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ABSTRACT

The quantitative structure—activity relationship§@R) analyses were carried out for a series 2disubstituted
1,2-dihydro-1,3,5-trizine-4,6-diamines. The natofethe substituent(s) on C-2; the nature of thesituent(s) on
the distal aryl ring; as well as the nature anddém of the flexible tether between the rings, tad fout the structural
requirements of their antimalarial activities agatncycloguanil resistant (FCR-3) Plasmodium falcipa strain
and sensitive to pyrimethamine. The statisticaifyisicant best 2D QSAR models for FCR-3, havingetation
coefficient (f) = 0.9821 and cross validated squared correlatiovefficient (§) = 0.6471 were developed by
multiple linear regression stepwise (SW-MLR) fovalgorithm. The results of the present study neydeful on
the designing of more potent analogues as antinalagents.

Keywords: QSAR; 2, N-disubstituted 1,2-dihydro-1,3,5-trizine-4,6-diaesn Antimalarials; SW-MLR;
plasmodium falciparum strain.

INTRODUCTION

Malaria is one of the most widespread diseasesenworld. According to WHO estimates 40% of the laisr
populations presently live under malarial thregt Mround 300 and 500 million cases of malaria scannually,
leading to 1-3 million deaths [1]. Its control ially a high priority task. Although effective tamalarial agents
have been known for a long time, the alarming sprfadrug resistant strains of Plasmodium falciparwhich is
the most lethal parasite species, undergoes tleaygand continuous need for the discovery of Hesepeutics. A
major initiative in this direction is to find enzymargets that are critical to the disease proocesssential for the
survival of the parasite. Identification and desigmovel chemical entities specifically affectitigese targets could
lead to better drugs for the treatment of mal2ja [
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1.Pyrimethamine 2. Trimethoprim 3.Cycloguanil

Pyrimethamine, trimethoprim and cycloguanil inhilialarial dihydrofolate reductase (DHFR), one &f tiaw well-
defined, validated targets in malarial chemotherid)y These antimalarials inhibit DHFR by competingh the
natural substrate dihydrofolic acid. Unfortunatggint mutations at certain amino acid residuesosunding the P.
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falciparum DHFR active site have resulted in resise, compromising the clinical effectiveness aimpgthamine
and cycloguanil4,5]. Despite this, the folate pathway remainsadjtarget for malarial chemotherapy because the
enzyme is limited in its mutational capability, evgito loss in enzyme function [6-8].
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A series of cycloguanil-like compounds that possedkexible tether interpolated between the 1,2:dib- 1,3,5-
triazine-4,6-diamine heterocycle and the substityteenyl ring9]. So, rather than identifying new molecules for
efficacy, modified 1,2-dihydro- 1,3,5-triazine-4déamine heterocycle having many advantages andieifty are
now in priority for antimalarial chemotherapy.

EXPERIMENTAL SECTION

2.1. Data set

A data set of 28 compounds of side chain modified-dihydro- 1,3,5-triazine-4,6-diamine heterocydte
antimalarial activities against pyrimethamine aydloguanil sensitiveand resistanfFCR-3) P. falciparum strains
was used for the present 2D QSAR st{it]. There is high structural diversity and a gt range of the
biological activity in the selected series of thedmrivatives (Table 1). It insists as to selectstheseries of
compounds for our QSAR studies. The biologicahdtgtivalues [IGo (nM)] reported in literature were converted to
their molar units and then further to negative tiganic scale (plGy) and subsequently used as the dependent
variable for the QSAR analysis.

Table No.1 Structures and antimalarial activity of 2,N°-disubstituted 1,2-dihydro-1,3,5-triazine-4,6-diamnes
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All 28 compounds were built on workspace of molacunodeling software VLife MDS 3.%Vlife Sciences
Technologies Pvt. Ltd. Pune, India) and then thmectire was converted to three-dimensional spacdufther
analysis. All molecules were batch optimized foe thinimization of energies using Univerdaice field (UFF)
followed by considering distance-dependent dieleaonstant of 1.0, convergence criterion or roeamsquare
(RMS) gradient at 0.01 kcal/mol A° and the intei@ttimit to 10,000 [11]. The energy-minimized gestny was
used for the calculation of the various 2D desorpt(Individual, Chi, ChiV, Path count, ChiChainhiZChain,
Chainpathcount, Cluster, Pathcluster, Kapa, Elen@mint, Estate number, Estate contribution, Serpisigal,
Hydrophillic—hydrophobic and Polar surface ared)e Warious alignment-independent (Al) descriptoesenalso
calculated. For calculation of alignment, the inelegent descriptor was assigned the utmost threbuaéis. The
first attribute was T to characterize the topolafythe molecule. The second attribute was the digra, and the
third attribute was assigned to atoms taking pathé double or triple bond. The preprocessindhefindependent
variables (i.e., 2D descriptors) was done by remgvnvariable (constant column), which resultectotal 289
descriptors to be used for QSAR analysis.

Structures of Test set compounds

The manual data selection metij@ad-15] was adopted for division of training andttelata set comprising of 21
and 7 molecules, respectively. Seven compoundselyafil1l-1.7 were used as test set while the remgini
molecules were used as the training set by corisglehemical variation. The unicolumn statisticstiod training
and test sets is reportedTiable 2

2.2. Feature selection and model development

Feature selection is a key step in QSAR analysisinfegral aspect of any model-building exercisthés selection
of an appropriate set of features with low compleaind good predictive accuracy. This process fdirasbasis of
a technique known as feature selection or varigklection. Among several search algorithms, step&WN)

forward—backward variable selection method, geratiorithms (GA) and simulated annealing (SA) bafsedure
selection procedures are most popular for buil@®AR models and can explain the situation morectffely [14-

16].
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In the selected equations, the cross-correlatimit fivas set at 0.5, the number of variables atat@ the term
selection criteria a’r An F value was specified to evaluate the sigaifie of a variable. The variance cutoff was
set at 0, with auto scaling in which the numberafdom iterations was set at 100. In SW forwardkivacd
variable selection algorithm, the model is repdatedtered from the previous one by adding or reimgva
predictor variable in accordance with the ‘steppintgria’ (in this case F= 4 for inclusion; F= 8.fbr exclusion for
the forward—backward selection method). In GA mdthmopulation and number of generations were sé0and
1000, respectively and speed of 9999.

2.3. Model quality and validation

The developed QSAR models are evaluated usingollenwing statistical measures: n, (the number ahpounds
in regression); k, (number of variables); DF, (&&gof freedom); optimum component, (number of optmPLS
components in the model)? r(the squared correlation coefficientfse, (standard error of squared correlation
coefficient); F test, (Fischer’s value) for stdtiat significance; § (cross-validated correlation coefficientf; ge,
(standard error of cross-validated square cormelatio-efficient); pred?r ( for external test set); predse,
(standard error of predicted squared regression)scdre, (Z score calculated by the randomizatiost);te
best_ran_§ (highest § value in the randomization test); best_rén(mighest T value in the randomization test).
The regression coefficient is a relative measure of fit by the regressionagiqu. It represents the part of the
variation in the observed data that is explainedhsy regression. However, a QSAR model is consitiéwebe
predictive, if the following conditions are satesfi # > 0.6, ¢ > 0.6 and pred?r>0.5 [13]. The F-test reflects the
ratio of the variance explained by the model amdvidriance due to the error in the regression. Majhes of the F-
test indicate that the model is statistically sfigant. The low standard error of (> se), 4 (q°_se) and pred?r
(Pred_fse) shows absolute quality of fitness of the model.

Internal validation was carried out using ‘leaveeanut’ (¢f, LOO) method [17]. The cross-validated coefficiegit
was calculated using the following equation:
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Where y, andy; are the actual and predicted activity of teriolecule in the training set, respectively, apg.yis
the average activity of all molecules in the tragset.

However, a high fjvalue does not necessarily give a suitable reptaten of the real predictive power of the
model for antimalarial ligands. So, an externalidation was also carried out in the present stlthe external
predictive power of the model was assessed by giiediplC50 value of the nine test set moleculdsctvwere not
includFed in the QSAR model development. The prédicability of the selected model was also confidniey
pred_f.

Y-y

Pred r*=1- -
E. {‘l - Fmean}'

where y, andy; are the actual and predicted activity of tHeriolecule in the test set, respectively, apd.yis the
average activity of all molecules in the trainireg. s

RESULTS AND DISCUSSION

The QSAR study of 28 new side chain modified 1[2¢dro- 1,3,5-triazine-4,6-diamine heterocycle datives for
antimalarial activities (Table 1) through MLR metlobogy, based on various feature selection meth@dsSW
usingVLife MDS 3.5 software resulted in the following statisticallygsificant models (Table 2), considering the
term selection criterion a,rf and pred % The training and test sets were selected by namlection method
and the models were validated by both internal extdrnal validation procedure. To ensure a fair garson, the
same training and test sets were used for eachlimadeelopment. A Uni-column statistics for traigiset and test
set was generated to check correctness of selaritenia for trainings and test set molecules.

Table 2: Developed 2D-QSAR Model

Size Equation F q F test Fse | dse
Lm0 - | Activity = + 0.2708( 00122) T.N_O5
71 0.5878(+ 0.0400) SulfursCount - 0.0305(%

f_gst et 0.0032) SsCH3E-index - 0.0339(+ 0.00575).9821 0.6471| 153.9562| 0.0386| 0.1714
o g | T_C_N_4-0.0893(x 0.0400) T_O_F_3 +0.4860

Model 1 (SW-MLR)
Activity = + 0.2708(x 0.0122) T_N_O_5 + 0.5878(#800) SulfursCount - 0.0305(x 0.0032) SsCH3E-=nde

0.0339( 0.0087) T_C_N_4 - 0.0893(z 0.0400) T_O_F (84860.

The statistically best model (Model 1) for antinrahactivity against FCR-3 with a coefficient oétérmination ()
=0.9821 was considered.

Prediction of activity:

The generated equation was used to predict theitgictif test set as compare to actual activity widspect to
various physicochemical parameters. The MLR motelns better results as compare to two other ma@ReR
and PLR). Therefore the activity predicted by MLsRonly considered in this study (Table 3).
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Table 3: Predicted Activity of Compounds (Test setby MLR

Test Compound No.| Antimalarial Activity | Predicted | Difference
02 0.101: 0.07982! | 0.0212
11 0.1353 0.147532 -0.0122
17 0.1610 0.181383 -0.0203
21 0.2207 0.181383 0.03931
22 0.2212 0.181383 0.0398
26 0.1388 0.333176 -0.1943

Multiple linear regression (MLR), Principal companeregression (PCR) and Partial Least Squares ssigre
(PLR) were carried out to find out the factors msgible for the biological activity (Table 3). Cabution chart, (%
contributions of different descriptors in Model Eduation 1) representing the contribution of digsars in the 2D-
QSAR model developed by MLR is shown in Fig 1.

Contribution Plot

33.00

22.00
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T _MN_0_5 I
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SsCHIE-indel_—1
T G M 4 I
T O F 3

11.00

0.00

-11.00 -

Descriptors

Figurel: Contribution plot of various descriptors.

Descriptors description:

From any other Oxygen atom (single double or trig@ded) by distance of 5 bonds ina T_N_O_5 iscthet of
number of Nitrogen atoms (single double or triptetbed) separated molecule.

T_C_N_4 is the count of number of Carbon atomsg(sirdouble or triple bonded) separated from anyermth
Nitrogen atom (single double or triple bonded) istahce of 4 bonds in a molecule.

T_O_F_3 is the count of number of Oxygen atomsg{sirdouble or triple bonded) separated from anyemth
Fluorine atom (single double or triple bonded) istahce of 3 bonds in a molecule.

SsCH3E-index: Electrotopological state indicesrfomber of -CH3 group connected with one single bond
Sulferscount is the number of sulfur atoms presiengsmolecule.

T _N_O_5 and Sulfurs Count are directly proportiondlile T_O _F 3, T_C_N_4, SsCH3E-index are inversely
proportional to the antimalarial activity. T_N_Oré&sembles optimal chain length af Bubstitution. T_O_F_3
resembles the optimal position of Fluorine at aybstitution. T_C_N_4 resembles triazine ring. S3E#hdex
resembles electrotopology of number of Qioups attached at C-2 position. Sulfurs CounbteEnthe presence of
sulfur at N chain is beneficial for activity.
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Figure-2: Correlation plots of observed and predicted activiies of the training and test compounds for best
QSAR Model.

Table 4: Percent Contribution of Descriptors.

Sr.No. Parameter Result
1. TNOS 44.98%
2. | SulfursCount | 31.38%
3. | SsCH3E-index -11.709
4, T CNA4 -7.17%
5. TOF3 -4.77%
CONCLUSION

The present work shows how a set of antimalarigiviies of various 1,2-dihydro- 1,3,5-triazine-4dé&mine
heterocycle may be treated statistically to unceélrermolecular characteristics which are essefarahigh activity.
The generated models were analyzed and validatethdar statistical significance and external pegidn power.
The awareness and understanding of the descripteotved in antimalarial activity of these composndould
provide a great opportunity for the ligand struetudesign with appropriate features, and for thptagation of the
way in which these features affect the biologicaladupon binding to the respective receptor tarfleé results
derived may be useful in further designing moreabt@ntimalarial agents in series.
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