using the recorded historical data. In such 
a case, thecollected historical recordings are used for the model identification.This step may for instance include the 
identification of optimalweights of an Artificial Neural Network(ANN) or principal components of a Principal 
Component Analysis(PCA)-based soft sensor[3-4]. However, in order to guarantee the success of the offlinesoft 
sensors, there are several conditions that have to be fulfilled.Most critically, the historical data has to contain all 
possible futurestates and conditions of the process. This includes not only thestates in which the process can be 
operated but also states relatedto environmental changes, changes of the process input materials,etc. Even if the 
collected historical data contains all the requiredprocess states, another difficulty is to select a model type, and 
itsparameters, in such a way that the model can comprehend all thedifferent conditions. This results in high model 
complexity, whichin turn demands and a large number of historical data for the modeldevelopment.  
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A prominent issue in the process industry is the accurate online measurement of important quality parameters to 
ensure product quality, smooth continuous unit operation, and maximum production capacity. As production 
processes involve a large number of complex physical interactions, chemical reactions, and conversion and transfer 
of materials and energy, existing hardware cannot directly yield accurate on-line measurement of quality parameters. 
Instead, soft measurement technique estimates primary variables indirectly by mapping the relationship between 
readily measured variables and the primary variables that cannot be directly measured according to a set of 
optimization rules. 
 
The first step in the implementation of soft measurement technology is the selection of auxiliary variables. The 
auxiliary variables are selected mainly based on sensitivity, accuracy, specificity, and robustness. The impor1tance 
of variable selection has been mentioned in the literature [5-6]. A well-selected set of auxiliary variables can 
effectively overcome the dimensionality problem and improve the model’s validity. One way to select auxiliary 
variables is to identify a set of measurable auxiliary variables that affect primary variables based on a mechanistic 
analysis. An alternative way is based on a statistical analysis of the correlation in the sample data to exclude 
irrelevant variables. Variable selection methods based on PLS and PCA have been reported in the literature [7]. 
Other variable selection methods are based on mutual informationcalculated indirectly from the entropy and 
conditional entropy [8]. Another approach estimates joint probability density function (multi-dimensional Gaussian 
distribution) to determine the input variables of a neural network according to mutual information[9]. 
 
In this paper, the number of auxiliary variables is determined by mutual information. An example of estimating the 
concentration of phenol with a soft sensor model illustrates how to calculate the mutual information between 
auxiliary variables and primary variables from a set of samples. Subsequently, a threshold is determined by the t-test 
method for judging the correlation between the primary variable and every auxiliary variable[10-11], and the variables 
meeting the threshold criterion areselected. Finally, a soft sensor model of phenol is refined by removing redundant 
variables. 
 
MUTUALINFORMATIONAND T-TEST 
Mutual information is defined as the amount of information of a random variable that is contained in another 
random variable. The mutual information of variables between X and Y is definedas[12]: 
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where ( )yxm , describes the joint probability density of X and Y, and ( )xmX and ( )ymY  respectively describe the 

marginal probability density of X and Y. A high value of the mutual information means variable Y contains more 
information on variable X, thus, a greater correlation between the two variables. Therefore,mutual information can 
be used to select auxiliary variables in a soft senor. 
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hypothesis is rejected when the statistics value belongs to the rejection domain; otherwise, the hypothesis is 
accepted.  
 

Since t-test is used here to find the maximum mean value 0maxI of mutual information for accepting the 

nullhypothesis[13], this is a recursive process for0H .Assume the mutual information between the primary variable 
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and a set of normally distributed random variables is iI . Tests are randomly repeated n times, the mean value and 
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= . 0maxI initiallyreflects the highest mutual information between 

the primary variable and unrelated variables. In order to ensure certain redundancy, the threshold 1δ ( 1 1 0maxd Id = ) 

is determined finally, 1 [1.0,1.1]d ∈ . 

 
VARIABLE SELECTION ALGORITHM OF DISTRIBUTED MUTUALINFORMATION 
John et al. divide input space into three categories, i.e., strongly relevant variables, weakly relevant variables, and 
irrelevantvariables[14]. The optimal variable subset should not contain irrelevant variables. Because inclusion of 
weakly relevant variables leads to variable redundancy, the optimal variable subset should contain only strongly 
relevant variables but exclude weakly relevant variables and irrelevant variables. 
 
Considering the correlation between input variable X and output variable Y, the mutual informationI(X;Y) 

ofvariables X and Y represents the amount of information that Y contains. If the input variableiX meets:  

( ) 1; δ≥YXI i (3) 

where 1δ  is a correlation threshold. It indicates that iX contains a certain amount of information of Y, i.e., iX  is 

a relevant variable of Y. If the input variable iX does not meet the above formula (3), the variableiX  contains 

only negligible information on Y or none at all, and iX  is regarded as an irrelevant variable and is excluded. Thus, 

the variable subset F consists of both strongly relevant variables and weakly relevant variables that satisfyEqn 3.It is 
necessary that the subset F is further screened because there may exit redundancy in the weakly relevant variables. 
Redundant variables should be eliminated from the subset F to maintain the correlation between the subset F and 
output variable Y. 
 
Mutual information refers to the correlation between two sets of events, and it is difficult to estimate mutual 
information in a high dimensional case. In order to simplify calculation, a subset of variables is replaced by a single 
variable to measure the redundancy between a subset of variables and output variable Y. This article draws lessons 
from the algorithm of min-redundancy max-relevance (MRMR) [15], which uses the mean value of mutual 
information to evaluate the degree of redundancy. In other words, the mutual information between the output Y and 
the subset F,I(F;Y), is evaluated as the mean value of the mutual information between Y and each of the element of 
the subset F, as shown in the following equation : 
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where iF  is an element of the subset F. 

 

In this paper, redundant variables are removed via a backward method. When deleting an input variable iX , if the 

mutual information between the output Y and subset F meets the redundancy constraints given inEqn (5), iX is a 

redundant variable; otherwise, it is a relevant variable.  

( ) ( ) ( )YFIYXFIYFI i ;;; 2δ<−− (5) 

where 2δ is a given threshold of redundancy, [ ]1,02 ∈δ  
The specific steps in the variable selection algorithm of distributed mutual information are as follows: 

1) The mutual information of variables( ; ), 1,2,3,..., .i iI X Y i n= can be calculated from Eqn (1).  

2) max0I isobtained from Eqn (2) based on t-test. Pick a relevance threshold1δ and select all input variablesiX

( 1,2,...,i m= )that meet the correlation condition (3).  ArrangeiX  in a descending order in accordance with the 
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values of mutual information to structure the subset F.LetM F= . 
3) The mutual information between a subset of the remaining input variables and the output variable,

( )YMMI i ;−  ,is calculated by Eqn (4)after each variable( )miM i ,...,2,1=  is removed in turn. 

4) The variable iM meets Eqn (5), it is redundant and excluded; otherwise, iM is retained. 

5) Repeat Steps 3) and 4) until each variable has been removed in turn. Then the algorithm stops. 
 

There are two adjustable parameters in the above algorithm, the relevance threshold 1δ and the redundancy 

threshold 2δ . 1δ is determined by max0I which is obtained from the t-test. The higher the 1δ value is, the higher the 

requirement of the correlation between variables, and subsequently a less number of variablesis selected in the first 

step. The higher the 2δ value is,the higher the requirement of redundancy of variables selected, and subsequently a 

less number of the variables in the optimal subset M. 
 

Casestudy 
The example is taken from a BisphenolA(BPA)plant where a soft sensor estimates on-line the concentration of 
phenol in a crystallizer tower C303. The material exiting melting pot V304 is recycled back to crystallizer tower 
C303 for crystallizing again. The six auxiliary variables determined through an initial analysis are the three 
physically measured variables (temperature, level, and mass flow of crystal tower C303) and the three estimated 
variables (concentration of phenol and BPA in the V304 outlet and concentration of BPA-24 in the C303 outlet). 
Finally the concentration of phenol in C303 is estimated with a Support Vector Machine(SVM) model. In order to 
select the auxiliary variables related to the primary variable (the concentration of phenol in crystallizer unit C303), 
150 groups of data were retrieved from the production site, with 100 groups as the model training set and the rest as 
the test set. The relevance and redundancy between the primary variable and auxiliary variables in the training data 
set were analyzed with the proposed method of distributed mutual information. A support vector machine model was 
established with the optimal subset of measurements and verified with the test data set.  
 
The mutual information of each auxiliary variable and the primary variable is shown in Table 1. The mutual 
information in a descending order is: output BPA of V304> output phenol of V304> material flow of C303> level of 
C303> temperature of C303> output BPA-24 of C303. 

 
Table 1.Mutual information between auxiliary variables and phenol 

 
Variable Mutual  information I 

Outlet BPA of V304 0.1275 
Outlet phenol of V304 0.1176 
Material flow of C303 0.0313 

Level of C303 0.0075 
Temperature of C303 0.0032 

Outlet BPA-24 of C303 0.0005 

 
First, it is necessary to determine a threshold for selecting variables of relevance. In order to determine the critical 
value of rejection domain where the relevance of the primary variable and auxiliary variables falls, a group of 
random sample set following a normal distribution between 0-1 is generated with a computer. The mutual 
information between the primary variable and them is calculated, and the process is repeated 30 times to obtain the 
sample set for the t-test. Subsequently, according to the t-test, ( ) 0452.2291 025.0025.0 ==− tnt is obtained from 

the table for hypothesis testing (30 times at testlevel 0.05a = ). Based on Eqn(2), 0.0288I = and

0max 0.0291I = was calculated. The threshold coefficient1d is determined as1.05 and1δ as 0.0306. After an 

initially screening, outlet phenol and BPA ofV304 and material flow of C303 are retained. Finally, taking 4.02 =δ
ensures a higher requirement of redundancy in order to eliminate redundant variables, and outlet BPA and phenol of 
V304 are retained according to thejudgment formula of redundancy condition (5). The mean relative error of 
training and testing are got by the simulation of support vector machine model after deleting variables. Assuming the 

actual value is y and the estimated value isy′ , MRE is defined as: 

%100
1

1

×
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=
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The simulation results are shown in Table 2. 
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The above table indicates that the most auxiliary variables lead to the highest training accuracy but the worst testing 
accuracy.After the first screening step, the auxiliary variables are outlet BPA of V304, outlet phenol of V304, and 
mass flow of C303, and the testing accuracy of the model improved. After the redundancy step, only outlet phenol of 
V304 and outlet BPA of V304 are retained, and the testing error is the least.Therefore, retaining more auxiliary 
variables increases modelcomplexity but cannot improve testing accuracy. Considering both relevanceand 
redundancy between auxiliary variables and the primary variable lowers the final testing error. An analysis of the 
process indicates that each component of C303 has been relatively stable; therefore, the concentration of phenol 
mainly depends on the components of V304. Applying our method of variable selection for soft sensor based on 
distributedmutual information led to retaining the outlet phenol of V304 and outlet BPA of V304, which in turn 
yielded more accurate estimation of phenol in C303. The test results are shown in Figure 1.  

 
Table 2.Training and testing after deleting variables 

 

Auxiliary variables in order to remove The remaining number of auxiliary variables 
Training（%） Testing（%） 
MRE MRE 

Retain all variables 6 0.42 1.72 
Variables after the first step 3 1.45 1.51 
The rest of  variables 2 1.28 1.33 

 

 
FIGURE 1.  The comparison of test results 

. 
CONCLUSION 

 
The method of variable selection for soft sensor based on distributed mutual information has some advantages, well 
reflecting linear or nonlinear relevance and redundancy between the primary variable and auxiliary variables. The 
simulation results show that this method effectively eliminates irrelevant and redundant variables, reduces model 
complexity, and improves the estimation accuracy and generalization capability of the model. 
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