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ABSTRACT

When logistics services integrator integrates functional logistics service vendors, the determination of the number is
critical. Considering the reliability of vendors, the paper formulates an integer non-linear programming model to
solve the vendor selection problem. The objective function is to minimize the total cost. The constraint functions are
to maximize the reliability and choose the appropriate vendors. The reliability of logistics service supply chain is
studied. This paper constructs a combination algorithm based on sequential quadratic programming and branch
and bound method. It can meet both non-linear programming and integer programming. By numerical simulation,
the optimal solution and near optimal solution are given. The results show the suitable numbers of each kind of
functional logistics service vendors, the minimum cost and the maximum reliability of logistics services supply
chain.

Keywords: Combination algorithm, sequential quadratic prograng, branch and bound, integer non-linear
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INTRODUCTION

In the process of building the logistics servicemy chain, logistics services integrator is predwmnt. To ensure
high reliability of logistics service supply chaithe integrator integrates multiple functional Kt@is service
vendors. But increase the quantity blindly will fai great cost. Therefore, how to reduce the cosseeking

logistics service vendors is the key to the logsstservice supply chain operation. At present, riigghes about
vendors selection are focused on the linear waightiethod [1-4], cost method [5, 6], mathematigalgpamming

method [7-9] and combination method [10, 11], &enerally speaking, the nonlinear programming @wbls

much more difficult than the linear. It requireg tariable must be an integer. Many existing medhar@ restricted.
There is no general algorithm suitable for the proband each method has its own specific scope [it¥rature

[13] presents a non-zero integer non-linear goagm@mming model that minimizes the number of maiatee

workforce while maximizing their productivity. Thanch and bound technique is more successful ctatipoally

than the cutting-plane technique or the impliciumeration technique [14]. This paper proposes rabogation

algorithm based on improved sequential quadratggamming and branch and bound method.

2. Modé description

The subject of this study is functional logisties\éce vendors which provide logistics serviceslégistics services
integrator. They are integrated by logistics sasimtegrator in building logistics network. Thadtional logistics
service vendors mainly include transportation srwiendors (TSV), storage service vendors (SS\#rilution

service vendors (DSV) and other service vendors/jOBhe minimum reliability of logistics service gply chain

is given. Those notations are used for the propasedel: X; is the number of the chosen functional logistics

service vendors of categoryi [1 [1L,2..Nn]. R(0) is the minimum reliability of logistics servicemly chain. R
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is the reliability of logistics service supply chaiR is the reliability of functional logistics serviogendors of

categoryi. C; is the cost of functional logistics service verslof category.

n

The objective function is cost functioECi X . The reliability R must be greater than the minimAll kinds of
i=1

logistics service vendors must be chosen at lgast o

Min Z :Zn:ci X (1)
i1

s.t. R=R(0) (2)

R= ” @A-a-RO%) 3)

X =1, % isanintegeri 0 [12..n] . (4)

The model is an integer non-linear programming faab Murty proved that the non-linear programmimghpem
is NP-hard problem [15]. There is no equality comst in the original problem. It can be summarizesithe
following:

Min f(x) (5)
s.t. g(x)<0, i0l. (6)

3. Combination algorithm
Sequential quadratic programming (SQP). Define active set ad (X) ={i U1 : g;(X) =0} . If constrained

index set is known a®\(X) = J O 1 (X), J is the index set of equality constraint [16]. Tamproximate actively
set isA(X;€) ={i: g;(X) + £0(X,A(X)) 20}, here& is a non-negative parametgs(x,A(x) = ,/|P(x,2)| .

91(x)
_[ O, L, A(x) , _| 92(%) :
q:(x,i(x))-{mm{_f(xmx)}} o0 =| ™
Im(X)

A(x) = =(0g(x)" Og(x) +diag(g; (x))*) *0g(x)" Of ().

Then optimization problem with inequality consttaircan be turned into pure equality constraint rogtition
problem.

Min f(x) (7
s.t. g(x) =0 (8)
Here, f :R" -~ R, g:R" - R’ is continuously differentiable.

The minimum point of the above problem is optimwiuson of Eqgs. (5) and (6).

The Lagrange function of the above problemLiéx,4) = f (x) — A" g(x). The gradient matrix of constraint
function g is0g(x) = (0g, (X), g, (X),:+-) , here Jacobi matrix i8(x) =g(x)".
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For iteration point Q(k ,ik), programming (7) and (8) are approximate to thleowing quadratic programming
problem.

Min %dTH(xk,,lk)d+Df(xk)Td 9
st. B(x¥)d+g(x¥)=0 (10)
The Newton directionp® = (pt, p;()T meets the following equation:

K (x*,2%)p* = -0L(x*,2%). (11)
P(x*,2%) = (P{)T (H{ + By By) py ~2pxH By pj +(P3)" BBy P} (12)
The Newton directionp® = (pt, p;()T meets the following

(p*)T OP(x*,2%) = —2P(x*, 1) <0. (13)

Therefore, p¥ is a non increase direction of functi®(X, 4) in the point(x*, 2¥).

Summarize the specific algorithm process.

Step 1: Initialization Select the initial poin(x°,A°) , allowable errorr >0, S0 (01, 6>2, n>1,
p>0, y>0, k=0. Step 2 Test the convergence Calculate Jf € = Of (x¥) , H,=H (xX,2%)

g“ = g(x¥) and By = B(x¥).1f P(x*,2%) < 1, the approximate KKT poin{x ¥, %) of Egs. (7) and (8)
can be got. Then, the algorithm stops. Otherwige) to step 3Step 3: Calculate the main search direction
Calculate the descent direction By solving (9) ét@), we getdg and A" . Calculate the feasible direction

k
e Oge () |10 || =HHOC) ] 14§
0g i (x)T 0 2] ] =|db] e

Heree = @...D7, we can ge(:llk . Calculate the feasible descent directidh.

K _ 4k K
Of (x*)"d* <0,
Lo (16)
P =1 —Of (x)"d¥
— 20 others
Of (x¥)Td“ +
H K _ K K — 2% _ .k _ _ .
ere, py,=d. , p;=4 -4 , a=1 Step 4 Choose the sep size If

P(x* +ap¥,i“ +apX) < @- Ba)P(x*,2%), a, =a, tun to step 5. Otherwiser /7] — @, tum to

stepd.Step 5: Correction the iteration point X**' = x* +a, p¥, A =2 +a, p%, k+1 - k, wmn to
step 2. End.
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Branch and bound (BNB). Branch and bound is an effective method for soliimtgger programming problems
[17]. DO AOR" is non-empty feasible regiom is an open setf : A - R. If 2 OR", subject

M:{Mi|iD|}is a part of 2. 2=UM;. For0i,jOl,i#]j, M{nM; =0M; n0M . Here,
il
aMi is the relative boundary d¥1; . The specific algorithm is:

Step 1: Initialization Define a relaxation sl ; [J D. For eachM;,i U1 , its objective function’s lower bound
in M; n D is S(M;) and upper bound i&(M;) . The feasible point seB(M,) 0 D . M, I{M 0},
Bo = BMy), a, =min{f(S(M,)), +eo} . If @y <+eo, x° Dargmin f(S(M,)) , k=1. Step 2: Test
the convergence For M, and M OM, ,, the feasible point seB(M)OM nD. B4 = MrH\i/ln L(M),
k1
Ta = Min a(M). If & - B4 =0, the pointX** O D fitted with f(x*™)=a,_, is the optimal
kel

solution of Egs. (5) and (6), and the algorithmpstoOtherwise, turn to step &ep 3: Branch Define
Q ={M Dl\/lk_l|,8(M) < a'k_l}. Select a non-null family of sé, [1 Q, and construct each subdivision of

T, . All subdivision sets are recorded &g . Step 4: Lower bound For eachM [ T,”, if M is infeasible,
L(M) =+ . If M is feasible, S(M) <inf f(M n D). If M is uncertain, S(M) <inf f(M) . Here,
OM'OM,, , when M'OMOT, , B(M)=B(M') . Step 5 Upper bound Define
v :{M ot
OM'OM,,, when M’ OM OM; , S(M)OM n S(M') . a(M) =min{f(S(M)), +o} . step 6:
Confirm  unknown  subdivison  sets  Define M, =(Q \T,)OM;  and calculate
a, = minfa(M)|M OM,}, B =min{B(M)|M OM,} . if @, <+oo , choosex* 0D fitted with

f(x¥) =a,, k+1 - K. Turn to step 2. End.

L(M) <ak_1}. For any M OM; , confirm feasible point seS(M) 0 M n D . Here,

Combination algorithm
For the convenience of description, record thegetenon-linear programming problem (5) and (6) asad the
corresponding relaxation non-linear programmingfgm as B.

Step 1: Use the sequence quadratic programming methodIve & If there is no feasible solution for B, stop
calculating. If there is an optimal solution foittgat conforms to the integer condition of problepsfop calculating.
If there is an optimal solution for B that doestdinform to the integer condition of problem A, retdts objective

function value asf (X). Step 2: Find out an integer feasible solution of A =1, j=12,...,n. Record the
objective function value a?(x). Define f*(X) as the optimal value, thefi(x) < f~ (X) < ?(X) . Step 3:
Choose a random variabbej from the optimal solution of B, which doesn’t conh to the integer condition.

X;j =a;. Construct two constraint¥; <[a;] and X; =[a;] +1. Then two subsequent planning problem B

and B can be got. Regardless of the integer constraintge the B and B by SQP method respectivel$tep 4:
Consider each subsequent subproblem as a brandndiodte the solving results. Comparing with othelution,

define the minimum optimal objective function vakga new lower bound (X) . Find out the minimum objective
function value from each branch which is fitted lwthe integer condition, and define it as a neweagdmund
f (X) . If the solution doesn’t meet the requirementsther integer, keep the original upper bound valGe=p 5:

If there is a branch greater tha?n(x) in all branches optimal objective functions, cdt te branch without
considering any longer. If there is a branch Ibssn?(x) and not fitted with the integer condition, repte step

3, until f7(x) = f(X). End.
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4. Numerical example

The logistics service supply chains are composddraftional logistics service vendors, logisticsevémes integrator

and logistics services user. Here functional loggsservice vendors include TSV, SSV, DSV and O3\.
members provide independent logistics services.

The reliability and cost indicators of same typadtipbnal logistics service vendors are shown iretdb For each
type, the reliability and cost indicators of diet vendors are same.

The minimum reliability of logistics service supptain is 0.85. In order to minimize the total co$tlogistics
service supply chain, it needs to determine thebwmurof all kinds of logistics service vendors.

Using Matlab7.0 programming, initial feasible s@utis given. HereX; =1, X, =1, X, =1, X, =1. By SQP
algorithm, we get the optimal solution without ciolesing the integer constraints. Thex, =1.5815,

X, =1.7721 x, =1.7154, X, =1.4610. The iterations are 18. The function counts ar. Ithen branch,
bound and prune. Add constraint conditions aftehdaranch and calculate by SQP algorithm. Repeaptbcess
until it gets the integer optimal solutioX, =2, X, =2, X; =3, X, =1. f(X) =6620. The reliability of the
logistics service supply chain is 0.809. The cyeee 164.

Tab.1 Thereated indicator s of functional logistics service vendor s

Types | Reliability| Cost
TSV 0.845 850
SSV 0.783 900
DSV 0.827 750
osVv 0.874 870

Tab.2 The optimal and near optimal solution

X1 | X% | X3 | Xa f R note

2| 2] 3| 1] 6620] 0.809 optimal

3|1 2] 2| 1] 6720] 0.80§ near optimpl
21 2] 2] 2] 6740 0.884 near optimpl
21 3| 2| 1] 6770 0.819 near optimpl

To maintain the reliability, the logistics servicesegrator will choose 2 transportation serviced@s, 2 storage
service vendors, 3 distribution service vendors aArdher service vendor. It is the optimal solutidable 2 gives
part of other near optimal solutions.

CONCLUSION

This study used an integer non-linear programminglehin solving functional logistics service vensi@election
problem. The paper built a combination algorithredzhon improved sequential quadratic programmitngbaanch
and bound method. By numerical simulation, the paget the following results: the optimal number of
transportation service vendors was 2, the optinsahlrer of storage service vendors is 2, the optimahber of
distribution service vendors is 3, and the optimaimber of other service vendors is 1. The minimwst ©f
logistics service supply chain was 6620 and thiabity was 0.809.The further study of the currerirk can be
focus on increasing the objectives and constramimake the model more robust. For example, d#tailcost of
vendors, especially the coordination cost. Withabmplication of the problem, it will produce mdreanches.
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