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ABSTRACT 

In the search of newer and potent antitumor agents, a series of 4β-anilino- 4’-O-demethyl-4-

desoxypodophyllotoxin derivatives was subjected to 2D Quantitative Structure Activity Relationship (QSAR) 

analysis. The statistically significant models were generated and the most robust model for 2D QSAR was 

obtained using random regression method coupled with stepwise forward backward method using V-Life 

Molecular Design Suite software version 3.5. The physicochemical descriptors, viz., Most +ve &-vePotential 

distance, vdWSurface Area, SAMostHydrophilic contributed significantly to the biological activity. About 22 

QSAR models were generated, among which three significant models were finally selected on the basis of 

various statistical parameters such as squared correlation co-efficient (r2), and cross-validated square 

correlation co-efficient (q2). The statistical values of the three significant models viz. model 1, model 2 and 

model 3 are as r2 to be 0.9320, 0.9576 and 0.9403 respectively and q2 to be 0.8540, 0.8801 and 0.8137 

respectively. The descriptors showed by QSAR study can be used further for studying and designing of new 

compounds. Consequently, this study may prove to be helpful in the development and optimization of existing 

antitumor activity of this class of compounds. 
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QSAR 

_____________________________________________________________________________ 

INTRODUCTION 

Cancer is a major worldwide health problem. Although there has been progress in the development of treatment and 

prevention for cancer, this disease remains the second major cause of death in the world. Still, the successful 

treatment of cancer remains a challenge in the 21
st
 century and there is a need to search for newer and safer 

anticancer agents that have broader spectrum of cytotoxicity to tumor cells [1,2]. 

Podophyllotoxin derivatives are used clinically against various types of cancers including breast cancer, testicular 

cancer, small cell lung cancer, lymphoma, Kaposi’s sarcoma and childhood leukemia [3-5]. Although being used 

extensively in clinic, these derivatives exhibited several toxic side effects such as bone marrow depression, 

increased risk of secondary acute myelogenous leukemia, acquired drug resistance and poor water solubility which 
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block their further applications [6]. Thus, Wang et al, in their efforts to overcome drug resistance and develop more 

active, less toxic podophyllotoxin derivatives, synthesized a series of 4β-anilino- 4’-O-demethyl-4-

desoxypodophyllotoxin derivatives and evaluated them for biological activities. Most of the synthesized compounds 

exhibited cytotoxic activities against cancer cell lines [7]. 

The computer aided prediction of biological activity in relation to the chemical structure of a compound is now 

commonly used technique in drug discovery. Moreover, understanding the QSAR of known compounds helps to 

facilitate the new drug discovery. Computational chemistry represents molecular structures as a numerical model 

and simulates their behavior with the equations of quantum and classical physics. The available programs enable 

scientists to easily generate and present molecular data including geometries, energies and associated properties 

(electronic, spectroscopic and bulk). The usual paradigm for displaying and manipulating these data is a table in 

which compounds are defined by individual rows and the molecular properties (or descriptors) are defined by the 

associated columns [8-10]. 

QSAR attempts to find consistent relationships between the variations in the values of molecular properties and the 

biological activity (% activity, IC50, ED50, MIC) for a series of compounds to generate a mathematical expression so 

that these rules can be used to evaluate new chemical entities. The mathematical expression can then be used to 

predict the biological response of other chemical structures. 2D-QSAR models are based on descriptors derived 

from a two-dimensional graph representation of a molecule. 

A QSAR generally takes the form of a linear equation:  

Biological Activity=Const+(C1 × P1)+(C 2 ×P2)+(C 3 × P3)+... 

Where the P1 to Pn are physicochemical parameters value computed for each molecule in the series and C1 to Cn are 

the coefficients of parameters. Physicochemical descriptors are based on the physicochemical properties of 

molecule.  

In the present research work, a series of 4β-anilino- 4’-O-demethyl-4-desoxypodophyllotoxin derivatives was 

subjected to 2D quantitative structure activity relationship (QSAR) analysis, for further development of newer 

antitumor agents. The 2D QSAR study was performed using V-Life Molecular Design Suite software version 3.5. 

 

EXPERIMENTAL SECTION 
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A data set of 19 compounds was taken from the published series as reported. The antitumor activity of the 

compounds was reported in MIC values. The structure and antitumor activity data of compounds is listed as in Table 

1. 

Table 1. The chemical structure and biological activity data of compounds 

Compound Structure MIC -log MIC 

1a 
NCH3  p-

 

 

1.57 0.19589 

1b 

  p- CH3 N
O

 

 

1.27 0.10380 

1c 

  p- CH3 N

CH3

CH3 

 

1.53 0.18469 

1d 

CH3 N

 

 

19.1 1.28103 

1e 

  p- CH3 N

CH3

CH3 

3.95 0.59659 

1f 

  p- CH3 N

CH3

CH3

CH3

CH3

 

2.20 0.34242 

1g 
NCH3

O

  p-

 

2.20 0.34242 
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1h 

  p- CH3

O

N

 

2.33 0.36735 

1i 

   m - CH3

O

N

CH3

CH3

 

27.2 1.43456 

2a 

CH3 OCH3

 

9.28 0.96754 

2b 

CH3 F

 

5.31 0.72509 

2c 

CH3 OAc

 

8.48 0.92839 

2d 

CH3 NO2

 

13.7 1.13672 

2e CH3

 

3.70 0.56820 

2f 

CH3

O2N

 

5.30 0.72427 

2g CH3

 

2.80 0.44715 

2h CH3

OCH3

 

3.08 0.48855 
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2i 

CH3 Br

 

5.72 0.75739 

3a 

CH3 Cl

 

14.21 1.15259 

 

QSAR Study 

All the 2D descriptors were calculated for QSAR analysis using Vlife MDS 3.5 software. Thermodynamic 

parameters describe free energy change during drug receptor complex formation. Spatial parameters are the 

quantified steric features of drug molecules required for its complimentary fit with receptor. Electronic parameters 

describe weak non-covalent bonding between drug molecules and receptor. Random regression method is used to 

generate QSAR equation. For variable selection, stepwise forward-backward method was used. 

Criteria for selection of model 

n=number of molecules (>15 molecules) 

K=number of descriptors in a model (statistically n/5descriptors in a model) 

df=degree of freedom (n-k-1) (higher is better) 

r
2
=coefficient of determination (> 0.7) 

q
2
=cross-validated r

2
 (>0.5) 

pred_r
2
=r

2 
for external test set  

F-test=F-test for statistical significance of the model (higher is better, for same set of descriptors and compounds). 

Selected models 

2D-QSAR investigations of 4β-anilino- 4’-O-demethyl-4-desoxypodophyllotoxin derivatives was performed. About 

22 QSAR models were generated by using random regression method coupled with stepwise forward-backward 

method. Among various models, three significant QSAR models were finally selected (Table 2). 

Table 2. Statistics of three models 

Model no.  r
2 

 q
2 

r
2 
sec  q

2
 sec pred_r

2 
pred_r

2
sec N DF F-test 

1               0.0881        1.0466        14 9 30.5831 

2               0.0922        1.2409        14 9 50.8143 
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3               0.1116        1.0985        14 9 35.4503 

 

RESULTS AND DISCUSSION 

For QSAR analysis, regression was performed using MIC values as dependent variables and calculated parameters 

as independent variables. In any investigation of the effects of molecular properties, it is essential to prove that the 

results are statistically valid as shown in Figure 1. 

 

(a)  (b) 

 

(c) 

Figure 1. Activity distribution Graph: a) Model 1: all the test set is covered by the training set. b) Model 2: all the test set is covered by 

the training set. c) Model 3: potent compound is not kept in the test set 

Contribution Chart (Figure 2) signifies that the descriptors below the zero line have negative contribution and above 

the zero line have positive contribution. In model 1, T_O_O_6 is the important descriptor; in model 2, 



Rajashree Chavan et al                                                        J. Chem. Pharm. Res., 2019, 11 (1): 1-11 

7 
 

SAMostHydrophilic is the important descriptor and in the model 3, Most +ve &-vePotential distance is the 

important descriptor. 

 

(a)  (b) 

 

(c) 

Figure 2. Contribution charts a) model 1 b) model 2 c) model 3 

 Quadrupole1: This descriptor signifies magnitude of first tensor of quadrupole moments. 

  -vePotential Surface Area: This descriptor signifies magnitude of first tensor of quadrupole moments. 

 Average Potential: This descriptor signifies average of the total electrostatic potential on van der Waals surface 

area of the molecule. 

 Most +ve and -vePotential distance: This descriptor signifies the distance between points having the highest 

value of +ve and highest value of –ve electrostatic potential on van der Waals surface area of the molecule. 

  vdWSurface Area: This descriptor signifies total van der Waals surface area of the molecule. 
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 SAMostHydrophilic: Most hydrophilic value on the vdW surface. (By Audry Method using Slogp).  

 SAHydrophobicArea: vdW surface descriptor showing hydrophobic surface area. (By Audry Method using 

Slogp). 

 T_N_N_6: It determines the distance between two nitrogen atoms by 6 bonds. 

 T_O_O_6: It determines the distance between two oxygen atoms by 6 bonds. 

Contribution values: 

Model 1: Quadrupole1: -36.75%, T_N_N_6: 20.32%, T_O_O_6: 23.07%, -vePotentialSurface Area: -19.86% 

Model 2: Most+ve and -vePotential Distance: 23.98%, SAMostHydrophilic:35.05, Average Potential: -27.68%, 

SAHydrophobicArea: -13.30% 

Model 3: Quadrupole1:-15.32%, AveragePotential: -34.47%, Most+ve&-vePotential Distance: 32.70%, 

vdWSurfaceArea: -17.51% 

The unicolumn statistics supports the suitability of the selection of test and training set and the average should 

always be more than the sum (Table 3). Figure 3 shows that the test and training set lie in the plane of fitness plot 

and these compounds have better predicted activity (Table 4). Most +ve &-vePotential distance is the important 

descriptor for the model as it is increasing the antitumor activity. 

Table 3. Uni-column statistics 

Model No. Column Average Max Min Standard 

deviation 

Sum 

Model 1 Test 

Training 

0.6484 

0.7333 

1.4346 

1.1526 

0.1847 

0.1038 

0.4044 

0.3908 

9.0782 

3.6664 

Model 2 Test 

Training 

0.6562 

0.7115 

1.4346 

1.2810 

0.1038 

0.1847 

0.3727 

0.4863 

9.1873 

3.5573 

Model 3 Test 

Training 

0.7319 

0.4996 

1.4346 

1.1526 

 0.1959 

 0.2038 

0.3800 

0.4144 

10.2468 

2.4978 
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(a)  (b) 

 

(c) 

Figure 3. Fitness plot a) model 1, b) model 2 c) (Red spot-Training set; Blue spot-Test set) 

Equations: 

Model 1: sMIC= - 0.0491(±0.0041) Quadrupole1+ 0.6104(± 0.1578) T_N_N_6+ 0.5102(±0.1163) T_O_O_6- 

0.0046(±0.0001) -ve Potential Surface Area -0.5597 

Model 2: sMIC=+ 0.1322(± 0.0002) Most +ve & -ve Potential Distance+58.7922(±3.4767) SA Most Hydrophilic-

149.3640(±15.3396) Average Potential - 0.0025(± 0.0000) SA Hydrophobic Area+5.8658 

Model 3: sMIC= - 0.0157(±0.0000) Quadrupole1- 166.9854(±24.2990) Average Potential+0.1043(± 0.0002) Most 

+ve & -ve Potential Distance- 0.0027(± 0.0000) vdW Surface Area+ 1.8109 

From the 19 analogues used for QSAR studies, 2i, 2a and 1e were found to be the most potent compounds with 

minimal residual activity in model 1, model 2 and model 3, respectively (Table 4). 

Table 4. Actual and predicted values of the compounds as predicted by QSAR study 

Compoun Model 1 Model 2 Model 3 
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d A
*
 B

*
 C

*
 A B C A B C 

1a 1.434560  1.301960  0.132600  0.757390  0.842099  -0.084709  0.195890  0.263174  -0.067284 

1b 0.342420  0.372317  -0.029894  0.568200  0.463725  0.104475  0.757390  0.888782  -0.131392 

1c 0.103800 0.059001  0.044799  0.967540  0.784422  0.183118  0.342420  0.391470  -0.049050 

1d 0.928390  0.899641  0.028749  0.342420  0.454714  -0.112294  1.281030  1.210090  0.070940 

1e 0.195890  0.320075  -0.124185  1.136720  1.136720  0.000000  0.447150  0.447620  -0.000470 

1f 0.725090  0.658922  0.066168  0.447150  0.494836  -0.047686  1.434560  1.459730  -0.025170 

1g 0.568200  0.413393  0.154807  0.596590  0.550061  0.046529  0.724270  0.550321  0.173949 

1h 0.488550  0.414910  0.073640  0.342420  0.534656  -0.192236  0.367350  0.370912  -0.003562 

1i 0.967540  0.962521  0.005019  0.367350  0.570404  -0.203054  0.967540  1.025140  -0.057600 

2a 0.724270  0.783055  -0.058785  0.488550  0.575350  -0.086800  0.928390  1.029470  -0.101080 

2b 0.447150  0.538301  -0.091151  1.281030  1.353770  -0.07274  0.342420  0.398773  -0.056353 

2c 0.367350  0.408950  -0.041600  0.195890  0.021423  0.174467  0.725090  0.582899  0.142191 

2d 1.434560  1.431750  0.002810  0.725090  0.652353  0.072737  0.596590  0.612933  -0.016343 

2e 0.342420  0.399668  -0.057248  0.570404  0.367350  0.203054  0.967540  0.962521  0.005019 

2f 1.136720  1.082390  0.054330  0.184690  0.183806  0.000884  1.136720  1.015500  0.121220 

2g 0.184690  0.169540  0.151500  0.928390  0.240130  0.688260  1.239500  1.139700  0.099800 

2h 0.596590  0.609523  -0.012933  0.724270  0.562579  0.161691  1.130990  0.184690  0.946300 

2i 0.342420  0.434509  -0.092089  0.757390  0.571248  0.186142  0.488550  0.381594  0.169560 

3a 1.152590  0.132213  1.020377  1.152590  0.775530  0.377060  1.152590  1.130940  0.2165 0  

*
A: Actual activity, B: Predicted activity, C: Residual activity 

CONCLUSION 

Among the generated QSAR models; three models were selected on the basis of various statistical parameters such 

as squared correlation co-efficient (r
2
) which is relative measure of quality of fit, Fischer’s value (F test) which 

represents fraction between the variance of calculated and observed activity, standard error (r
2
_se) representing 

absolute measure of quality of fit, cross-validated square correlation coefficient (q
2
), standard error of cross-

validated square correlation co-efficient (q
2
_se), predicted squared regression (pred_r

2
) and standard error of 

predicted squared regression (pred_r
2
se) to estimate the predictive potential of the models. 
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From the derived QSAR model, it can be concluded that antitumor activity of 4β-anilino- 4’-O-demethyl-4-

desoxypodophyllotoxin derivatives is strongly influenced by physicochemical descriptors like Quadrupole1, -

vePotential Surface Area, Average Potential, Most +ve &-vePotential distance, vdWSurface Area, 

SAMostHydrophilic and SAHydrophobicArea. Thus on increasing the value of the above stated descriptors, the 

antitumor activity will increase. T_N_N_6, T_O_O_6 were the descriptors which showed that they have less 

importance for antitumor activity and on decreasing their values, the activity will improve. The descriptors shown 

by QSAR study can be used further for studying and designing of new compounds. Consequently, this study may 

prove to be helpful in development and optimization of existing antitumor activity of this class of compounds.  
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