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ABSTRACT 
 
Design a new novel intelligence algorithm which is called as chaotic quantum bee colony optimization (CQBCO) for 
discrete optimization problem. The proposed CQBCO applies the chaotic theory to quantum bee colony optimization 
(QBCO), which is an effective discrete optimization algorithm. Then the proposed chaotic quantum bee colony 
algorithm is used to solve benchmark functions and optimization problem of thinned array. By hybridizing the 
quantum bee colony optimization and quantum computing theory, the quantum state and binary state of the bees can 
be well evolved by simulated quantum rotation gate and chaotic mechanical. The new thinned array method based on 
CQBCO can search the global optimal solution. Simulation results for thinned array are provided to show that the 
proposed thinned array method is superior to the thinned array methods based on other three intelligence algorithms. 
 
Key words: Quantum bee colony optimization, thinned array, chaotic, particle swarm optimization 
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INTRODUCTION 
 
As we all know that natural system is one of the affluent sources of inspiration for designing new intelligent algorithms. 
For intelligence algorithms are important scientific domains that are closely related to biological phenomenon existing 
in nature, some algorithms such as particle swarm optimization (PSO) [1-2] and bee colony optimization [3] are 
widely studied for all kinds of  applications . At present, particle swarm optimization [4] and bee colony optimization 
[5] were widely used to solve engineering optimization problem, but the global convergent performance should be 
improved. 
 
In order to improve classic intelligent algorithm, the quantum computing theory is introduced into conventional 
intelligence algorithm and a better performance is obtained [6]. Quantum-inspired genetic algorithm (QGA) which is a 
promising genetic algorithm developing in recent years, and it is the product of merging quantum computing theory 
with genetic algorithm. In QGA, quantum bit encoding represents the chromosome, and evolutionary process of 
chromosomes is implemented by using quantum rotation gate. Now, we pay more attention to quantum optimization 
algorithm because it has a strong ability for global search with small population size, rapid convergence and short 
computing time [7]. Based on quantum computing and bee colony optimization, quantum bee colony optimization 
(QBCO) is proposed as an effective swarm intelligence algorithm [8]. The results of simulation comparisons show that 
the performance of the QBCO algorithm is competitive to other intelligence computing algorithms with an advantage 
of using fewer control parameters.  
 
At present, a hot research domain is applying intelligent algorithms to thinned array .Thinning an array means deleting 
some elements in a uniformly spaced or periodic array to create a desired amplitude density across the aperture. If an 
element is existed which means “on”, and the element has no value which means “off”. Thinning an array to produce 
low side lobes is much easier than the more general method of non-uniform spacing the elements. We can get an 
infinite number of possibilities for placement of the elements when we use non-uniform spacing.  However, thinning 
an array has 2D possible combinations, where D is the number of array elements. Thinning may be also regarded as an 
amplitude taper of quantization, and the amplitude at each element is expressed with one bit. 
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A low side lobe amplitude taper is generated by strategically positioning equally weighted elements in aperiodic arrays 
domain. Deriving the element positions to obtain a perfect side lobe level by using simple analytical methods are not 
available [9]. Instead, merge the element density with a region of the array to the amplitude density of the low side lobe 
amplitude taper for the same size aperture is used for most aperiodic array synthesis methods [10]. The element 
density at the center of the array is greatest and gradually decreases to the edges. As a rule, side lobes close to the main 
beam decrease but those far from the main beam increase [11] (which is usually quite acceptable). Aperiodic array 
synthesis methods target a maximum relative side lobe level by using a given probability [12]. 
 
Thinning array for low side lobes includes inspecting a rather large number of possibilities in order to find the best 
thinned aperture. It is only practical for small arrays if checking of all possible element combinations [13]. Most 
optimization methods are not well suited for thinning arrays such as down-hill simplex, Powell’s method, and 
conjugate gradient. Those methods can only optimize a few continuous variables and drop into local minima easily 
[14]. Those methods developed for continuous parameters, but the array thinning problem involves discrete 
parameters. Although dynamic programming can optimize a large parameter set, it is easily effect by local solutions 
[15]. 
 
As we all know genetic algorithms [16] and simulated annealing algorithm [17] are suited for thinning arrays because 
they do not limit to the number of variables of optimization. Although these algorithms can handle very large arrays, 
they are quite slow to find the optimal structure of thinned array. In order to achieve more robust and efficient 
performances for thinned array, CQBCO is proposed to design optimal structure of thinned array.   
 
CHAOTIC QUANTUM BEE COLONY OPTIMIZATION 
In order to deal with discrete optimization problems by using chaotic mechanic and quantum bee colony theory, 
CQBCO is designed. The quantum evolutionary algorithms use quantum coding, called on a quantum bit [18], for the 
probabilistic representation that is based on the concept of quantum bit, and a quantum position is defined as a string of 
quantum bits. The quantum position of the ith bee is defined as 
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where 2 2| | | | 1id idv β+ = , ( 1,2, , )d D= L . In CQBCO, idv and idβ  are defined as real numbers and 

0 1idv≤ ≤ ,0 1idβ≤ ≤  [8]. 

 
The evolutionary process of quantum bee colony is mainly completed through the update of quantum position. The 
update of quantum position is obtained by quantum rotation gate. Quantum rotation gate can be described by equation 

(2). If the quantum rotation angle is 1t
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where abs() is an absolute value function which makes quantum bit in the real domain [0,1]. 

 
To reduce computation of CQBCO, we use a series simple quantum bits to represent position of bee in CQBCO. A 

quantum position of the ith bee is simplified as 1 2( , , , )t t t t
i i i iDv v v= Lv  where quantum bit is limited to 0 1t

idv≤ ≤ ,

1,2, ,d D= L .  

 
Chaotic quantum bee colony optimization is a novel optimization algorithm inspired by social behavior metaphor of 
bees. Each bee, flies in a D-dimensional space according to the historical experiences of its own and its colleagues. In 
CQBCO, the bee colony contains two groups of bees: employed bees and onlookers. First half of the quantum bee 
colony consists of the employed bees and the second half includes the onlookers.  
There are h bees in a bee colony. The position of bee is also a food source’s position and its quality is evaluated by the 
nectar amount of nectar amount function. The food source position of the ith bee at the tth iteration is expressed as 



Hongyuan Gao and Yanan Du                 J. Chem. Pharm. Res., 2014, 6(7):685-694          
______________________________________________________________________________ 

687 

1 2( , , , )t t t t
i i i iDx x x= Lx , ( 1,2, , )i h= L , which is a latent solution of optimization problem. The ith bee’s quantum 

position is 1 2( , , , )t t t t
i i i iDv v v= Lv  , ( 1,2, , )i h= L   which is measured and produced food source’s position. 

Employed bees and onlookers learn different food source information from bee colony. Until now the optimal position 

of the thi  bee is expressed as 1 2( , , , )t t t t
i i i iDp p p= Lp , ( 1,2, , )i h= L which is called the local optimal position.   

1 2( , , , )t t t t
g g g gDp p p= Lp represents the global optimal position discovered by the whole bee colony until now, and 

t
gp  also is the optimal position of all local optimal positions at the tht  iteration.  

 
In order to introduce a chaotic behavior to the optimization process, a simple chaotic system presenting chaotic 
behavior is called logistic map [19], and chaotic equation is written as 
 

                       1 (1 )t t t
id id idv v vη+ = −                               (3) 

 
where η is a control parameter in the range 0 4η≤ ≤ . The behavior of the chaotic system defined by (3) is very 

sensitive to changes of η . The value of η  determines whether tidv stabilizes at a constant size or represents 

chaotically in an uncertain mode. Very tiny differences in the initial value of t
idv  can lead to enormous differences in 

its long-time behavior. Equation (3) always displaying chaotic dynamics when 4η =  and

{0,0.25,0.5,0.75,1}t
idv ∉  [20]. It is easy to observe that the chaotic sequences have different behaviors, 

depending on the value of the parameterη .  

 

Quantum rotation angle of employed bee is updated by the local optimal position t
ip  and the global optimal position 

t
gp . At each iteration, the quantum bit position of the ith employed bee is updated by the following: 
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where 1,2, , / 2i h= L , 1,2, ,d D= L , 1e  and 2e  are constants, 1c  is mutation probability which is a 

constant among [0,1/ ]D , 1t
idµ +   represents uniform random number between 0 and 1, superscript 1t +  and t  

represent the number of iterations.  
 
After watching the dances of employed bees, the onlooker  ( / 2 1, / 2 2, , )i i h h h= + + L  goes to the food source 

located at  1 2( , , , )t t t t
j j j jDp p p= Lp ( 1,2, , / 2)j h= L  by certain probability and determines a neighbor food 

source to take its nectar. The location of a food source selected by the onlooker depends on the fitness function value

( )t
jfit p of local optimal position. Therefore, the selection probability of employed bee j  is decided by roulette 

wheel selection , and can be expressed as 
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 At each iteration, the quantum bit position of the ith onlooker is updated by the following:  

1
3 4( ) ( )t t t t t
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where / 2 1, / 2 2, ,i h h h= + + L , 1,2, ,d D= L , 3e  and 4e  are constants, 2c  is mutation probability which 

is a constant among [0,1/ ]D . The value of 3e and 4e  express the relative important degree of t
ip and 

t
jp  in the 

moving process. Food source’s position of the i th bee is updated by (9). 
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0, otherwise
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where 1,2, ,i h= L , 1,2, ,d D= L , 1 [0,1]t
idε + ∈  is uniform random number, 1 2( )t

idv + represents the probability 

that the quantum bit will be found in the '0' in the ( 1)tht +  iteration   

 

For CQBCO, the local optimal position tip of bee i   and the global optimal position 
t
gp are updated by the following 

manners.  For bee i , if the nectar amount of 1t
i
+x   is superior to that of 1t

i
+x , then 1 1t t

i i
+ +=p x  ; else, 1t t

i i
+ =p p . If 

the nectar amount of 1t
i
+p  is superior to that of 

t
gp , then 

1 1t t
g i
+ +=p p ;else, 

1t t
g g
+ =p p . 

 
After the every m  iterations, 0.5h  new positions will be generated by mutation operator applying to local optimal 
positions, and the position of the thq  ( 0.5 1,0.5 2, , )q h h h= + + L  bee is generated by the thq  onlooker. We 

select ( {1,2, , }, )z z Z Z D∈ ≤L  directions in a random manner. For each dimension d ∈ {pre-selected z  

dimensions}, the thq  onlooker produces temporary position 1 2( , , , )q q q qDu u u= Lu is generated by 
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where 0.5 1,0.5 2, ,q h h h= + + L   , 1,2, ,d D= L ,
1 [0,1]t

qdλ + ∈  is uniform random number in the range of 

[0,1]. 
 

Then，for   bee q , the local optimal position is updated as 
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THE PERFORMANCE OF THE CHAOTIC QUANTUM BEE COLONY OPTIMIZATION 
We use minimum values of four benchmark functions to evaluate the performance of the CQBCO. For comparison, 
the initial population and the maximum number of iterations must be identical for the four evolutionary algorithms. 
For GA, PSO, QBCO and CQBCO, the population size is set to 30 and the maximum number of iterations is set to 
1000. As for GA[21], the possibility of cross is 0.8, and the possibility of mutation is 0.01. In PSO, the two 

acceleration coefficients are equal to 2, and max 4V =  [23]. For QBCO, we use parameters of preference [8]. For 

CQBCO, the parameters can be set as the following: 1=2 , 0.06m e = , 2 0.03e = , 3 0.06e = , 4 0.03e =  , 

1 2 0.1/ .c c D= =  

The four benchmark functions are as follows:  
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The nectar amount function is identical with the fitness function. The fitness function is the reciprocal of sum of 

benchmark function and 710− . For the minimum value optimization problems, the objective of nectar amount is the 
minimum of benchmark function (objective function), and the position of maximal nectar amount is the optimal 
position.In the following simulations, we use binary-encoding, and the length of each variable is 50 bits. We set 

2n = for all benchmark functions, i.e. 1,2i = .All the results are the average of 200 times. 

 
The first function we use is Schaffer function. From Fig.1, we can see that CQBCO has a slow convergence rate but 
has a more accurate value compared with the other three algorithms. It is obvious that the value which CQBCO reach 
at the 100th iteration is equal to the value of QBCO obtained at the 1000th iteration, GA and PSO have not reached it 
at the 1000th iteration. So CQBCO overcomes the disadvantage of local convergence of QBCO and obtains a more 
accurate convergence value.  

 
 

Fig. 1: The performance of four algorithms using Schaffer function 
 
The second function is Griewank function. From Fig.2 we can see that CQBCO outperforms GA, PSO and QBCO. 
The Fig.2 presents that CQBCO have a slow convergence rate but the classical algorithms are easy trap into local 
convergence. As we can see that CQBCO has a smaller convergence value compared to QBCO. The convergence 
precision of CQBCO at the 200th iteration outperforms the performance that others reached at the 1000th iteration.  
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Fig. 2: The performance of four algorithms using Griewank function 
 
The third function is Rosenbrok function, which is a well-known classic optimization function. It is difficult to 
converge to the global optimum of this function because the global optimum lies in a narrow, long, parabolic-shaped 
flat valley. The variables are strongly dependent, and the gradients generally do not point towards the optimum, this 
problem is repeatedly used to test the performance of the optimization algorithm. From Fig.3 we can see that the 
classical algorithm has a fast convergence rate, but they all trap into local convergence. The Fig.3 proves that CQBCO 
has a more accurate convergence value. So CQBCO overcomes the disadvantage of local convergence of QBCO and 
obtains a more accurate convergence value. 

 
 

Fig. 3: The performance of four algorithms using Rosenbrock function 

 
Fig. 4:  The performance of four algorithms using Schewefel function 
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The fourth function is Schewefel function.  In Fig. 4, we can see that both QBCO and CQBCO have a fast 
convergence rate. And CQBCO outperforms GA, PSO and QBCO in both convergence rate and convergence 
precision. 
 
THINNED ARRAY BASED ON CHAOTIC QUANTUM BEE COLONY OPTIMIZATION 
As for a D -element uniform spaced array and all the pattern of element is isotropic. The array pattern function is 
shown below: 

    j(( 1) cos )

1

( ) e d

D
d kw

d
d

F I θ φθ − +

=

=∑                        (16)  

 

where {0,1}dI ∈ is defined as the amplitude weight of element , we set 1dI =  if the element is existed, otherwise, 

0dI = . w  is defined as the spacing between elements, k  is defined as wave number, 2π /k σ=  (σ expresses 

the working wavelength of array antenna), dφ is defined as the phase of the d th element of incentive.  

 
   Since the thinned array is characterized by pattern, we describe the pattern in the form of a function as                                                                                     
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( ) 20 lg | |
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θθ =                             (17) 

 

where max max | ( ) |
S

M F
θ

θ
∈

=  and S  is defined as the region of pattern side lobe, 02θ  is defined as the zero 

power width of main lobe, the visible area of pattern is [0,π] , 

0 0{ | 0 90 or 90 + 180 }S θ θ θ θ θ= ≤ ≤ − ≤ ≤o o o  . Adding full rate of 1 2[ , , , ]DI I I= LI  to objective 

function, the objective function is written as 
 

( ), if ;
( )

( ), else

MSLL cRat eRat
Fitness

MSLLρ
− ≤

= − ⋅

I
I

I
                 (18) 

 
where MSLL  is maximum value of relative side lobe level and 1ρ << . Full rate cRat  is calculated by filled 

array. Expected full rate eRat  is calculated by expected filled array. 
 
The initial positions of CQBCO are randomly chosen from the solution space. All quantum bit positions are initialized 

as 1/ 2 . The nectar amount function is identical with the fitness function. The fitness function is identical with 
objective function of thinned array. The goal of the objective function is to evaluate the status of each bee. In the 
thinned array optimization, the evolutionary target of CQBCO is the maximization of nectar amount function 
(objective function). According to the above introduction, the work processes of CQBCO for thinned array are shown 
below: 
 
Step1: Set parameters of CQBCO according to requirement of thinned array. To initialize the bee colony, it includes 
the random food source position, the bee's quantum position and the bee's local optimal position.  
Step2: Evaluate every bee’s nectar amount. Record the global optimal position. 
Step3: Update quantum position and position of each employed bee. 
Step4: Update the quantum position and position of each onlooker. 
Step5: For each new position of each bee, the nectar amount is evaluated. 
Step6: Update employed bee's local optimal position. Record the global optimal position. 
Step7: Ifmod( , ) 0t m = , for onlooker ( 0.5 1,0.5 2, , )q q h h h= + + L , use mutation operator to generate new 

position 
1t

q
+u . Compute the fitness value of 

1t
q
+u .Compared 

1t
q
+u  and 

1t
q
+p , if 

1t
q
+u  is superior to 

1t
q
+p ,then 

1 1t t
q q
+ +=p u . 

Step8: If the algorithm does not attain the stop condition (the stop condition is set as maximum iteration times), then 
go to step 3, else the algorithm stops and outputs the global optimal position. 
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EXPERIENMENT AND SIMULATION 
In the process of simulation, we set identical initial population for GA, PSO and CQBCO. For GA [21,22], the 
possibility of cross is 0.8, the possibility of mutation is 0.01. As for PSO [23], the parameters are set according to 

corresponding references. For CQBCO, we set 2m = , 1 0.06e = , 2 0.03e = , 3 0.06e = , 4 0.03e = , 

1 2 0.1/c c D= = , 0.7eRat =  , 0.001ρ = . For comparison, all intelligence algorithms will be terminated at the 

same maximal iterations number (1000). The population size of the GA, the PSO and the CQBCO are supposed to be 
50. All the results of optimal objective value are the average of 50 times. During the simulation, the first element and 
the last element are turned “on.”, and spacing between two elements is / 2w σ= . 
 
We can see from Fig.5, it provides the performance offered by the CQBCO approach, and we provide simulation 
results in terms of objective value versus number of iterations. It is obvious that the CQBCO is superior to the PSO and 
the GA on the average of objective value. The faster convergence rate of CQBCO is obvious.  

 
Fig.5: Objective function performance of three algorithms with 50 elements. 

 
We can see from Fig.6, it illustrates the performance offered by CQBCO, PSO and GA approaches, and we provide 
simulation results in terms of objective value verse number of iterations. It is clearly that GA has poor performance. 
Although it is not obvious that CQBCO is better than PSO, we can know that the average of optimal objective value of 
CQBCO still has a tendency to rise. So we can conclude that CQBCO outperforms PSO and GA in convergence 
precision. And the proposed CQBCO algorithm can overcome the disadvantages of the previous intelligence 
algorithms. 

 
Fig. 6:  Objective function performance of three algorithms with 200 elements. 

 
From Fig.7 we can see that CQBCO has good performance in the amplitude of thinned array. We provide simulation 
results about amplitude of thinned array. Maximum side lobe level obtained by CQBCO is as low as -18.991dB, we 
obtain side lobe value of -18.441dB when we adopt PSO, but we just obtain side lobe value of -10.006dB when we 
adopt GA. Side lobe value obtained by CQBCO is 0.55dB lower than that of PSO and 8.985dB lower than that of GA. 
We can conclude that the performance of CQBCO is better than PSO and GA. 
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Fig.7:   Amplitude performance of three algorithms with 50 elements 

 
Fig.8 shows the amplitude ( )FF θ of three algorithms with 200 elements. We provide simulation results in terms of 

amplitude versus azimuth. We obtained the maximum side lobe level as slow as -24.513dB when we use CQBCO, but 
we just obtained -22.906dB and 16.868dB maximum side lobe level when we adopt PSO and GA, respectively. Side 
lobe value obtained by CQBCO is 1.607dB lower than that of PSO and 7.645dB lower than that of GA. It is obvious 
that. CQBCO obtains a lower maximum side lobe level. It provides that CQBCO has better global convergence 
property and excellent maximum side lobe level. 

 
Fig. 8:   Amplitude performance of three algorithms with 200 elements. 

 
CONCLUSION  

 
This paper has proposed a CQBCO algorithm which is a novel algorithm for discrete optimization problems. Though 
testing classical benchmark functions, it can be seen that the CQBCO overcomes the disadvantage of local 
convergence and has much accurate convergence value, and CQBCO algorithm is superior to other classical 
evolutionary algorithms. It can be seen that CQBCO has a good universality, so it is easy transplanted to solve other 
engineering optimization problem. There is no doubt that advances in parallel computing would make CQBCO more 
attractive and practical for thinned array optimization. 
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