

Review Article

ISSN : 0975-7384

Synthetic routes to some azolyl-triazoles

Bakr Fathy Abdel-Wahab
Faculty of Science, Shaqra University, Al-Dawadami, Saudi Arabia; Applied Organic Chemistry department, National Research Centre, Dokki, Giza, Egypt

Abstract

Published data on the methods of preparation pyrrolyl, isoxazolyl, oxazolyl, and oxadiazolyltriazole and triazolyltetrazoles are summarized and described systematically. The review is divided according to the type of azole connected to triazole ring.

Keywords: pyrrolyltriazole; isoxazolyltriazole; oxazolyltriazole; oxadiazolyltriazole; triazolyltetrazoles

INTRODUCTION

The biologically important triazole moiety has been incorporated into many drugs or drug candidates covering a variety of therapeutic areas. Several therapeutically active compounds containing 1,2,3-triazoles have been reported, such as antimicrobials, anti-HIV agents, and kinase inhibitors [1-4]. Certain 1,2,4-triazole derivatives are of interests due to their bioactivity, including antibacterial [5-7] and antifungal [8,9] properties. Recently there has been considerable interest in the synthesis and properties of bi-heterocycles, due to their wide range of application. For example, 2,2 -bi-1,3,4-thiadiazole derivatives exhibit interesting photoluminescence and electroluminescence and are used as thermotropic liquid crystals[10, 11]. 3,3'-Bis-1,2,4-triazoles have proved to possess bactericidal, fungicidal, and anthelmintic activities [12], imidazolyltriazoles are useful for inhibition of the production of cytokines [13] and (1,2,3-triazolyl)-1,2,3-oxadiazole derivatives used as potentiating NO-dependent activation of soluble forms of guanylate cyclase [14]. In the view of the above facts and in connection to our previous review articles about biologically active heterocyclic systems [15-18], we decided to prepare this review to present for reader a survey of the literature of the different azoles linked directly with triazole nucleus, also some of the commercial applications are mentioned.

2. Pyrrolyltriazoles

4-Amino-3-mercapto-5-phenyl-1,2,4-triazole 2 was converted to 4-(1-pyrroyl) derivative 3 by reaction with 2,5dimethoxytetrahydrofuran 1 in refluxing acetic acid [19]. Also, the pyrrolotriazole 5 prepared from 4-amino-1,2,4triazole $\mathbf{4}$ by condensation with 2,5-dimethoxytetrahydrofuran 1 (Scheme 1) [20].

Scheme 1

4-(2,5-Dimethyl-1 H -pyrrol-1-yl)-4H-1,2,4-triazole 7 was prepared from 4-amino-1,2,4-triazole 4 by condensation with acetonylacetone 6 (Scheme 2) [20].

Scheme 2
4-Amino-5-(substituted pyrrolyl)-4H-1,2,4-triazole-3-thiols 9 were prepared by cyclization of hydrazinecarbodithionic acids $\mathbf{8}$ after heating with hydrazine hydrate (Scheme 3) [21].

Scheme 3

3. Isoxazolyltriazoles

3.1. Isoxazolyl-1,2,3-triazoles

The diazonium salt from aminodimethylisoxazole 10 was more stable and at $0^{\circ} \mathrm{C}$, reacted with sodium azide to give $65 \% 11$ which on reaction with acetyl acetone afforded 10% the isoxazolyltriazole 12 (Scheme 4) [22].

Scheme 4

3.2. Isoxazolyl-1,2,4-triazoles

5-Methylisoxazole-3-carbohydrazide $\mathbf{1 3}$ reacted with arylisothiocyanates and then cyclization in the presence of 2 $\mathrm{mol} / \mathrm{L}$ aqueous potassium carbonate solution to give 4-aryl-5-(5-methylisoxazol-3-yl)-1,2,4-triazol-3-thiols $\mathbf{1 5}$ [23, 24]. Whereas 4-amino-5-mercapto-3-(5-methylisoxazol-3-yl)-1,2,4-triazole $\mathbf{1 6}$ was prepared by treatment of $\mathbf{1 3}$ with carbon disulphide followed by reaction with hydrazine hydrate (Scheme 5) [25-27].

Scheme 5

Refluxing of 3-methoxy-1H-isoindolium triflate $\mathbf{1 7}$ and 5-methyl-3-phenyl-4-isoxazoloyl hydrazide $\mathbf{1 8}$ in the presence of triethyl amine in ethanol gave 78\% 3-(5-methyl-3-phenylisoxazol-4-yl)-5H-[1,2,4]-triazolo[3,4a isoindole 19 which act as GABA-A $\alpha 5$ receptor subunit ligands useful as cognition enhancers for treatment of Alzheimer's disease (Scheme 6) [28].

Scheme 6
Reaction of 3,3-bis(methylthio)-1-phenyl-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one 20 with hydroxylamine hydrochloride gave a mixture of isomeric isoxazoles 21 and 22 (Scheme 7) [29].

Scheme 7

Substituted isoxazolyl-1,2,4-triazoles 23 were obtained by reaction of cyclic β-oxo- α-(1,2,4-triazolyl)ketene S, S acetals 20 reacted with hydroxylamine hydrochloride under basic conditions (Scheme 8) [30].

Cyclic α-oxo- α-(1,2,4-triazol-1-yl)ketene N, S-acetals 24 react with hydroxylamine hydrochloride under basic conditions affording (3-mercaptoalkylamino)isoxazolyl-1,2,4-triazoles 25 (Scheme 9) [31].

4. Oxazolyltriazoles

Triazolines 27 were prepared from cycloaddition reaction of imine 26 and diazomethane (Scheme 10) [32].

5. Oxadiazolyltriazoles

5.1. Oxadiazolyl-1,2,3-triazoles

Reaction of 2-phenyl-1,2,3-triazole-4-formylhydrazine 28 with $\mathrm{CS}_{2} / \mathrm{KOH}$ gave the oxadiazole derivative 29. Also, condensation of $\mathbf{2 8}$ with aromatic acids in phosphorus oxychloride yielded oxadiazole derivative 30. While the reaction of $\mathbf{2 8}$ with aldehydes and ketones afforded hydrazones $\mathbf{3 1}$. Cyclization of $\mathbf{3 1}$ with acetic anhydride gave the desired dihydroxadiazole derivatives 32 (Scheme 11) [33].

Scheme 11

2-[1,2,3-Triazol-4-yl]-1,3,4-oxadiazole derivatives $\mathbf{3 4}$ and $\mathbf{3 6}$ were synthesized by various pathways starting from 1-aryl-5-methyl-1,2,3-triazol-4-formhydrazide 33 by condensation with carbon sulfide or reaction with aromatic aldehydes followed by ring closure (Scheme 12) [34].

Scheme 12

Cyclization of 1-[5-amino-1-(4-chlorophenyl)-1,2,3-triazol-4-ylcarbonyl]-4-arylthiosemicarbazides 37 with mercuric acetate under heating gave 2-arylamino-5-[5-amino-1-(4-chlorophenyl)-1,2,3-triazol-4-yl]-1,3,4oxadiazoles 38. The latter compounds showed antibacterial activity against Escherichia coli and Staphylococcus aureus (Scheme 13) [35].

Scheme 13

Cycloaddition of 4-amino-3-azidofurazan 39 with acetyl acetone led to the formation of 1-(1-(4-amino-1,2,5-oxadiazol-3-yl)-5-methyl-1 H-1,2,3-triazol-4-yl)ethanone 40. While the reaction with propargyl compounds 41 allowed forming oxadiazolyltriazoles 43 presence of pyridine. Compounds 44 were synthesized by reactions of 39 with the corresponding alkyl chloroacetoacetates 42 (Scheme 14) [36].

Scheme 14

5-Substituted tetrazoles 46 react with 1-aryl-5-methyl-1H-1,2,3-triazole-4-carbonyl chlorides 45 to give the corresponding 1,3,4-oxadiazoles 47 having a triazolyl substituent in the 5-position in 54-83\% yield (Scheme 15) [37].

$$
\begin{gathered}
\mathrm{Ar}=\mathrm{Ph}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}, 3-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 3-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
\mathrm{R}=\mathrm{Ph}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 2-\mathrm{ClC}_{6} \mathrm{H}_{4}, 2 \text {-furyl }
\end{gathered}
$$

Scheme 15

1,2,4-Oxadiazolyl triazoles $\mathbf{5 1}$ were obtained starting from corresponding acid chloride $\mathbf{5 0}$ by reaction smoothly with amide oximes 49 (Scheme 16) [37].

Reaction of 2-phenyl-2,6-dihydro-6-(1,2-diacetoxyethyl)-4H-furo[3,4-d-1,2,3-[triazol-4-one 52 with hydrazine hydrate followed by treatment with carbon disulfide yielded binuclear heterocycles 53 (Scheme 17) [38].

Scheme 17

5.2. Oxadiazolyl-1,2,4-triazoles

Oxadiazoles 55, had fungicidal activity comparable to that of dithiane M-45 at 1000 ppm , were prepared via cyclization of the thiosemicarbazides (54, $\mathrm{R}=\mathrm{CHAr}_{2}$) or reaction of $(\mathbf{5 4}, \mathrm{R}=\mathrm{H})$ with CS_{2} and subsequent cyclization (Scheme 18) [39].

Treatment of 4-methyl-1,2,5-oxadiazole-3-carbonitrile 56 with hydrazine hydrate in isopropyl alcohol afforded the corresponding amidrazone 57 in 78% yield. A room temperature reaction of amidrazone 57 with commercial aliphatic acid chlorides and benzoyl chloride in chloroform in the presence of pyridine gave acylamidrazones $\mathbf{5 8}$ in high yields. Dehydration of $\mathbf{5 8}$ by refluxing their solutions in toluene using a Dean-Stark trap giving triazoles 59 (Scheme 19) [40].

Scheme 19
The route to compounds 63 involve thermal dehydration of acylamidrazones $\mathbf{6 2}$ obtained from aliphatic acid hydrazides $\mathbf{6 1}$ containing various functional substituents and methyl 3 -aminofurazan-4-carboximidate $\mathbf{6 0}$, which is prepared from 3-amino-1,2,5-oxadiazole-4-carbonitrile 56 (Scheme 20) [41].

Scheme 20

6. Triazolyltetrazoles

6.1. 1,2,3-Triazolyltetrazoles

1-Subs.-4-(2-ethyltetrazolyl)-1,2,3-triazoles $\mathbf{6 6}$ were obtained by reaction of ethynltetrazole $\mathbf{6 4}$ and azide $\mathbf{6 5}$ in refluxing toluene (Scheme 21) [42, 43].

$$
\mathrm{R}_{1}=\mathrm{Et}, \mathrm{Me} ; \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}
$$

Scheme 21

5-Azido-1-phenyltriazoles 67 can thermally isomerize to diazo substituted tetrazoles 68 and immediately ring-closed to triazoles 69 (Scheme 22) [44].

Bis(1-aryl-5-tetrazolyl)dichloromethanes 70 were refluxed with sodium azide and powdered Cu in toluene for 20 h to give 71 (Scheme 23) [45].

6.2. 1,2,4-Triazolyltetrazoles

5-Phenyl-2-(4H-1,2,4-triazol-3-yl)-2H-tetrazole 74 was prepared in 70% yield by reaction of benzaldehyde with hydrazinesulfonamide followed by reaction of 72 with 5 -phenyl- 4 H -1,2,4-triazole-3-diazonium salt 73 in pyridine (Scheme 24) [46].

Scheme 24

REFERENCES

[1]SB Ferreira, ACR Sodero; MFC Cardoso; ES Lima; CR Kaiser; FP Silva; VF Ferreira, J. Med. Chem., 2010, 53, 2364-2375.
[2]JH Cho; DL Bernard; RW Sidwell; ER Kern; CK Chu, J. Med. Chem., 2006, 49, 1140-1148.
[3]MJ Giffin; H Heaslet; A Brik; Y-C Lin; G Cauvi; CH Wong; DE McRee; JH Elder; CD Stout; BE Torbett, J. Med. Chem., 2008, 51, 6263-6270.
[4]F Reck; F Zhou; M Girardot; G Kern; CJ Eyermann; NJ Hales; RR Ramsay; MB Gravestock, J. Med. Chem., 2005, 48, 499-506.
[5]A Foroumadi; S Mansouri; Z Kiani; A Rahmani, Eur. J. Med. Chem., 2003, 38, 851-854.
[6]VJ Ram; L Mishra; NH Pandey; DS Kushwaha; LAC Pieter; AJ Vlietinck, J. Heterocycl. Chem., 1990, 27, 351-355.
[7]N Ergenc; E Ilhan, Pharmazie, 1992, 47, 59-60.
[8]N Kalyoncuoglu; S Rollas; DS Ur-Altiner; Y Yegenoglu; O Anğ, Pharmazie 1992, 47, 796-797.
[9]S Rollas; N Kalyoncuoglu; DS Ur-Altiner; Y Yegenoglu, Pharmazie, 1993, 48, 308-309.
[10] M Sato; R Ishii; S Nakashima; K Yonetake; J Kido, Liq. Cryst., 2001, 28, 1211-1214.
[11]M Sato; M Notsu; S Nakashima; Y Uemoto, Macromol. Rapid Commun., 2001, 22, 681-686.
[12] SM Kudari; SM Beede; W Munera, Asian J. Chem., 1997, 9, 20-26.
[13]RP Frutos; D Krishnamurthy; ND Patel; S Rodriguez; CH Senanayake,WO 2007-US66684; Chem. Abstr.,

2007, 47, 486446.
[14]LV Batog; VY Rozhkov; YV Khropov; NV Pyatakova; OG Busygina; IS Severina; NNMakhova, RU 2000-103697, Chem. Abstr., 2002, 136, 401763.
[15] RE Khidre; BF Abdel-Wahab, Curr. Org. Chem. 2013, 17, 430-445.
[16] RE Khidre; HA Mohamed; BF Abdel-wahab, Turk. J. Chem. 2013, 37, 1-35.
[17]BF Abdel-Wahab; HA Mohamed, J. Sulfur Chem. 2012, 33, 589-604.
[18] KM Dawood; NM Elwan; BF Abdel-Wahab, Arkivoc 2011, 111-195.
[19] AK El-Shafei; AG Ghattas; A Sultan; HS El-Kashef; GVernin, Gazz. Chim. Ital., 1982, 112, 345-348.
[20] RA Olofson; JP Pepe, Tetrahedron Lett., 1979, 34, 3129-3130.
[21] AT Bijev; P Prodanova, Chem. Heterocycl. Cpds., 2007, 43, 306-313.
[22] G L'Abbe; F Godts, Bull. Soc. Chim. Belg., 1987, 96, 229-36; Chem. Abstr., 1988, 108, 21760.
[23]DG Sun; XP Hui; PF Xu; ZY Zhang; ZW Guan, J. Chin. Chem. Soc., 2007, 54, 795-801.
[24]ZY Zhang; KX Yang; FL Zeng, Gaodeng Xuexiao Hиахие Xuebao., 1988, 9, 239-245; Chem. Abstr., 1988, 109, 190328.
[25] XP Hui; Q Wang; Q Zhang; ZY Zhang, Rev. Roumain. Chim., 2002, 46, 905-909; Chem. Abstr., 2003, 138, 321208.
[26] JR Reid; ND Heindel, J. Heterocyl. Chem., 1976, 13, 925-926.
[27] XP Hui; LM Zhang; ZY Zhang; Q Wang; F Wang, J. Chin. Chem. Soc., 2000, 47, 535-539.
[28] AL Boase; T Ladduwahetty; AM MacLeod; KJ Merchant, US 20040058970, Chem. Abstr., 2004, 140, 287389.
[29]ZN Huang; ZM Li, Gaodeng Xuexiao Huaxue Xuebao, 1995, 16, 1740-3; Chem. Abstr., 1996, 124, 317095.
[30]ZN Huang; ZM Li, Synth. Comтии., 1996, 26, 3115-3120.
[31]ZN Huang; ZM Li, Synth. Commun., 1995, 20, 3219-3224.
[32]MA Abbady; IMA Awad; MM Kandeel, Indian J. Chem., 1988, 27B, 90-2.
[33]FM Liu; JX Yu; WJ Lu; G Liu; YT Liu; YZ Chen, Chinese J. Chem., 1999, 17, 62-68.
[34] Y Zhang; RZ Qiao; PF Xu; ZY Zhang; Q Wang; LM Mao; KB Yu, J. Chin. Chem. Soc., 2002, 49, 369-373.
[35]EL Metelkina; TA Novikova; SN Berdonosova; DY Berdonosov, Russ. J. Org. Chem., 2005, 41, 440-443.
[36] VY Rozhkov; LV Batog; MI Struchkova, Russ. Chem. Bull., 2005, 54, 1923-1934.
[37]ND Obushak; NT Pokhodylo; NI Pidlypnyi; VS Matiichuk, Russ. J. Org. Chem., 2008, 44, 1522-1527.
[38]MA El-Sekily, M. E.; Elba, F. S. Fouad, J. Indian Chem. Soc., 2000, 77, 168-171.
[39]H Singh; LDS Yadav, Agric. Biol. Chem., 1976 40, 759-764.
[40]TI Godovikova; SK Vorontsova; LD Konyushkin; SI Firgang; OA Rakitin; Russ. Chem. Bull., 2010, 59, 483-485.
[41]IV Tselinskii; SF Mel'nikova; SV Pirogov; AV Sergievskii, Russ. J. Org. Chem., 1999, 30, 296-300.
[42] WT Li; WH Wu; R Tang; ST Chen, ACS Comb. Sci. 2011, 13, 72-78.
[43] SR Buzilova; M Shul'gina; GA Gareev; LI Vereshchagin, Khim. Geterotsikl. Soedin., 1980, 842-847. Chem. Abstr., 1980, 93, 204559.
[44] G L'abbe; A Vandendriessche; S Toppet, Tetrahedron, 1988, 44, 3617-3626.
[45] AF Shivanyuk; MO Lozinskii, Zh. Org. Khim., 1980, 16, 2623-2624; Chem. Abstr., 1981, 94, 156837.
[46] IM Abbas, Al-Azhar Bull. Sci., 1994, 5, 961-966.

