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ABSTRACT 
 
We present a algorithm based on the PSS splitting for the saddle-point problems in this paper, and analysis the 
convergence of the new method. The results supported by numerical experiments show that the new method 
outperform the existing classical iterative methods. 
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INTRODUCTION 
 

The special linear system is called Saddle-Point problems as follows,  
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b , and CA∈  is a non-Hermitian positive definite matrix, 

m n×∈B C with full row rank, Cfx, ∈ , Cgy, ∈ , ∗B denotes the conjugate transpose of B . It is widely used in 
many engineering problems such as hydrodynamics(Stokes problems), Least squares problem, optimization problem, 
elliptic partial differential equation of mixed finite element discretization and image processing etc.[1-5] The 
Saddle-Point problem has several distinctive features, firstly, the coefficient matrix is symmetric indefinite matrices 
generally, besides, it often contains singular matrix in diagonal block. Because of these two characteristics, 
saddle-point problem is often very sick. Due to the inherent characteristics of it, many well-known iterative methods 
are difficult to use directly, such as SOR, Gauss-Seidel, PCG algorithms etc. In 1958, Uzawa[6] Proposed the Uzawa 
method for solving the quadratic optimization problems effectively in economics. This method is based on the matrix 
splitting and it is simple, easy to realize by computer, so it is popular for people. However, it also has its drawbacks, 
namely the iterations are required to calculate the inverse matrix of A , it is very difficult to realize for the large 
systems of linear equations. There for it has important theoretical and practical significance for seeking rapid and 
efficient iterative method, and thus the research become one of the hot issues of many scholars. After Uzawa 
researched the problem, Elman and other  scholars[1]proposed and analyzed pretreatment Uzawa method and inexact 
Uzawa method. Gulob etc.[7] proposed the SOR-Like method based on the SOR method in 2001. And this method 
was often applied to the pretreatment of Krylov subspace iteration. Benzi etc. [8]proposed the parameter iterative 
method based on the HSS method in 2004. Z. Z. Bai etc.[9] propose the classical HSS algorithm in 2003, and it 
converged for positive parameter arbitrary using the alternating iterative method and matrix division. This aroused the 
attention of scholars greatly. Then, Z. Z. Bai etc.[10]  proposed the accelerate Hss(AHSS) method based on the HSS 
method and special structure of saddle-point problem. H.K. Pang[11]proposed the pretreatment of non symmetric 
saddle-point problem in 2008. There are still many scholars researching to solve the saddle–point problem.  
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In this paper, a generalized local method based on the PSS iterative method for the saddle-point problem is proposed. 
 
THE ALGORITHM FOR THE SADDLE-POINT PROBLEM 
For the following positive definite equation 

bAx = ,                                 (2.1) 
 

where nn×∈ CA and nCbx, ∈ .The coeffient matrix could be splited into  

SPA += ,                               (2.2) 
 

whereP is positive definite matrix and S is Skew-Hermitian matrix. Using the following PSS iterative method, 

namely given an initial vector nCx ∈(0) , by solving a lineare system of equations to calculate 1)( +kx  until the 

iterative sequence { }∞
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where α  is a given positive constant and I  is identity matrix.  
 
Lemma 2.1[12] If nn×∈ CA  is a positive matrix, and SPA += , the iterative matrix of PSS method is  
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namely the PSS method convergeces the unique solution of bAx =  for any given initial vector.  
 
Lemma 2.2[8] Let  be the coefficient matrix in (1.1),  be a Skew-Hermitian positive matrix, 

with full row rank,  be the spectral radius of , and  be a eigenvalue of , then  

1. is nonsingular, and ; 
 

2. is semidefinite, that is for any , we have ; 

 
3. is positively stable, that is for any , we have . 
 
Lemma 2.3[13] If  is skew-Hermite matrix, (  is imaginary unit) is Hermite matrix, and  is pure 

imaginary or 0 for any . 
 

Lemma 2.4[14] The modulus of the root of  is less than 1 if and only if  

 

, 

where  is the conjugate of . 

For the coefficient matrix （See its properties in Lemma 2.2） of saddle-point problems in (1.1), we consider the 
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special division as follows 
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where if the Hermite part  

 

 
is positive definite, is positive definite, and  is skew-Hermite matrix,  has full row-rank, 

that is . nn×∈CQ1 is Hermite matrix, is Hermite positive matrix, then we have 
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(2.4) can be written as  
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that is the new iterative method. 
 
The iterative matrix of above iterative scheme is as follows 
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Let ( )M
~ρ  be the spectral radius of M

~ ,then if and only if  

 

( ) 1<M
~ρ , 

 
The iterative scheme is convergent, see [9-10,14-16]. 
 

Let  be a eigenvalue of M
~ ,  be its corresponding eigenvector, then  
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We would use the following Lemmas to proof the convergent of (2.5). 
 
Lemma 2.5 Let  be skew-Hermite positive definite, and ,  be a eigenvalue of M

~ ,then we 
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have . 
 
Proof. If 1λ = , we have 
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Proof. Let  be a eigenvalue of M
~ ,  be its corresponding eigenvector. From Lemma2.6, we have  
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From Lemma 2.4, we know if and only if   
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the iterative scheme is convergent. 
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NUMERICAL EXPERIMENT  

In our numerical experiments, the zero vector as the initial vector, 
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 as the right hand side, then the exact 

solution of the saddle-point problem is TTTT )1,,1,1(),( L=yx . We use the MATLAB programming experiment, 

stopping when the error is less than 510− . IT, CPU and ERR represent the number of iterations, time required for 
convergence and error respectively.  
 
Example 3.1[17] Consider the following Stokes problem [18]: 
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where 2(0,1)(0,1) R⊂×=Ω  is a square area, Ω∂ is the boundary condition of Ω , ∆ is Laplace operator, 

vector function u is the speed on Ω ,number function ω is pressure. The problem with the upwind difference 
scheme can be shaped like (1.1), specific form as follows,  
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h is the discrete grid value, and 22 pn = , 2pm= . Numerical results are given in the 

following two forms of classical Uzawa method (See Table 3.1) and the new iteration method(See Table3.2).、 

 
Table 3.1 (The Uzawa Method) 

 

n  m  δ  IT CPU ERR 

50 25 34 19 0.436 7.265e-07 
200 100 59 31 1.910 6.839e-06 
512 256 120 40 4.219 2.166e-06 
1250 625 360 52 98.862 2.109e-06 
5000 2500 - >20000 - - 

 

 Table 3.2 (The New Iteration Method, IQ α=1 IQ
δ
1

2 = ) 

 

n  m  α  δ  IT CPU ERR 

50 25 3 34 14 0.009 3.145e-07 
200 100 9 59 23 1.042 2.085e-07 
512 256 16 120 32 3.267 1.234e-06 
1250 625 55 360 43 79.211 0.337e-06 
5000 2500 0.08 - >20000 - - 

 
The above numerical experiments, and a large number of not listing of results show that convergence effect of the new 
iterative algorithm is much better than that of in solving saddle point problems with the classical Uzawa method. 
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