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ABSTRACT

Design a new novel intelligence algorithm which is called as chaotic quantum bee colony optimization (CQBCO) for
discrete optimization problem. The proposed CQBCO applies the chaotic theory to quantum bee colony optimization
(QBCO), which is an effective discrete optimization algorithm. Then the proposed chaotic quantum bee colony
algorithm is used to solve benchmark functions and optimization problem of thinned array. By hybridizing the
guantum bee colony optimization and quantum computing theory, the quantum state and binary state of the bees can
be well evolved by simulated quantum rotation gate and chactic mechanical. The new thinned array method based on
CQBCO can search the global optimal solution. Smulation results for thinned array are provided to show that the
proposed thinned array method is superior to the thinned array methods based on other three intelligence algorithms.
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INTRODUCTION

As we all know that natural system is one of tHiaht sources of inspiration for designing neveiligent algorithms.
For intelligence algorithms are important scientdomains that are closely related to biologic&mimenon existing
in nature, some algorithms such as particle swaptimization (PSO) [1-2] and bee colony optimizati@} are
widely studied for all kinds of applications . pitesent, particle swarm optimization [4] and bdemp optimization
[5] were widely used to solve engineering optiniaatproblem, but the global convergent performasiceuld be
improved.

In order to improve classic intelligent algoriththe quantum computing theory is introduced intoveotional
intelligence algorithm and a better performanamigined [6]. Quantum-inspired genetic algorithn&@) which is a
promising genetic algorithm developing in recerdrge and it is the product of merging quantum caimguheory
with genetic algorithm. In QGA, quantum bit encaglirepresents the chromosome, and evolutionary psocé
chromosomes is implemented by using quantum rotatade. Now, we pay more attention to quantum dpétion
algorithm because it has a strong ability for glatearch with small population size, rapid convaogeand short
computing time [7]. Based on quantum computing hed colony optimization, quantum bee colony optation
(QBCO) is proposed as an effective swarm intellggealgorithm [8]. The results of simulation comparis show that
the performance of the QBCO algorithm is compaditiv other intelligence computing algorithms withaalvantage
of using fewer control parameters.

At present, a hot research domain is applyingligtit algorithms to thinned array .Thinning aregrmeans deleting
some elements in a uniformly spaced or periodiayatw create a desired amplitude density acrosaghgure. If an
element is existed which means “on”, and the elérhas no value which means “off". Thinning an arrayroduce
low side lobes is much easier than the more gemeeshod of non-uniform spacing the elements. We getnan
infinite number of possibilities for placement b&telements when we use non-uniform spacing. Hexévinning
an array has®2possible combinations, wheleis the number of array elements. Thinning maylse eegarded as an
amplitude taper of quantization, and the amplitatleach element is expressed with one bit.
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Alow side lobe amplitude taper is generated katsgically positioning equally weighted elementaperiodic arrays
domain. Deriving the element positions to obtapedect side lobe level by using simple analytioathods are not
available [9]. Instead, merge the element densitly avregion of the array to the amplitude densftihe low side lobe
amplitude taper for the same size aperture is fednost aperiodic array synthesis methods [10f €ement
density at the center of the array is greatesgaadually decreases to the edges. As a rule, gliss Iclose to the main
beam decrease but those far from the main bearaaser[11] (which is usually quite acceptable). Aquéc array
synthesis methods target a maximum relative side level by using a given probability [12].

Thinning array for low side lobes includes inspegta rather large number of possibilities in ortefind the best
thinned aperture. It is only practical for smaliagss if checking of all possible element combinagig13]. Most
optimization methods are not well suited for thimiarrays such as down-hill simplex, Powell’s methand
conjugate gradient. Those methods can only optimif@wv continuous variables and drop into localimaneasily
[14]. Those methods developed for continuous parersie but the array thinning problem involves diser
parameters. Although dynamic programming can ogtnai large parameter set, it is easily effect logligolutions
[15].

As we all know genetic algorithms [16] and simuthganealing algorithm [17] are suited for thinnargays because
they do not limit to the number of variables ofioptation. Although these algorithms can handleyJarge arrays,
they are quite slow to find the optimal structurfetinned array. In order to achieve more robud afficient
performances for thinned array, CQBCO is proposeatksign optimal structure of thinned array.

CHAOTIC QUANTUM BEE COLONY OPTIMIZATION

In order to deal with discrete optimization probgefy using chaotic mechanic and quantum bee cdloegry,
CQBCO is designed. The quantum evolutionary algorit use quantum coding, called on a quantum bjt faBthe
probabilistic representation that is based on tiieept of quantum bit, and a quantum position fdd as a string of
guantum bits. The quantum position of ttfebee is defined as

_{vu v, L vm} "
e s L B

where |v, f + |8, f=1, (d=1,2L ,D). In CQBCO, V,, and B, are defined as real numbers and
0<v,<1,0<8,<1 [8].

The evolutionary process of quantum bee colonyamiy completed through the update of quantum sifThe

update of quantum position is obtained by quantotation gate. Quantum rotation gate can be desthigequation

(2). If the quantum rotation angle i8';", a quantum bit positiorg}, =[V',, B,]" is updated by using the rotation

gate U(@,") . Thedth quantum bit positiorq!, of theith quantum position is updated as

COS¢-H1 _ Sir¢<t+l
1 =absU @4 pl, )= ab , Y 2
Uia Ués no) {(sin 4 ot ia

where abs() is an absolute value function which makes quartitrim the real domain [0,1].

To reduce computation of CQBCO, we use a serieplsiguantum bits to represent position of bee iBCQ. A
quantum position of thigh bee is simplified asv; = (Vi;,Vi,,L ,Vi;) where quantum bit s limited t9 < v, <1,
d=12L D.

Chaotic quantum bee colony optimization is a hagimization algorithm inspired by social behavinetaphor of
bees. Each bee, flies iDadimensional space according to the historical ggpees of its own and its colleagues. In
CQBCO, the bee colony contains two groups of besgloyed bees and onlookers. First half of the guarbee
colony consists of the employed bees and the sdualfithcludes the onlookers.

There arén bees in a bee colony. The position of bee isalfemd source’s position and its quality is evadday the
nectar amount of nectar amount function. The fomaree position of théh bee at théth iteration is expressed as
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Xi = (X, XL ,X5),(i=1,2L ,h), which is a latent solution of optimization protieTheith bee’s quantum

position is V| = (Vi,V,,L ,vy) , (i=1,2L ,h) which is measured and produced food source'stiposi
Employed bees and onlookers learn different foagtcinformation from bee colony. Until now the iol position
of the ith bee is expressed g8 = (pi;, P,k , P ). (i =1,2L ,h)which is called the local optimal position.

ptg = (p;l, p;z,L ) p;D )represents the global optimal position discovengthb whole bee colony until now, and

ptg also is the optimal position of all local optinadsitions at thetth iteration.

In order to introduce a chaotic behavior to theimjzation process, a simple chaotic system presgnthaotic
behavior is called logistic map [19], and chaotjc&tion is written as

Vigh =0y (1-vy) 3)

where 77is a control parameter in the ran@< 77 < 4. The behavior of the chaotic system defined byig3)ery
sensitive to changes of . The value of/] determines whetheW, stabilizes at a constant size or represents

chaotically in an uncertain mode. Very tiny diffeces in the initial value oﬁ/itd can lead to enormous differences in

its long-time behavior. Equation (3) always disptgy chaotic dynamics when/7=4 and

Vitd [1{0,0.25,0.5,0.75,1 [20]. It is easy to observe that the chaotic saqee have different behaviors,
depending on the value of the paramégter

Quantum rotation angle of employed bee is updayetidlocal optimal positiorpit and the global optimal position

ptg . At each iteration, the quantum bit position d&f ith employed bee is updated by the following:
$a =e(py _)ﬁtd)"'ez(p;d = %) (4)

M, (1-Vy), if ¢ =0 andy'<c ;
abs, cosg,* ¥ £\, ) sing,' )], otherwi

+1
V' = ®)

where i =1,2L ,h /2, d=1,2L ,D, € and € are constantsC, is mutation probability which is a

constant amoij,l/D],/Ji‘d+l represents uniform random number between 0 arsuiderscriptt +1 and t
represent the number of iterations.

After watching the dances of employed bees, theakar (i =h/2+1,h/2+ 2. h) goes to the food source
located at ptj =(ptj1, ptjz,L , ptjD) (j=1,2L ,h/2) by certain probability and determines a neightmardf
source to take its nectar. The location of a fomttee selected by the onlooker depends on thesthenction value

fit(ptj)of local optimal position. Therefore, the selectjpmbability of employed beg is decided by roulette
wheel selection , and can be expressed as

fit(p!)

t+1
/]i ~h/2 e (6)
> fit(p))
1=1
At each iteration, the quantum bit position of itheonlooker is updated by the following:
Ba =&(Pa —Xa) +&(Pia —Xa) ©)
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A (1-vy), if ¢t=0 and u;*<c, ; .
absl, cosgly” yy/ ¢, ) sing;" )], otherwi

Via =

wherei=h/2+1h/2+ 2L h, d=1,2L ,D, & and g, are constantsC, is mutation probability which

is a constant amonf0,1/D]. The value ofe;and €, express the relative important degreepyfand ptj in the

moving process. Food source’s position of iia bee is updated by (9).

H 1 1\ 2.

o [b e o
‘ 0, otherwise

wherei=1,2L h,d=1,2L D ,&‘itgl 0[0,1] is uniform random number(\/itgl)zrepresents the probability

that the quantum bit will be found in the '0" i tt +1)th iteration

For CQBCO, the local optimal positiopit of beei  and the global optimal positioptg are updated by the following
=p;.If

t+1
i

t+1 _ t+1, t+1 At
g — P ,else,pg =Py-

,thenp;™ =x™ ; else, pi™*

manners. For beé, if the nectar amount of(it+1 is superior to that o i

the nectar amount opi”l is superior to that optg ,then p

After the everym iterations, 0.5h new positions will be generated by mutation opmrapplying to local optimal
positions, and the position of thgth (q=0.5"+1,0.;1+ 2. h beeis generated by thgth onlooker. We

select z(z[O{L,2,L ,Z},Z < D) directions in a random manner. For each dimengibinl {pre-selected z

dimensions}, thegth onlooker produces temporary positimnq =(u,,u,,,L Ugp )is generated by

a1’ Zq2?

1-p., if dDOf{pre-selectedz dimensions
ust=y _ (10)
P Otherwise

whereq=0.5"+1,0.%1+ 2. h ,d=12L D ,A;;lD[O,l] is uniform random number in the range of
[0,1].

Then, for bee q, the local optimal position is updated as

ut™t i fit(uth > fi(pl™;
=] (W) Py -
p, otherwise

THE PERFORMANCE OF THE CHAOTIC QUANTUM BEE COLONY OPTIMIZATION

We use minimum values of four benchmark functiansvaluate the performance of the CQBCO. For coisqay
the initial population and the maximum number efations must be identical for the four evolutignalgorithms.
For GA, PSO, QBCO and CQBCO, the population sizetsto 30 and the maximum number of iteratiorseisto
1000. As for GA[21], the possibility of cross is80.and the possibility of mutation is 0.01. In PS@g two

acceleration coefficients are equal to 2, ahd, =4 [23]. For QBCO, we use parameters of preferengeHar
CQBCO, the parameters can be set as the followig2 ,€ = 0.0€¢, e, =0.03,e,=0.06,e, =0.03 ,
c,=¢c,=0.1/D.

The four benchmark functions are as follows:
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F.(y) =0.5+ ! (sirf Dy 0.5] £ 10&y < 100= 1P, n, (12)

n
i=1

1+ o.oo:Z Vi

|:2(y)=ﬁ)(i(yi —100)2j—(|;| {y, \/I}OOD+ 1- 60& y < 600= 12, n) (13)

Fg(y)=n2_1100[(yi+1—yi2)2 +(y,-9?*1(-50< y, < 50i = 1,2, n)
(14)

F,(y) = 2x418. 9829—Zy| sify[y) (- 508y, < 500 112, n)
(15)

The nectar amount function is identical with thidss function. The fitness function is the reagjatoof sum of

benchmark function ark™” . For the minimum value optimization problems, tigective of nectar amount is the
minimum of benchmark function (objective functiomnd the position of maximal nectar amount is thénaal
position.In the following simulations, we use bi@ncoding, and the length of each variable is B€. We set

n = 2for all benchmark functions, i.d. =1, 2.All the results are the average of 200 times.

The first function we use is Schaffer function. far&ig.1, we can see that CQBCO has a slow conveegexte but
has a more accurate value compared with the dihee tlgorithms. It is obvious that the value wHifpBCO reach
at the 100th iteration is equal to the value of @B@btained at the 1000th iteration, GA and PSO mateeached it
at the 1000th iteration. So CQBCO overcomes thaddsntage of local convergence of QBCO and obtaim®re
accurate convergence value.

Average of objective values

107

1 L L 1 1 L 1 1 1 _
0 100 200 300 400 500 600 FOO 800 900 1000
Number of iterations

Fig. 1: The performance of four algorithms using Schaffer function

The second function is Griewank function. From Eigre can see that CQBCO outperforms GA, PSO and@BC
The Fig.2 presents that CQBCO have a slow conveggeste but the classical algorithms are easyitraplocal
convergence. As we can see that CQBCO has a smealeergence value compared to QBCO. The conveegenc
precision of CQBCO at the 200th iteration outparfsithe performance that others reached at the A@@@ation.
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Fig. 2: The performance of four algorithms using Griewank function

The third function is Rosenbrok function, whichaswell-known classic optimization function. It isffitult to
converge to the global optimum of this function d&ese the global optimum lies in a narrow, longapalic-shaped
flat valley. The variables are strongly dependant the gradients generally do not point towardsoitimum, this
problem is repeatedly used to test the performafiche optimization algorithm. From Fig.3 we care ¢bat the
classical algorithm has a fast convergence ratahey all trap into local convergence. The Fig.8ves that CQBCO
has a more accurate convergence value. So CQBCO®©awes the disadvantage of local convergence of @B
obtains a more accurate convergence value.

10° .
—GA
'''''' PS0

10‘ — —QBC i
—-—-CQBCO

Average of objective values
=

10"

| | | | | | | | |
0 100 200 300 400 500 600 700 8OO 900 1000
Number of iterations

Fig. 3: The performance of four algorithms using Rosenbrock function

Average of objective values

2 —_ C _

| | | | T L e Sl e
0 100 200 300 400 500 60 700 800 900 1000
Number of iterations

10

Fig. 4: The performance of four algorithms using Schewefel function
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The fourth function is Schewefel function. In Fig, we can see that both QBCO and CQBCO have a fast
convergence rate. And CQBCO outperforms GA, PSO @B&€CO in both convergence rate and convergence
precision.

THINNED ARRAY BASED ON CHAOTIC QUANTUM BEE COLONY OPTIMIZATION

As for a D -element uniform spaced array and all the pattérleament is isotropic. The array pattern functisn
shown below:

D .
F (g) = Z |deJ((d—1)chos¢9+% ) (16)
d=1
where |, 0{0,1} is defined as the amplitude weight of element setel ;, =1 if the element is existed, otherwise,
I, =0. W is defined as the spacing between elemekitss defined as wave numbek =21/ 0 (O expresses

the working wavelength of array antenngj,is defined as the phase of tigbth element of incentive.

Since the thinned array is characterized byepattve describe the pattern in the form of a fiomcas
F@@
FF(6) = 20lg |#

max

\ 17)

where M = max |F @) and S is defined as the region of pattern side l02é), is defined as the zero

power  width of  main lobe, the  visible area of patte is [O,m]

S={f|0<8<90°-g,0r90 +9,<6< 180 ] . Adding full rate of | =[I,I,,L ,1,] to objective
function, the objective function is written as

. -MSLL(l), if cRat<eRat;
Fitness(l) = (18)
-pMIL(l), else

where MSLL is maximum value of relative side lobe level api<<1. Full rate CRat is calculated by filled
array. Expected full rateeRat is calculated by expected filled array.

The initial positions of CQBCO are randomly chof®m the solution space. All quantum bit positians initialized

as l/x/E. The nectar amount function is identical with fheess function. The fitness function is identigéth
objective function of thinned array. The goal oé thbjective function is to evaluate the statusaifhebee. In the
thinned array optimization, the evolutionary targétCQBCO is the maximization of nectar amount fiorc
(objective function). According to the above intuation, the work processes of CQBCO for thinnedyare shown
below:

Stepl: Set parameters of CQBCO according to reqp@ng of thinned array. To initialize the bee coloibyncludes
the random food source position, the bee's quaphsition and the bee's local optimal position.

Step2: Evaluate every bee’s nectar amount. Reberdlbbal optimal position.

Step3: Update quantum position and position of eawployed bee.

Step4: Update the quantum position and positicgach onlooker.

Step5: For each new position of each bee, the naotaunt is evaluated.

Step6: Update employed bee's local optimal positRatord the global optimal position.

Step7: Ifmod¢ ,m)= G0, for onlookeq(q=0.5"+1,0.:1+ 2. h , use mutation operator to generate new

position utqﬂ. Compute the fitness value cuf;l .Compareduth'l and pf;l, if uth'l is superior topf;l then

t+1 _ , ,t+1
pq _uq :

Step8: If the algorithm does not attain the stopdition (the stop condition is set as maximum tieratimes), then
go to step 3, else the algorithm stops and outpetglobal optimal position.
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EXPERIENMENT AND SIMULATION
In the process of simulation, we set identicaliahipopulation for GA, PSO and CQBCO. For GA [2],2he
possibility of cross is 0.8, the possibility of ratibn is 0.01. As for PSO [23], the parameterssateaccording to

corresponding references. For CQBCO, we sat=2 , ¢ =0.06, e, =0.03, ,=0.06, ¢, =0.03,

c,=¢c,=0.1/D,eRat =0.7 , p=0.001. For comparison, all intelligence algorithms Vel terminated at the

same maximal iterations number (1000). The popraize of the GA, the PSO and the CQBCO are sgobimsbe
50. All the results of optimal objective value #ne average of 50 times. During the simulation fitst element and

the last element are turned “on.”, and spacing eetwwo elements isW=0 /2.

We can see from Fig.5, it provides the performamitered by the CQBCO approach, and we provide satian
results in terms of objective value versus numlbé@erations. It is obvious that the CQBCO is sugeto the PSO and
the GA on the average of objective value. The fastavergence rate of CQBCO is obvious.

Awerage of optimal objective values

/ — —GA
12§ —----PSO
—— CQBCO

1 | | 1 1 | 1
0 100 200 300 400 500 600 FOO 800 900 1000
Number of iterations

Fig.5: Objective function performance of three algorithms with 50 elements.

We can see from Fig.6, it illustrates the perforomaoffered by CQBCO, PSO and GA approaches, angraxede
simulation results in terms of objective value eensimber of iterations. It is clearly that GA ha®mpperformance.
Although it is not obvious that CQBCO is bettemtS0, we can know that the average of optimalablbgvalue of
CQBCO still has a tendency to rise. So we can emieckhat CQBCO outperforms PSO and GA in convemenc
precision. And the proposed CQBCO algorithm canromme the disadvantages of the previous intelligenc
algorithms.

Awerage of optimal objective values

1 | | 1 1 | 1 T T
0 100 200 300 400 500 600 FOO 800 900 1000
Number of iterations

Fig. 6: Objectivefunction performance of three algorithms with 200 elements.

From Fig.7 we can see that CQBCO has good perfarenamthe amplitude of thinned array. We providaigation
results about amplitude of thinned array. Maximude $obe level obtained by CQBCO is as low as -Q8dB, we
obtain side lobe value of -18.441dB when we ad@®DPbut we just obtain side lobe value of -10.008di&n we
adopt GA. Side lobe value obtained by CQBCO is @Bbwer than that of PSO and 8.985dB lower tha ¢ii GA.
We can conclude that the performance of CQBCOtiebthan PSO and GA.
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Fig.7:  Amplitude performance of three algorithmswith 50 elements

Fig.8 shows the amplitudé&F (&) of three algorithms with 200 elements. We provitieutation results in terms of

amplitude versus azimuth. We obtained the maximidanlsbe level as slow as -24.513dB when we use CQBut
we just obtained -22.906dB and 16.868dB maximura kfle level when we adopt PSO and GA, respectiGtie
lobe value obtained by CQBCO is 1.607dB lower ttheat of PSO and 7.645dB lower than that of GAs lblbvious
that. CQBCO obtains a lower maximum side lobe lelteprovides that CQBCO has better global convecge
property and excellent maximum side lobe level.
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Fig.8:  Amplitude performance of three algorithmswith 200 elements.
CONCLUSION

This paper has proposed a CQBCO algorithm whiehrievel algorithm for discrete optimization prob&ermhough
testing classical benchmark functions, it can bensthat the CQBCO overcomes the disadvantage @f loc
convergence and has much accurate convergence, \alde CQBCO algorithm is superior to other cladsica
evolutionary algorithms. It can be seen that CQB®@® a good universality, so it is easy transplatdesblve other
engineering optimization problem. There is no ddabbt advances in parallel computing would make CQBnore
attractive and practical for thinned array optintiza.
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