Synthesis of some new 1,2,4-triazole derivatives

F. Lazrak*1,2, A. Keita2, Y. Ramli1, K. Karrouchi1, Y. Zaoui1, M. Ansar1, J. Taoufik1 and E. M. Essassi2

1 Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Rabat Institute, Mohammed V University-Rabat, Morocco
2 Laboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco

ABSTRACT

We describe herein the synthesis of new macrocycles and podants derived from the 3-alkyl (phenyl)-1,2,4-triazole-5-thiones 1a-c in a heterogeneous media using phase transfer catalysis. The compounds were characterized using 1HNMR, 13C-NMR and Mass Spectral.

Keywords: Triazole, Dihalogeno (di)triethylene glycol, Phase transfer catalysis.

INTRODUCTION

Heterocyclic systems containing 1,2,4-triazole aroused great interest by researchers [1-3] because of their applications in important areas as diverse as pharmacology, agriculture, industry. The 1,2,4-triazoles and certain of its derivatives are known for their anti-inflammatory properties [4,5], as analgesics [6,7], diuretics [8], bronchodilators [9], anticancer [10], antioxidant [11] and antimicrobial [12,13]. The use of certain 1,2,4-triazole derivatives in the industry conferred greater stability and heat resistance in many molecular materials [14] and highlighted the corrosion inhibiting properties of certain metals [15]. In agriculture, 1,2,4-triazoles are deemed to be fungicides [16,17], bactericidals [18] and herbicides [19].

Moreover, the main feature of polyester and cyclic nitrogen or sulfur derivatives lies in their ability to form stable complexes with cations [20,21], thus can be applied in various chemical and biochemical fields; namely: recognizing [22], processing more reactive anions accompanying the cation as a base and separating the ion pairs [23]. In biology, they are used for determining the concentration of sodium and potassium in the blood and in other biological fluids [24]. In physiology, they are used for ions transfer across cell membranes or artificial [25].

The importance of these products has encouraged us to continue our research in this area. Thus, in this work we report new methods for synthesizing heterocyclic system oxygen and sulfur derivatives of 1,2,4-triazole and 1,1-bis (5-mercaptop-3-alkyl (phenyl) -1,2,4-triazolyl) methanes. The synthesis of the compounds was illustrated in Scheme1,2,3 and 4.

EXPERIMENTAL SECTION

Melting points were determined on Electrothermal apparatus and are not corrected. 1H and 13C NMR spectra were recorded on an AC 250 MHz and 400 MHz Bruker device. The chemical shifts (δ) are given in ppm relative to
tetramethysilane (TMS) taken as internal standard. Mass spectra was recorded on a Perkin Elmer Sciex API 100 and Varian MAT 311A (Paul Sabatier University in Toulouse).

RESULTS AND DISCUSSION

Synthesis of dialkyl(diphenyl)-dithiazo-1,3-dithia-8,11-dioxa-5,14-diaza-15-crown-6: 3a-c – 4a-c:

To a solution of alkyl-1,2,4-triazole-5-thione (0.008 mole) 1a-c and dibromometane (0.004 mol) in dimethylformamide (60 ml), potassium carbonate (0.016 mol) and (0.0008 mole) of the benzyltriethyl ammonium chloride BTEAC (catalyst) were added. The mixture was stirred at room temperature for 24hr. The solution was filtered and the filtrate was evaporated. The residue was recrystallized from ethanol to give product 2a, 2b or chromatographed over silica gel using a mixture of (hexane/ethyl acetate: 70/30) as eluant to give 2c.

Then to a solution of 1,1-bis(5-mercapto-3-alkyl(phenyl)-1,2,4-triazolyl) methane (0.008 mole) 2a-c and dichlorotriethylene glycol (0.008 mole), potassium carbonate (0.016 mol) and (0.0008 mole) of the benzyltriethyl ammonium chloride BTEAC (catalyst) were added. The mixture was stirred for 24hr at 303K, then filtered and dried. The crude material was chromatographed over alumina gel using a mixture of (hexane/ethyl acetate: 70/30) as eluant to give 3a, 3c, 4a, 4c or silica gel using a mixture of (hexane/ethyl acetate: 60/40) as eluant to give 3b, 4b.
Synthesis of 1,5-bis(5-mercapto-3-méthyl(phényl)-1,2,4-triazoly1)-diéthylène glycol and du 1,8-bis(5-mercapto-3-alkyl(phényl)-1,2,4-triazoly1) triéthylène glycol : 5b-c, 6a-c :

To a solution of thioure (0.008 mole) 1a-c and dihalogenodiéthylène glycol or dihalogenodiéthylène glycol (0.004 mole), in dimethylformamide (40 ml), potassium carbonate (0.016 mol) and (0.0008 mole) of the benzyltriéthyl ammonium chloride BTEAC (catalyst) were added. The mixture was stirred at room temperature for 24hr. The solution was filtered, the filtrate was evaporated. The residue was chromatographed over silica gel with ethyl acetate/hexane (75/25) as eluant to give 1a-c and (hexane/ethyl acetate: 70/30) as eluant to give 7c.

Synthesis of 1,2,4-triazolo[2,3-h]-7,9-thiaza-11-couronne-4 : 7a, 3-phényl-1,2,4-triazolo[2,3-h]-7,9-thiaza-11-couronne-4 : 7c, 17-dithio-8,15-diaza-bis[3-phényl-1,2,4-triazolo][3,2-e][2,3-o]-crown -8 : 8c

To a solution of 1,2,4-triazole-5-thione (1.01 g, 0.01 mol) and dichlorodiéthylène glycol (1.87 g,0.01 mol) in dimethylformamide (60 ml), potassium carbonate (4.15 g, 0.03 mol) were added. The mixture was stirred for 24h at 303K, then filtered and dried. The residue was extracted by chromatography over silica gel or alumina gel, using (ethyl acetate) as eluant to give 7a, (hexane/ethyl acetate: 75/25) as eluant to give 7c and 8c.

The data of physical characteristics and the spectral data ('H NMR, 13 C-NMR and Mass Spectra) of synthesized compounds are listed below.

1,1-bis(5-mercapto-3-H-1,2,4-triazoly1)methane (2a)

Yield 50% (solid); M.p. 120-121°C; 1H – NMR (250 MHz, d₆-DMSO, δ(ppm)): δ = 4.85 (2H, S-CH₂), 8.49 (2H, CH Triazole); 13 C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 34.64 (S-CH₂), 146.11 (C3-H), 156.12 (C5 triazole).

1,1-bis(5-mercapto-3-méthyl-1,2,4-triazoly1)methane (2b)

Yield 82% (solid); M.p. 243-244°C; 1H – NMR (250 MHz, d₆-DMSO, δ(ppm)): δ = 4.73(2H, S-CH₂-S), 2.31(6H, CH₃); 13 C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 32.25 (S-CH₂), 11.79 (CH₃), 154.59 (C3-CH₃), 156.82 (C5-triazole).

1,1-bis(5-mercapto-3-phenyl-1,2,4-triazoly1)methane (2c)

Yield 60% (solid); M.p. 200-201°C; 1H – NMR (250 MHz, d₆-DMSO, δ(ppm)): δ = 5.04(2H, S-CH₂-S), 7.48-8.16(10H, Ar-CH); 13 C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 35.17 (S-CH₂), 125.93, 128.88, 129.50 (Ar-CH).
2,15-H-ditriazolo-1,3-dithia-8,11-dioxa-5,14-diaza-15-couronne-6 (3a)
Yield 30%(solid); M.p. (huile); 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 5.05(2H, S-CH2-S), 4.17 (4H, N-CH2), 3.83(4H, CH2-O), 3.57(4H, OCH2), 7.83(2H, C-H Triazole).

2,15-dimethyl ditriazolo-1,3-dithia-8,11-dioxa-5,14-diaza-15-couronne-6 (3b)
Yield 45%(solid); M.p. 188-189°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 5.00 (2H, S-CH2-S), 4.08(4H, N-CH2), 3.45 (4H, CH2-O), 3.51(4H, OCH2), 2.36(6H CH3); 13 C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 14.22 (CH3), 39.51 (CH2-S), 48.47 (CH2-N), 69.36, 70.61 (CH2-O), 126.33, 128.59, 129.34 (Ar-CH) ; 130.94 , 152.19, 162.46 (Cq); MS: m/z = 481 [M+H]+.

2,15-diphenyl ditriazolo-1,3-dithia-8,11-dioxa-5,14-diaza-15-couronne-6 (3c)
Yield 70%(solid); M.p. 156-157°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 5.21 (2H, S-CH2-S), 4.17(4H, N-CH2), 3.85(4H, CH2-O), 3.45 (4H, OCH2) , 7.23-8.15 (10H, Ar-CH); 13 C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 39.51 (CH2-S) ,48.47 (CH2-N) , 69.36 , 70.61 ,71.09 (CH2-O), 126.33, 128.59, 129.34 (Ar-CH) ; 130.94 , 152.19, 162.46 (Cq); MS: m/z = 481 [M+H]+.

3,15-H- ditriazolo-1,3-dithia-8,11-dioxa-5,14-diaza -15-couronne-6 (4a)
Yield 10%(solid); M.p. (huile); 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 4.77 (2H, S-CH2-S), 4.13-4.21 (4H, N1-CH2 , N4-CH2), 3.60-3.76 (4H, O-CH2 CH2 N1, O-CH2 CH2 N4) 3.44 (4H, O-CH2), 7.86 (1H, C–H Triazole) 7.93(1H, C–H Triazole); 13 C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 36.56 (CH2-S), 48.78, 50.08 (CH2-N), 68.19 , 68.73, 70.58 ,71.09 (CH2-O), 149.40, 151.51 (CH triazole) , 158.20 ,159.99 (Cq).

3,15-dimethyl- ditriazolo-1,3-dithia-8,11-dioxa-5,14-diaza-15-couronne-6 (4b)
Yield 15%(solid); M.p. 140-141°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 4.70 (2H, S-CH2-S), 4.06-4.15 (4H, N1-CH2 N4-CH2), 3.56-3.98 (4H, O-CH2 CH2 N1, O-CH2 CH2 N4) , 3.50 (4H, O-CH2), 2.34 (3H, CH3), 2.36 (3H, CH3); 13 C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 11.97 (CH3), 14.07 (CH3), 37.91 (CH2-S) , 48.02, 48.67 (CH2-N), 68.41, 68.86,70.47, 70.63 (CH2-O), 150.39 , 154.52 ,156.13, 161.09 (Cq).

3,15-diphenyl- ditriazolo-1,3-dithia-8,11-dioxa-5,14-diaza-15-couronne-6 (4c)
Yield 20%(solid); M.p. 120-121°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 4.95 (2H, S-CH2-S), 4.17-4.29 (4H, N1-CH2, N4-CH2), 3.68 (2H, O-CH2CH2N1, O-CH2CH2N4), 3.50 (4H, O-CH2), 2.34 (3H, CH3), 2.36 (3H, CH3); 13 C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 11.97 (CH3), 14.07 (CH3), 37.91 (CH2-S) , 48.02, 48.67 (CH2-N), 68.41, 68.86,70.47, 70.63 (CH2-O), 126.31, 128.50, 128.75, 129.10 ,129.19, 130.24 (Ar-CH) , 127.43, 130.89, 151.29, 157.06, 157.16, 162.30 (Cq); MS: m/z = 481 [M+H]+.

1,5-bis(5-mercapto-3-methyl-1,2,4-triazolyl) diéthyleneglycol (5b)
Yield 50%(solid); M.p. 144-145°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 3.18 (4H, S-CH2), 3.64 (4H, O-CH2), 2.28 (6H, CH3); 13C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 30.25 (S-CH2), 68.98 (O-CH2), 11.52 (CH3).

1,5-bis(5-mercapto-3-phenyl-1,2,4-triazolyl) diéthyleneglycol (5c)
Yield 68%(solid); M.p. 130-131°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 3.38 (4H, S-CH2), 3.79 (4H, O-CH2), 7.44-8.02 (10H Ar-CH); 13C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 38.45 (CH2-S), 48.52 ,49.44 (CH2-N). 68.35, 69.10 , 70.57, 70.93 (CH2-O), 126.31, 128.50 , 128.75, 129.10 ,129.19, 130.24 (Ar-CH) , 127.43, 130.89, 151.29, 157.06, 157.16, 162.30 (Cq); MS: m/z = 481 [M+H]+.

1,8-bis(5-mercapto-3-H-1,2,4-triazolyl) triéthylène glycol (6a)
Yield 45%(solid); M.p. huile; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 3.21 (4H, S-CH2), 3.66 (4H, O-CH2), 7.44-8.02 (10H Ar-CH); 13C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 30.91 (S-CH2), 68.95 (O-CH2), 125.87; 128.39, 132.67 (Ar-CH).

1,8-bis(5-mercapto-3-methyl-1,2,4-triazolyl) triéthylène glycol (6b)
Yield 50%(solid); M.p. 122-123°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 3.17 (4H, S-CH2), 3.65 (4H, O-CH2), 3.53 (4H, O-CH2-CH2-O), 8.01(2H, C–H Triazole); 13C-NMR(400 MHz, d6-DMSO, δ(ppm)): δ = 31.33 (S-CH2), 69.71 (O-CH2), 69.80 (O-CH2-CH2-O),146.40 (C–H Triazole).
1,8-bis(5-mercapto-3-phenyl-1,2,4-triazolyl) triéthylèneglycol (6c)
Yield 75%(solid); M.p. 158-159°C; 1H – NMR (250 MHz, d6-DMSO, δ(ppm)): δ = 3.30 (4H, S-CH₂), 3.81 (4H, O-CH₂), 3.66 (4H, O-CH₂-CH₂-O), 7.33-8.01(10H, Ar-CH); 13C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 32.51 (S-CH₂), 69.85 (O-CH₂), 70.59 (O-CH₂-CH₂-O) 126.42 ; 128.71;129.76 (Ar-Ch).

1,2,4-triazolo[2,3-h]-7,9-thiaza-11-couronne-4 (7a)
Yield 70%(solid); M.p. 150°C; 1H – NMR (250 MHz, d₆-DMSO, δ(ppm)): δ = 4.45 (2H, N-CH₂), 3.23(2H, S-CH₂), 3.60-3.65 (2H, CH₂-O), 3.96 (2H, CH₂-O) 3.53(4H, O-CH₂ CH₂-O), 7.96(1H, C-H Triazole); 13C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 37.19 (CH₂-S), 48.36 (CH₂-N), 68.94, 69.05, 69.23, 72.13 (CH₂-O), 151.32 (C5 triazole), 162.91 (C3 triazole); MS: m/z = 215.

3-phenyl-1,2,4-triazolo[2,3-h]-7,9-thiaza-11-couronene-4 (7c)
Yield 65%(solid); M.p. 115°C; 1H – NMR (250 MHz, d₆-DMSO, δ(ppm)): δ = 4.43 (2H, N-CH₂), 3.22 (2H, S-CH₂), 3.54 (2H,CH₂-O) 3.97 (2H CH₂-O), 3.60 (4H, O-CH₂CH₂-O), 7.37-8.10 (5H, Ar-CH); 13C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 37.49 (S-CH₂), 48.39 (N-CH₂), 69.12, 69.17, 72.19 (CH₂-O), 126.33, 128.57, 129.35 (CH Ar), 130.89 (Cq Ar), 131.02 (Cq Ar) 151.84 (C5 triazole), 161.8 2 (C3 triazole); MS: m/z = 291.

4,17-dithia-8,15-diaza-bis[1,2,4-triazolo[3,2-e][2,3-o]-couronne-8 (8c)
Yield 15%(solid); M.p. 161°C; 1H – NMR (250 MHz, d₆-DMSO, δ(ppm)): δ = 4.34 (4H, N-CH₂), 3.40 (4H, S-CH₂), 3.73-3.88 (8H, CH₂-O), 3.57 (8H, O-CH₂CH₂-O), 7.37-8.04 (10H, Ar-CH); 13C-NMR(400 MHz, d₆-DMSO, δ(ppm)): δ = 34.06 (S-CH₂), 49.00 (N-CH₂), 69.25, 69.95, 70.26, 71.10 (CH₂-O), 126.22, 128.57, 129.20 (CH Ar), 131.02 (Cq Ar) 153.40 (C5 triazol), 161.82 (C3 triazol); MS: m/z = 582.

RESULTS AND DISCUSSION

The alkylation reaction of compounds 1a-c with half equivalent of dibromomethane used in the conditions of phase transfer catalysis in dimethylformamide in the presence of potassium carbonate gives the 1,1-bis (5-mercapto-3-alkyl (phenyl) -1,2,4-triazolyl) methane 2a-c. The action of dichlorotriethylene glycol was taken in stoichiometric amount of 2a-c in the same conditions at 70 °C leads to a mixture of two isomers 3a-c major products and 4a-c minor products (scheme1).

The action of dihalo (di) triethylene glycol used in default on 1a-c, under the above conditions at room temperature. The reaction provided access to a single compound 5b-c and 6a-c in good yields (scheme2). Moreover, the action of a stoichiometric amount of glycol dichlorotriethylene on 1a-c, under the same conditions at 70 °C leads to a mixture of two isomers 3a-c major products and 4a-c minor products (scheme1).

Note, secondly, that the 8c compound can be isolated by another synthetic route, by reacting a stoichiometric amount of equimolar dihalogeno triethylene on 1,8-bis (5-mercapto-3-phenyl-1,2,4-triazolyl) triéthylèneglycol after 24 hours of stirring at 70 °C, of a single product type: 1,2,4-triazolo thiaza-11 7a-crown-4 when R = H. However, when R = C₆H₅, two compounds were isolated: one with 3-phenyl-1,2,4-triazolothiaza-11-crown-4 7c type, and the other with dithia tetraoxa diaza-22-crown-8 (8c) type (scheme3).

CONCLUSION

The Main focus of this research work was to synthesize, characterize of the newly synthesized 1,2,4-triazole-5-thione derivatives. Structures of synthesized compounds were confirmed by means of their IR, ¹H NMR, ¹³C NMR and mass spectral.
These heterocyclic compounds may have different applications in important areas, from herbicides and fungicides to therapeutically usable drugs.

REFERENCES

