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ABSTRACT

We present a algorithm based on the PSS splitinghfe saddle-point problems in this paper, and lgsia the
convergence of the new method. The results sugpdayenumerical experiments show that the new method
outperform the existing classical iterative methods
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INTRODUCTION

The special linear system is called Saddle-Poioiblermns as follows,

- or A y 1.1

A B” X f
where A = , X = , b= , and AOC is a non-Hermitian positive definite matrix,
-B O y g

B O C™"with full row rank,X, f OC, y,gU0C, B“denotes the conjugate transposeBf It is widely used in

many engineering problems such as hydrodynamidséStoroblems), Least squares problem, optimizatioblem,
elliptic partial differential equation of mixed fite element discretization and image processinglef} The
Saddle-Point problem has several distinctive festufirstly, the coefficient matrix is symmetriadifinite matrices
generally, besides, it often contains singular mwain diagonal block. Because of these two charésties,
saddle-point problem is often very sick. Due toitifeerent characteristics of it, many well-knoweritive methods
are difficult to use directly, such as SOR, Gausglsl, PCG algorithms etc. In 1958, Uzawa([6] Pregothe Uzawa
method for solving the quadratic optimization pehs effectively in economics. This method is basethe matrix
splitting and it is simple, easy to realize by camep, so it is popular for people. However, it das its drawbacks,
namely the iterations are required to calculateitiverse matrix of A, it is very difficult to realize for the large
systems of linear equations. There for it has ingrtheoretical and practical significance forkéeg rapid and
efficient iterative method, and thus the researebome one of the hot issues of many scholars. Almawa
researched the problem, EIman and other scho]prsfdosed and analyzed pretreatment Uzawa methibaharact
Uzawa method. Gulob etc.[7] proposed the SOR-Lilethod based on the SOR method in 2001. And thifiadet
was often applied to the pretreatment of Krylovspdre iteration. Benzi etc. [8]proposed the parami&rative
method based on the HSS method in 2004. Z. Z. 849¢ propose the classical HSS algorithm in 2083 it
converged for positive parameter arbitrary usirgahernating iterative method and matrix divisi®his aroused the
attention of scholars greatly. Then, Z. Z. Bai[&t@] proposed the accelerate Hss(AHSS) methoddbais¢he HSS
method and special structure of saddle-point prabld.K. Pang[11]proposed the pretreatment of nanrsgtric
saddle-point problem in 2008. There are still maciyolars researching to solve the saddle—pointgmb
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In this paper, a generalized local method baseti@PSS iterative method for the saddle-point ok proposed.

THEALGORITHM FOR THE SADDLE-POINT PROBLEM
For the following positive definite equation

Ax =b, (2.1)

whereA []C™"andx,b ] C".The coeffient matrix could be splited into
A=P+S, (2.2)

whereP is positive definite matrix and S is Skew-Hermitiaratrix. Using the following PSS iterative method,
namely given an initial vectoix® [JC", by solving a lineare system of equations to dateuy *? until the

iterative sequenc{x(k)}:’zo converges, we have

1
+=
2)

(@ +P)x"? = (al -S5)x¥ +b

+b

1
(@l +S)x* = (al -P)x?

where @ is a given positive constant and is identity matrix.

Lemma 2.1[12] If AQJC™" is a positive matrix, andA = P + S, the iterative matrix of PSS method is

M (a) = (al +S)*(al - P)(al +P)*(al —S)
Let
V(o) =(al =P)(al +P)*

then the upper bound for the spectral radi@6M (a)) of M () is "\/ (a)||2, and

pMM (@) < |V (@), <1.0a >0

namely the PSS method convergeces the uniqueaoliti AX = b for any given initial vector.

Lemma2.2[8] LetA [JC(M*™M*(m*n)  pe the coefficient matrix in (1.1A be a Skew-Hermitian positive matrix,
B with full row rank, O(A ) be the spectral radius ¢ dad [0 (A ) be aeigenvalue oA, then
1. A isnonsingular, andlet{A )>0

2. A is semidefinite, that is forany JC™"(v #0) ,we haRe@'A v)=0 ;
3. A s positively stable, that is for and 0 (A ) , we halre(A) > 0.

Lemma 2.3[13] If S is skew-Hermite matrix, [S 1 ( is imiagry unit) is Hermite matrix, andy”Sy  is pure
imaginary or 0 for anyy J C"

Lemma 2.4[14] The modulus of the root df + PpA+¢=0 is ldgmt1 if and only if
- 2
lo-ap| +lgl <1,

where Zo is the conjugate aof

For the coefficient matrixA  ( See its properties in Lemma 2).20f saddle-point problems in (1.1), we consider the
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special division as follows
) +P O -S -B
A B _ Q, _ Q-S B | 2.3)
-B O -B Qz O Qz

1 1
=(P"+P)==(A"+A
2( ) 2( )

where if the Hermite part

is positive definitep JC™" is positive definite, anG [ C™" skew-Hermite matrixB has full row-rank,
thatis rank(B) = m Q, 1C™"is Hermite matrix, Q, JC ™™ is Hermite positive matrix, thee have

Q+P OYx™N (Q-s -B Yx") (f
(-B QJ(V(”“’J_[ o Q ][y‘”) +[9j' o

x) = x4 (Q, + p)-l(f —Ax _p y(n))
Y1) = (o) +Q2-1(Bx(n+1) + g) ,

(2.4) can be written as

(2.5)

that is the new iterative method.

The iterative matrix of above iterative schemesisalows
_1 *
- +P O - -
M = (Ql j Q-S -B . (2.6)
-B Qz O Qz

Let p(l\Z) be the spectral radius qf/] ,then if and only if

p(M)<1,

The iterative scheme is convergent, see [9-10,14-16

- u
Let A be aeigenvalue ofy] , ( j be its corresponding eigenvector, then
\'

that is
Q-S -B\u) (Q+P OYAu
O Q )\v) L -B Q)

[(A-1)Q +AP+SJu+B'v=0
ABu+(1-A)Q,v=0

or

2.7)

We would use the following Lemmas to proof the cengent of (2.5).

Lemma 2.5 Let A be skew-Hermite positive definited a#ank(B) =m, A be a eigenvalue ofj ,then we
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have A #1 .

Proof. If A =1, we have
Au+Bv=0
Bu=0 '

5 o))

A B” u -
but ( B O] is nonsingular, sc( j =0, the result contradicts to the eigenvaluepgf, so A #1.
- \'

Lemma 2.6 Let A be skew-Hermite positive definitank(B) = m and
A=P+S,

or

u
V
uzo,

where %(PD +P)= %(AD +A) S= %(A -A") . If( j is the corresponding eigenvectorgf, then

and whenv =0,

|- \/(ad+ d2-bef +(ab+bd+ cd)f

(a+d)* +c?
0 * R
where a+ic =Y Pu,b:_uEiESud:u*Qlu'e:uB*Q2 Bu
uu uu uu uu

Proof. If u=0, from (2.7), we have
BVv=0,

where B has full row rank, sov =0, the result contradicts to the eigenvaluepgf, so
uzo.

When v =0 ,from (2.7), we have
[(A-1)Q + AP +SJu=0,

and multiply by y* on the left, we can ge#l (a+ ic+ d) +ib—d =0, so
d-bi

atic+d’
then

| = (ad+ d*~bcf +(ab+ bd+ cd)? |
(a+d)* +c?

Theorem 2.1 Let A  be skew-Hermite positive defirdted the Hermite part is positive definite, thevgitdermite
1 . x . , . -
part is S:= E(A— A ) rank(B) =m, Q OC™" be Hermite matrix, Q, 1C™™ be Hermite positive

definite, then (2.5) is convergent if and only if
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2a‘d*-4a®b’c®d?+3a’bc+ 4 a’c’d

O<e< : 2.8
(a+d)* +c? (@8)
0, * * * -1 u
where a+ic = uPu , b:—uEi CBu d= u 91u , e:%QZBU , is the corresponding
uu uu uu uu v

eigenvector of \j .
- u
Proof. Let A be a eigenvalue gy , ( j be its corresponding eigenvector. From Lemma&ethave
\

uz0 and 1 #1.
From (2.7), we can get

(A -2)Q, + AP + S]u —% B'Q,'Bu =0. 2.9)

If Bu=0, from (2.7) we have

[(A-1)Q + P+ SJu=0.
From Lemma 2.6, we can get

1 <1.
If Bu# 0,we can get
* * _l
e= M > 0.
uu

From (2.9),we have

A-1)d+ A(a+ic +bi—ie:o,
(A-1)a+ Ala+ic) +bi- -2

that is
(ae+ de+ be- a%~ ad- c2- 2ad- 2d?)+ (ab+ bd- ce+ cd)i
(a+d)? +c?
, (ad-ber d?)- (ab+ b+ cd)
(a+d)? +c?

I+

. (2.10)
i _o

From Lemma 2.4, we kno{M| <1 ifand only if
|(ae+ de+ be- a?— ad- c2- 2ad- 2d?)+ (ab+ bd- cet cd)i
| (a+d) +c?
(ae+ det be- a?- ad- ¢?- 2ad- 2d2) - (ab+ bd- cet cd)
(a+d)* +c?
(ad-be+ d?)- (ab+ ba+ ca)i|
(a+df +c? |
|(ad—be+ d?)- (ab+ bd+ cd)i|
| (a+d) +c2 |

[
X

(2.11)

2
<1

From (2.11),we can get when
2a’d*-4a’p’c’d*+3abc+ 4 ac'd

O<es< (a+d)* +c?

the iterative scheme is convergent.
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NUMERICAL EXPERIMENT

T
In our numerical experiments, the zero vector asitiitial vector,[ ;| as the right hand side, then the exact
g

solution of the saddle-point problem (S(T, yT)T =12, ,:I_)T . We use the MATLAB programming experiment,

stopping when the error is less tha@™. IT, CPU and ERR represent the number of iteratitime required for
convergence and error respectively.

Example 3.1[17] Consider the following Stokes pesbl[18]:

- A+ Ow=1, in Q
O=g, iIn Q

u=0, on 0dQ

J'Q w(x)dx =0,

where Q =(0,1)x(0,1)0 R? is a square areadQ is the boundary condition of),Ais Laplace operator,

vector function Uis the speed o) ,number functiont is pressure. The problem with the upwind difference
scheme can be shaped like (1.1), specific fornolbeas,

| OT+TOI 0 | OF
A= , B=
0 I OT+TOI FOI

where T =h—12tl’idiag(—l,2,—l) ORPP, F :%tridiag(—l],O) ORPP, O is the Kronecker product of

matrix notation, h = is the discrete grid value, and = 2 p2, m= p2. Numerical results are given in the
following two forms of classical Uzawa method (Sable 3.1) and the new iteration method(See Tab)g3.

Table 3.1 (The Uzawa Method)

n m 9 IT CPU ERR

50 25 34 19 0.436  7.265e-07
200 100 59 31 1910 6.839e-06
512 256 120 40 4219 2.166e-06
1250 625 360 52 98.862 2.109e-06
5000 2500 - >20000 -

1
Table 3.2 (The New Iteration Method,Q1 =al Q2 = 5| )

n m a 9 IT CPU ERR

50 25 3 34 14 0.009  3.145e-07
200 100 9 59 23 1.042  2.085e-07
512 256 16 120 32 3.267 1.234e-06
1250 625 55 360 43 79.211 0.337e-06
5000 2500 0.08 - >20000 -

The above numerical experiments, and a large nupofleat listing of results show that convergendedfof the new
iterative algorithm is much better than that ofatving saddle point problems with the classicahWa method.
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